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The catabolism of tryptophan has gained great importance in recent years due to the fact that the metabolites produced during this
process, with neuroactive and redox properties, are involved in physiological and pathological events. One of these metabolites is
kynurenic acid (KYNA), which is considered as a neuromodulator since it can interact with NMDA, nicotinic, and GPR35 receptors
among others, modulating the release of neurotransmitters as glutamate, dopamine, and acetylcholine. Kynureninate production is
attributed to kynurenine aminotransferases. However, in some physiological and pathological conditions, its high production cannot
be explained just with kynurenine aminotransferases. This review focuses on the alternative mechanism whereby KYNA can be
produced, either from D-amino acids or by means of other enzymes as D-amino acid oxidase or by the participation of free radicals.
It is important to mention that an increase in KYNA levels in processes as brain development, aging, neurodegenerative diseases,
and psychiatric disorders, which share common factors as oxidative stress, inflammation, immune response activation, and
participation of gut microbiota that can also be related with the alternative routes of KYNA production, has been observed.

1. Kynurenic Acid (KYNA)

The main tryptophan (Trp) catabolism route is through the
kynurenine pathway (KP), where the final product is the
nicotinamide adenine nucleotide (NAD+) de novo produc-
tion. NAD+ plays an essential role in metabolism and cellular
energy homeostasis. NAD+/NADH ratio dysfunction is
related to mitochondrial disorders, aging, and age-related
diseases [1]. In humans, it is estimated that 95% of Trp
is catabolized through KP [2]. Along with this pathway,
some neuroactive metabolites are produced. One of them

is kynurenic acid (KYNA), which is considered a natural
antagonist for the glycine-B coagonist site of N-methyl-D-
aspartate receptor (NMDAr). However, high micromolar
concentrations of KYNA are needed to block NMDAr
functions [3–6]. Also, AMPA receptors can be competitively
inhibited by KYNA at millimolar concentrations, but in
nanomolar to micromolar levels, KYNA induces their
facilitation through allosteric modulation [7]. KYNA can
also inhibit noncompetitively α7-nicotinic receptors (α7-
nAChRs; IC50~7μM) which can bind to α-bungarotoxin
being the most prevalent in the brain [5, 8, 9]. Under
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physiological conditions, it has been suggested that α7-
nAChRs are the primary endogenous target of KYNA
[10–12]. Due to KYNA can interact with NMDAr, α7-
nAChRs and AMPAr[9,13,14]and since its levels secondarily
affect the extracellular concentrations of glutamate, dopa-
mine, acetylcholine and γ-aminobutyric acid (GABA) is con-
sidered as neuromodulator[10–19]. Importantly, all these
receptors and neurotransmitters are critically involved in
neurodevelopment, plasticity, cognition, behavior, and mem-
ory process among others [20].

On another hand, it has been shown that G-protein-
coupled receptor (GPR35) is activated by KYNA [21]. The
stimulation of this receptor is associated with neuronal
excitability regulation and transmitter release, since GPR35
activation induces N-type calcium channel inhibition in rat
sympathetic neurons [22, 23]. The KYNA effects on gluta-
mate levels and the reduction of excitatory transmission
can also be related with the ability of KYNA to activate
GPR35 [23, 24]. In this regard, it has been proposed that
the KYNA interaction with GPR35 reduces the release of
proinflammatory cytokines in cell lines, which can be associ-
ated with the analgesic effects of KYNA in inflammatory
models [25, 26]. Another target of KYNA is the aryl hydro-
carbon receptor (AHR), which is considered a xenobiotic
receptor [27], and its activation is associated with the sup-
pression of cellular immune response favoring carcinogene-
sis and tumor outgrowth [25, 27]. Specifically, stimulation
of AHR by KYNA enhances the expression of IL-6, fact by
which KYNA was considered as a factor involved in the
escape of tumors, via the IL-6-dependent pathway, for
immune surveillance [27].

Finally, KYNA can also interact with reactive oxygen
species (ROS) in chemical combinatory systems, and it
can lead to decrease ROS production and lipid peroxi-
dation induced by prooxidants, in rat brain homoge-
nates. Importantly, this scavenger property of KYNA is
independent of its effect on the NMDA and cholinergic
receptors [28].

