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Abstract

Micronutrient deficiencies are common in undernourished societies yet remain inadequately assessed due to the complexity

and costs of existing assays. A plasma proteomics-based approach holds promise in quantifying multiple nutrient:protein

associations that reflect biological function and nutritional status. To validate this concept, in plasma samples of a cohort of 500

6- to 8-y-old Nepalese children, we estimated cross-sectional correlations between vitamins A (retinol), D (25-hydroxyvitamin D),

and E (a-tocopherol), copper, and selenium, measured by conventional assays, and relative abundance of their major plasma-

bound proteins, measured by quantitative proteomics using 8-plex iTRAQ mass tags. The prevalence of low-to-deficient status

was 8.8% (<0.70 mmol/L) for retinol, 19.2% (<50 nmol/L) for 25-hydroxyvitamin D, 17.6% (<9.3 mmol/L) for a-tocopherol, 0%

(<10 mmol/L) for copper, and 13.6% (<0.6 mmol/L) for selenium. We identified 4705 proteins, 982 in >50 children. Employing a

linear mixed effects model, we observed the following correlations: retinol:retinol-binding protein 4 (r = 0.88), 25-hydroxyvitamin

D:vitamin D-binding protein (r = 0.58), a-tocopherol:apolipoprotein C-III (r = 0.64), copper:ceruloplasmin (r = 0.65), and selenium:

selenoprotein P isoform 1 (r = 0.79) (all P < 0.0001), passing a false discovery rate threshold of 1% (based on P value-derived

q values). Individual proteins explained 34–77% (R2) of variation in their respective nutrient concentration. Adding second

proteins tomodels raisedR2 to 48–79%, demonstrating a potential to explain additional variation in nutrient concentration by this

strategy. Plasma proteomics can identify and quantify protein biomarkers ofmicronutrient status in undernourished children. The

maternalmicronutrient supplementation trial, fromwhich datawere derived as a follow-up activity,was registered at clinicaltrials.

gov as NCT00115271. J. Nutr. 143: 1540–1548, 2013.

Introduction

Micronutrient deficiencies due to dietary inadequacy are wide-
spread in the developing world, especially in rural South Asia (1–3),
where they may contribute to risks of morbidity, mortality, poor

growth, and impaired cognition (4–8), making their prevention
a global public health goal. Yet their burden, referred to as
‘‘hidden hunger,’’ remains infrequently assessed in vulnerable
populations. Obstacles that limit comprehensive and frequent
assessment of multiple micronutrient status include technical
difficulty, logistical challenges, and costs of performing multiple,
nutrient-specific assays (9). Incomplete or outdated estimates of
burden, stemming from infrequent assessment, have left national
and global agencies poorly informed, unable to accurately and
rapidly assess deficiencies, target and design effective interven-
tions, and monitor changes in population micronutrient status.
A few field methods are currently under development to con-
currently assess status for a limited number of micronutrients of
known health consequence, such as vitamin A and iron (10,11).
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However, the breadth of nutritional need from dietary deficiencies
and environmental stresses in poor settings is likely to span many
essential nutrients, flagging a need for broader assessments and
better informed prevention. In low-resource settings, meeting this
public health need will require in the future more efficient,
affordable, and comprehensive micronutrient status assays. Fur-
thermore, because biochemical concentrations alone do not reflect
nutrient function, a new assessment approach would ideally add
value if it were to generate biomarkers linked to nutrient
metabolism and function.

Quantitative proteomics, in which hundreds of plasma pro-
teins can be identified and quantified in relative abundance in a
single MS experiment using mass tags (12,13), may offer a basis
for discovering proteins and protein clusters that reflect nutrient
functions and predict micronutrient status. Ultimately, such infor-
mative protein combinations could be simultaneously assessed
using other high-throughput techniques, such as antibody chip
screening. Using proteomics to estimate micronutrient deficiencies
would rely on identifying plasma protein biomarkers that
sufficiently covary, via binding or less directly through complex
metabolic networks, with population nutrient distributions.

The application of proteomics to human nutrition has been
widely proposed (14–17), but there have been, to our knowledge,
no studies to date evaluating the correlation of plasma proteomic
biomarkers determined by MS with population distributions of
multiple plasma nutrient concentrations measured by conven-
tional assays. This void may exist for several reasons: 1) lack of
access to large plasma archives obtained from undernourished
populations adequately characterized for multiple nutrient status;
2) need for substantial investment in state-of-art mass spectro-
metric, bioinformatic, and high through-put data analytic instru-
mentation; and 3) the required levels of effort to discover plasma
protein biomarkers that covary with micronutrient status. A first
step toward validating this approach would be to conduct a
plasma micronutrient and proteomic assessment that quantifies
strength of association between concentrations of nutrients and
their cognate, bound proteins in circulation (nutrient:protein
dyads). Observing strong associations would offer a biological
proof of concept, strengthen confidence about nonclassical
nutrient:protein associations that may appear, and encourage
methodological development to quantify, analyze, and inter-
pret proteomics data for potential public health application.

Using plasma biospecimens from a population cohort of
Nepalese children, the present study explores the ability to com-
bine plasma proteomics, bioinformatics, and a novel statistical
modeling approach to reveal correlations between selected micro-
nutrients and their cognate circulating proteins: specifically,
retinol with its major transport protein, retinol binding protein
4 (RBP4)11 (18); 25-hydroxyvitamin D with vitamin D binding
protein (VDBP), the major carrier protein for ergocalciferol
(vitaminD2), cholecalciferol (vitaminD3), and 25-hydroxyvitamin
D (19); a-tocopherol with apo C-III, one of the first apolipopro-
teins released with vitamin E from the liver (20); copper with
ceruloplasmin (Cp), to which ;95% of plasma copper is bound
(21); and selenium with selenium protein P1 (SEPP1), the major
hepatic-derived protein that transports Se to peripheral tissues
(22). Beyond confirming expected correlations, we explored, for
each nutrient, gains in explained variance achieved by adding a

second plasma protein to each regression model based on
statistical criteria. Further model building is currently limited by
missing protein data, inherent to mass spectrometric analysis,
for which extensive imputation is required to overcome. However,
the analytic approach described here represents an initial step
toward revealing protein combinations that may enable, in the
future, plasma proteomic data to describe micronutrient status and
predict levels of deficiency in populations.