The relevance of KYNA in the brain has been experi-
mentally shown both during development and adulthood.
In this context, KYNA levels have been found higher in
fetal brain [29–31] and decreased in the postnatal period
and in adult age [31]. However, during adulthood, fluctu-
ation of brain KYNA levels provokes a broad spectrum of
behavioral and cognitive alterations [18, 32, 33], and when
brain KYNA levels decreased, cognitive process improves
in mice and rats [18, 34]. These evidences strongly suggest
an important role of KYNA during neurodevelopment
and adulthood.

As was mentioned before, KYNA is an endogenous
metabolite with multiple targets (Figure 1) that can lead to
different effects depending on the environment conditions.
Until now, the major production of KYNA has been attrib-
uted to kynurenine aminotransferases (KATs). Nevertheless,
in events such as neurodevelopment, aging, some neurode-
generative diseases, and psychiatric disorders, the production
of KYNA cannot be completely explained by the kynurenine
aminotransferase activity alone but there are other common
factors which could be involved in its production. In this
review, we are focused on the alternative mechanisms by
which KYNA can be produced since these could be extremely
important under certain conditions.
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Figure 1: Targets of kynurenic acid (KYNA). AMPA: α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; α7nAChR: α7-nicotinic
acetylcholine receptor; IC50: half maximal inhibitory concentration; NMDAr: N-methyl-D-aspartate receptor.
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2. Kynurenine Aminotransferase Canonical
Way to Produce KYNA

The canonical route of KYNA formation is through the
kynurenine pathway by kynurenine aminotransferases.
These enzymes catalyze the irreversible transamination of
kynurenine to produce KYNA. Until now, 4 isozymes of
kynurenine aminotransferases have been described. All the
isozymes are pyridoxal-5′-phosphate dependent and require
an α-ketoacid molecule as a cosubstrate. KATs have a low
affinity for their substrate (approximately 1mM) so that the
rate of KYNA formation is directly controlled by local kynur-
enine availability [35, 36]. Since the canonical pathway is the
most studied, there are many reviews about these isozymes in
the literature [37, 38]. Here, we provide a table with the
principal biochemical characteristics of kynurenine amino-
transferase isozymes (Table 1).

Recently, it has been reported that KATs can also take
D-kynurenine (D-Kyn) as a substrate both in rat and in
human tissues [39]. The de novo production of KYNA from
D-Kyn in the rat prefrontal cortex was 30 times less potent
than that from L-Kyn. The production induced by D-Kyn
was inhibited just 30% by the KAT inhibitor AOAA, while
the production induced by L-Kyn was almost abolished by
the same treatment. Similar effects were observed in human
homogenates—the production of KYNA from the enantio-
mer L-Kyn decreased around 98% in presence of the KAT
inhibitor in the human brain and liver, while the KYNA pro-
duction induced by D-Kyn drops at about 70% in presence of
AOAA. Considering the low affinity for the substrate shown
by the KATs and the evidence that the kynurenic acid pro-
duced by D-Kyn is not completely inhibited by the KAT
inhibitor, it is feasible to suggest that there are alternative
mechanisms by which KYNA can be produced and they
could be relevant in physiological conditions as well as in
pathological events.

3. D-Amino Acid Oxidase and D-Amino Acids in
KYNA Production

During many years, L-amino acids have had more attention
than D-enantiomers; however, recently, it has been shown
that D-amino acids are present in animals and humans at
high concentrations and fulfill specific biological functions,
as was demonstrated with a pool of amino acids necessary
for protein synthesis; after being enzymatically converted
to L-amino acids, they could also act antagonistically to
L-amino acids, deactivating their biological site [40, 41].
The presence of D-amino acids in mammals results from
microorganisms or racemization of L-amino acids to their
D-isomer, in food and other proteins which are pH, time,
and temperature dependent [40]. Alterations in the concen-
trations of D-amino acids might occur in some disorders
related to bacterial pathogens and immune activation [42].

Specifically for KYNA production, D-Trp and D-Kyn
have been studied for many years. The first evidence showing
that D-tryptophan (D-Trp) could be utilized for growth was
reported by du Vigneaud and coworkers in 1932 [43]. But, it

was Berg in 1953 [44] who demonstrated that D- and L-Trp
can be equally effective to support growth in rats. After these
findings, more studies on D-Trp were performed. It was
found that in rat liver slices, D-Trp and D-Kyn were metab-
olized slower than L-Trp and L-Kyn, respectively. After
incubation with D-Trp, small amounts of L-Kyn, D-Kyn,
and KYNA were found [45]. In 1971, it was shown that after
feeding or injecting rabbits with D-Trp or D-Kyn, they
excreted kynurenic acid as well as indole pyruvic acid [46].
Also, in the normal human subject, it has been observed that,
after ingestion of D-Trp, D-Kyn, indole pyruvic acid (IPA),
and acetyl-Trp are excreted [47]. Later, it was showed that
D-formylkynurenine was the intermediate during the con-
version of D-Trp to D-Kyn, and the enzyme that catalyzed
this reaction was inhibited by the presence of L-Trp [48]. In
vitro experiments demonstrated that D-Kyn can be con-
verted to KYNA in kidney preparations (slices and homoge-
nates) and this conversion can be due to the presence of
D-amino acid oxidase, since purified D-amino acid oxidase
from Trigonopsis variabilis rapidly converts D-Kyn to KYNA
[46]. These findings confirmed the previous results in which
it was proposed that the mechanism by which D-Trp pro-
duced KYNA was independent of D-Trp racemization to
L-Trp; however, this did not completely exclude the D-
to L-Trp conversion possibility. Later, it was known that
the conversion of L-Kyn to KYNA was catalyzed by α-
ketoglutarate-dependent transaminase, and when L-Trp
and L-Kyn were incubated in the presence of α-ketogluta-
rate-eliminating system, there was no KYNA production.
On the contrary, when D-Trp or D-Kyn were incubated in
the same conditions, KYNA production was found; however,
when D-enantiomers were incubated in anaerobic condi-
tions, KYNA was not detected, suggesting an alternative
mechanism for KYNA production from D-enantiomers,
which involved an oxidase and discarded the transaminase
reaction [49].

Additional experiments showed that when rat liver
homogenates were incubated with D-Trp (3mg) under
oxygen conditions, L-Trp, IPA, D-Kyn, KYNA, and anthra-
nilic acid were produced. However, when the homogenates
were incubated under nitrogen conditions, no metabolite
was formed. To determine whether all inversion processes
required oxygen, D-Trp was incubated with liver homoge-
nates under oxygen conditions for 2 h; once IPA has been
formed in this period of time, the atmosphere was changed
to nitrogen and sodium azide was added to minimize kynur-
enine production; they could observe that even with the
change of atmosphere, L-Trp continued to occur at expenses
of IPA, which was formed under the oxidizing conditions.
This means that the amination of IPA to L-Trp do not
require aerobic conditions suggesting that the transamina-
tion occurs, since the reaction was stimulated by addition
of glutamic acid and pyridoxal phosphate [50]. But the
important point here was that not all D-Trp were inverted
to L-Kyn; additionally, considerable amount of D-Kyn was
also produced. When slices or homogenates of rat liver were
incubated with D-Kyn, KYNA was produced, which was
abolished by benzoate addition, indicating that D-amino acid
oxidase (DAAO) was involved in the reaction, since benzoate
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is its inhibitor [50]. An in vivo experiment showed that the
intraperitoneal (i.p.) administration of D-Trp or D-Kyn
increased the levels of KYNA in rat plasma and this produc-
tion was abolished by DAAO inhibitor, 5-methylpyrazole-3-
carboxylic acid (summary in Table 2) [51, 52].

The first evidence that showed that D-Kyn can produce
KYNA in rodents and the human brain was showed in
2009 [15, 53], and one year later, Pérez de la Cruz and
coworkers found KYNA production from D-Kyn in different
human brain regions, showing that in the human cerebel-
lum, the production of KYNA is highest than in other
regions. Furthermore, coincubation with benzoic acid inhib-
ited KYNA production [54]. Moreover, microdialysis studies
proved an increase in KYNA levels after intraperitoneal
administration of D- or L-Trp (100mg/kg) or direct infusion
of D-Kyn in the prefrontal cortex. Interestingly, when the
DAAO inhibitor was injected in combination with D-Trp
or D-Kyn, the effect in KYNA levels was decreased [55].
Following this line, knowing that DAAO is abundant and
has high activity in the cerebellum [56–58], microdialysis
studies were designed in this region, showing that the infu-
sion of 100μM of L-Kyn or D-Kyn produced 17.9 and 10.7
times more KYNA than the baseline, respectively, which
was really surprising since a previous study demonstrated
that KYNA production from D-Kyn needs 100μM of this
enantiomer, while only 2μM of L-Kyn was necessary to pro-
duce almost the same amount of KYNA in rat cortex. Also,
this experimental study showed the importance of DAAO
in cerebellum KYNA production since in vitro experiments
had shown that the production of KYNA from D-Kyn inhib-
ited almost 30% by a KAT inhibitor, while it inhibited almost
70% by DAAO inhibitors [59].

Since these studies showed that KYNA can be pro-
duced in the brain from D-amino acids, new studies were
focused on elucidating whether the other redox or neuroac-
tive metabolites of the kynurenine pathway were also pro-
duced from D-enantiomers. In this context, Notarangelo
and coworkers demonstrated that after i.p. D-Trp injection,
the levels of L-Trp increased in the plasma, forebrain, and
cerebellum, which confirmed that the conversion of D-Trp
to L-Trp can take place in the brain and impact it. Then, they
showed that D-Kyn increased both in the forebrain and
in cerebellum and that at 30min postinjection of D-Trp
(30mg/kg), KYNA levels were increased just in the cerebel-
lum via DAAO activity, since the coadministration with a
DAAO inhibitor decreased KYNA levels. The other branch
of the pathway was also studied, and 3-HK and QUIN
metabolites were increased in the forebrain after D-Trp
injection; 3-HK increased 2-fold in the cerebellum, and any

change in QUIN levels was not observed [42]. On the other
hand, after i.p. D-Kyn injection, KYNA and 3-HK were
found in the plasma, liver, forebrain, and cerebellum [60].

Since D-Trp and D-Kyn can be present in normal condi-
tions by food intake or can be originated from microorgan-
isms that inhabitate the digestive tract [61–64], it appears
logical to suggest that D-enantiomers are, in part, responsible
of KYNA, 3-HK, and QUIN levels in the brain. Knowing that
kynurenine pathway metabolites have been associated with
neurological disorders, it is also important to study the role
of D-enantiomers since they can be responsible of the kynur-
enine level alterations in diseases, in which correlation with
high DAAO activity or in those that are associated with
previous infections is showed [65–67].

4. Indole-3-Pyruvic Acid as a KYNA Precursor

Indole pyruvic acid is a natural compound present in mam-
mals and is the transamination product of tryptophan by
the action of aromatic amino acid transaminase [68, 69].
The first studies that proposed that IPA could be a precursor
of KYNA were conducted in the 1980s and demonstrated
that IPA administration increased the brain content of 5-
hydroxytryptamine (5-HT), 5-hydroxyindole-3-acetic acid
(5-HIAA), and Trp [70, 71]. It was also demonstrated that
Trp and IPA administration produced a dose-dependent
increase of KYNA levels in the brain and others organs
[71, 72]. Actually, the important point is that the same
doses of IPA or Trp (100mg/Kg) are able to produce
almost the same concentrations of KYNA in rat brain
(22± 2 and 23± 3 picomoles/g, resp.). At the same time,
studies in parallel were carried out and rats were adminis-
trated with probenecid (inhibitor of KYNA’s brain trans-
port) and IPA, in order to clarify whether or not the
raise in KYNA levels was due to an increased rate of syn-
thesis or to a decreased rate of disposal. However, KYNA
levels were significantly higher in animals treated with
IPA+probenecid than in controls, suggesting not only that
IPA indeed increases the rate of KYNA synthesis in rat
brain but also that KYNA disposal occurs through a
mechanism sensitive to probenecid. Until that time, it
was known that the administration of IPA was able to
increase KYNA levels but the mechanism was unknown.
One of the hypotheses was that after administering IPA,
Trp levels could be increased, which would generate a
greater amount of KYNA by the canonical route. However,
when 3H-IPA was administered and KYNA and Trp levels
were monitored in the brain alkaline extracts, there were
2600 cpm/μmol of KYNA and 380 cpm/μmol of Trp found

Table 2: Enzymes involved in KYNA production from D- and L-enantiomers under different oxygen conditions.

D-Trp→D-Kyn→KYNA L-Trp→ L-Kyn→KYNA D-Trp→ IPA IPA→ L-Trp

α-Ketoglutarate-eliminating system ✓ ✘

Aerobic conditions ✓ ✓ ✓ ✓

Anaerobic conditions ✘ ✓ ✘ ✓

Enzyme involved DAAO Transaminase Oxidase Transaminase
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[72], suggesting that part of IPA could be converted to Trp
and then it follows the canonical pathway to produce
KYNA, but there was also another mechanism involved in
KYNA production by IPA [71].

In this context, Politi and coworkers [73] showed that
IPA could be transformed into KYNA in different rat organ
homogenates, but in the absence of enzymatic systems and
with oxygen in the incubation mixture. They incubated keto
and enol forms of IPA in a free enzymatic system observing
that the enol form produced more KYNA than the keto form
(24± 5ng and 6± 2ng, resp.). Because the chemical transfor-
mation of IPA to KYNA needs a radical attack from reactive
oxygen species, they also incubated in the same conditions
keto and enol forms, but adding a free radical generator sys-
tem (ascorbate/Fe/hydrogen peroxide). They observed that
under these conditions, the enol form produced 251± 38ng
of KYNA while the keto form produced 12± 5ng of KYNA.
After these results, IPA scavenging properties were demon-
strated through the inhibition of chemiluminescence and
malondialdehyde formation; in both, the enol form was more
efficient than the keto form, which is possibly due to the fact
that the enol conformation contains two conjugated double
bonds in the carbon frame [73].

In summary, tryptophan can be degraded by tryptophan
2-oxoglutarate aminotransferase, whose primary product is
indole-3-pyruvic acid. IPA is either produced in keto or enol
tautomer (Figure 2). The enolic form can easily interact with
reactive oxygen species and undergoes pyrrole ring cleavage.
The kynurenic product formed then spontaneously cyclizes
to produce KYNA [74]. This process can be considered in
mammals since it has been showed that IPA enol tautomer
is rather stable in mammalian tissues and in plasma of mam-
mals and humans treated with IPA, due to the presence of
specific tautomerases in circulation, favoring the formation
of KYNA in the presence of free radicals [75].

5. Myeloperoxidases Produce KYNA from L-Kyn

The importance of peroxidases in KYNA production was
evaluated after knowing that in homogenates of dinoflagel-
late Lingulodinium polyedrum, the KYNA production from
L-Kyn was stimulated by oxidants [76]. After incubation of
L-Kyn with H2O2 in the presence of peroxidases, KYNA
production in a linear manner was observed. Taking in mind
that hemoperoxidases, including horseradish peroxidase,
have a broad substrate specificity for hydrogen donors, a

N

N
H

N
H

N
H Tautomerase

OH

Kynurenic acid

L-Tryptophan

Aminotransferase

CH2 CH COOH

NH2

Indole-3-pyruvic acid
(Keto form)

Indole-3-pyruvic acid
(Enol form)

ROS

Kynuric intermediate
 (Unstable intermediate)

COOH

Spontaneous
cyclization

Formic
acid

OH

COOH

O

COOH

COOH

OH

O
N
H

CHO

Figure 2: KYNA production from the interaction of indole pyruvic acid (IPA) with ROS (modified from Hardeland[74]).
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mechanism by which these enzymes can produce KYNA
from L-Kyn was proposed (Figure 3). Kynurenine can donate
hydrogen forming an unstable imino acid, which is hydro-
lyzed to the respective 2-oxo acid and ammonia. Then, the
2-oxo acid formed spontaneously cyclizes and forms KYNA
[74, 77]. This process can be considered in mammals, since
hemoperoxidases may substantially favor the process in
which H2O2 stimulates KYNA production.

6. Interaction between D-Kyn and L-Kyn with
ROS Induces KYNA Production

As was mentioned before, L-Kyn can be converted to KYNA
in the presence of H2O2, and this conversion is substan-
tially enhanced by horseradish peroxidase. However, it is
important to mention that this production was also
observed in the absence of the enzyme. The reaction was
monitored at different pHs, and the results showed that
in acid pH (5.5), KYNA was not detectable; but when
the pH of the medium was 7.4, 8, or 8.6, the KYNA pro-
duction was increased at around 11- to 17.5-fold [77].
This evidence in the pH effect indicated that the major
contribution in KYNA production from L-Kyn is due to
H2O2 decomposition [78–81].

Later, cells of Lingulodinium polyedrum were incubated
with kynurenine and KYNA levels were increased in the
medium. This effect was highly light dependent. To clarify
the relationship between photosynthetically generated oxy-
gens during light and KYNA production from L-Kyn, Zsizsik
and Hardeland evaluated the effect of two oxidant generators
(carbonyl-cyanide-m-chlorophenylhydrazone (CCCP) and
paraquat) and a photosynthesis inhibitor (dichlorophenyldi-
methylurea (DMCU)) in this paradigm. Incubation of L-Kyn
in homogenates of Lingulodinium polyedrum exposed to

light produced around 50–70nmol KYNA/mg protein, and
this production was stimulated in the presence of CCCP
and paraquat (65% and 53%, resp.). However, KYNA pro-
duction decreased around 42% in the presence of DMCU
because this compound blocks the electron transport chain
of photosystem II. This data suggested that oxidants (H2O2
and superoxide anions) stimulate KYNA production from
L-Kyn [76].

Taking previous findings, Blanco Ayala and coworkers
showed that the first evidence of the reaction between D-
Kyn and L-Kyn with ROS produces KYNA in mammals
[59]. By using chemical combinatorial assays, it was demon-
strated that both D- and L-Kyn were able to produce KYNA
through their interaction with hydroxyl radical and peroxy-
nitrite, the effect with peroxynitrite being more pronounced.
Then, cerebellum homogenates were used to evaluate the
effect of coincubation of L- or D-Kyn with peroxynitrite.
The production of KYNA from L-Kyn and D-Kyn in cerebel-
lum homogenates was 18.1- and 9.8-fold higher, respectively,
compared to the basal levels. When the homogenates were
incubated with L- or D-Kyn plus peroxynitrite, the produc-
tion increased by 2.6 and 2.8, respectively, compared with
the incubation with the enantiomers alone. Next, through
microdialysis experiments, it was demonstrated that the
same effect occurs in vivo. Here, intracerebellar infusion of
L- or D-Kyn produced KYNA level increments of 17.9 and
10.7 times, respectively, compared with baseline at 2 h post-
infusion. In addition, basal levels of KYNA were increased
in the cerebellum cortex (2.9 nM to 11.4 nM) after 30min
of peroxynitrite infusion, suggesting that the production of
kynureninate is influenced by the oxidant environment.
When the peroxynitrite was infused previously to both
enantiomers, KYNA increased 4.1- and 3.2-fold compared
with the animals infused just with L- or D-Kyn [59].
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The importance of the redox environment was also
observed in brain homogenates, which were incubated with
20μM of L- or D-Kyn and peroxynitrite (25μM) during 1 h
at 37°C in Krebs buffer (Figure 4). Under these conditions,
L-Kyn and D-Kyn increased KYNA levels 5- and 1.2-fold
more, respectively, compared with those of the control.
KYNA production from L-Kyn decreased by the use of
AOAA, a KAT inhibitor, while KYNA production from D-
Kyn in the presence of AOAA was not significantly altered.
After coincubation with peroxynitrite, KYNA increases
around 11- and 4-fold from L- and D-Kyn, respectively.
The combination L-Kyn+ONOO−+AOAA decreases just
20% KYNA production compared with L-Kyn+ONOO−,
suggesting that KAT participation in KYNA production
is minimal under these conditions. In the case of D-
Kyn+ONOO−+AOAA, it was not significantly different
compared with D-Kyn and ONOO−. However, KYNA
production from the enantiomers plus peroxynitrite was
decreased around 50% when an antioxidant, NDGA, was
used, suggesting that the KYNA production was favored by
the oxidant environment.

These data are in accordance with previous evidence
showing that L-Kyn and D-Kyn are good ROS scavengers
and in this way can produce KYNA [82, 83]. All these find-
ings suggest another pathway to produce KYNA which may
have relevance in brain development and aging and in neuro-
logical diseases that show redox environment alteration.

7. Concluding Remarks

Although the specific contributions of the alternative routes
of KYNA production remain unclear, abundant evidence
has shown that the increase of this metabolite is involved
in many physiological and pathological processes, in which
the redox environment is altered by the presence of free
radicals, the decrease of antioxidant defense, and the acti-
vation of immune response and inflammatory mediators.
All of these factors could be related with KYNA production
as was mentioned throughout this review. The challenge for
future research is to clarify the precise degree of involve-
ment of these alternative routes (Figure 5), in processes
such as neurodevelopment, aging, psychiatric disorders,
and aging-related diseases, in which have been described
as having high levels of KYNA; but also, it is known that
there is high presence of free radicals and inflammatory
cytokines. Some of these diseases are also related with
previous infections and with DAAO activity alterations;
all these factors promote the oxidant environment that
could impact directly KYNA production. These new routes
are a target of study and represent a new alternative to
modulate KYNA levels in the processes in which they
are involved.
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