Materials and Methods

We set out to quantify micronutrient concentrations and protein relative

abundance in archived plasma samples obtained in 2006–2008 from 500
children, 6–8 y of age, living in the District of Sarlahi, Nepal. The area is

located in the rural, southern plains of the country, where micronutrient

deficiencies with preventable consequences have been documented in

preschool-aged children (4,5). The 500 children in this study comprised a
random 50% subset of 1000 children in the same age range whose

plasma multiple micronutrient and inflammation status was character-

ized by conventional biochemical tests (K. Schulze, P. Christian, L. Wu,
M. Arguello, H. Cui, A. Nanayakkara-Bind, C. Stewart, S. Khatry,

S. LeClerq, K. West, unpublished results). This assessment formed part

of a nutrition, health, and cognitive follow-up study in 2006–2008 of a larger

cohort of children (7,23) whose mothers had participated in a randomized,
antenatal micronutrient supplementation trial in 2000–2001 (6).

The field procedures for the follow-up study, which included histories

of illness, anthropometry, blood pressure, urine collection, and phlebot-

omy, were previously described (23). Anthropometric status was summa-
rized as Z-scores for weight-for-age, height-for-age, and BMI-for-age in

relation to theWHO reference (24). Relevant to the current analysis, early

morning blood samples were obtained by venipuncture following an

overnight fast and transported light protected to a field laboratory on ice
packs. Following centrifugation, plasma was analyzed for lipids, glycated

hemoglobin, and glucose concentrations and three 1-mL aliquots stored

and air-freighted under liquid nitrogen vapor to Johns Hopkins University
where samples were stored at 280�C until analysis (23).

The original field trial was carried out among consenting mothers

and was approved by the Nepal Health Research Council, Kathmandu,

Nepal and the Institutional Review Board of the Johns Hopkins
Bloomberg School of Public Health, Baltimore, MD. The follow-up

study protocol was approved by Institutional Review Boards at the

Institute of Medicine of Tribhuvan University, Kathmandu, Nepal and

at Johns Hopkins University. Follow-up study procedures were carried
out in children following parental consent.

Plasma micronutrient assays. Laboratory assays were carried out to
measure plasma concentrations of vitamins A, D, and E, copper, and

selenium, among other nutrients. Plasma retinol and a-tocopherol were

simultaneously measured by a conventional, reverse-phase HPLC method

following protein precipitation and hexane extraction of the fat-soluble
contents of the plasma. The assay was calibrated against Standard

ReferenceMaterial 968e (National Institute of Standards and Technology).

Chromatography was performed on an Alliance 2795 HPLC system

(Waters) with autosampler and photodiode array detector (Waters 2475)
and analyzed with Empower 2 software. The separation was achieved

using a Supelcosil LC-18 25-cm3 4.6-mm, 5-mm column (Sigma-Aldrich).

A commercial competitive enzyme immunoassay (IDS) was used
to measure 25-hydroxyvitamin D. According to the kit insert, the

method had 100% reactivity with 25-hydroxyvitamin D3, 75% for

25-hydroxyvitamin D2, and 100% for 24, 25-dihydroxyvitamin D3.

Plasma copper and selenium were measured by graphite furnace
atomic absorption spectroscopy (Perkin Elmer) with background correction

using modifications of the manufacturer�s recommended conditions.

Assays were run against aqueous standards and accuracy was checked

using commercial serum quality control materials with certified contents
of copper and selenium (Seronorm Trace Elements Serum, Sero). Assay

repeatability was established by running a pooled sample at regular

intervals. Copper was diluted 1:15 in deionized water with 10 mL added

by autosampler to 5 mL of a 10,000 mg/L magnesium nitrate matrix

11 Abbreviations used: CDC42BPKaA, CDC42-binding protein kinase alpha-isoformA;

Cp, ceruloplasmin; FDR, false discovery rate; GPx-3, glutathione peroxidase-3;

iTRAQ, isobaric tags for relative and absolute quantification; LME, linear mixed

effects (model); RBP4, retinol binding protein isoform 4; RGS8, regulator of

G-protein signaling 8 (isoform 2); SEPP1, selenoprotein P isoform 1; VDBP,

vitamin D binding protein.
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modifier (Perkin Elmer) prepared at a 0.1% v:v dilution in deionized

water. Samples were read for 5 s during a 2000�C atomization step

following an injection temperature of 80�C, 30 s of drying each at 110�
C and 130�C, and 20 s of pyrolysis at 1200�C. Selenium was diluted

1:10 in an ascorbic acid solution prior to analysis and 10 mL was

deposited by autosampler into the graphite tube with 5 mL of a 10,000

mg/L palladium nitrate matrix modifier prepared at a 12% v:v dilution
and 3 mL of a 10,000 mg/L magnesium nitrate matrix modifier (Perkin

Elmer) prepared at a 1.2% dilution in deionized water. Samples were

read for 5 s during a 1900�C atomization step following drying steps at

110�C, 130�C, and 200�C, and 20 s of pyrolysis at 1050�C.

Plasma proteomics assays. Plasma aliquots of 25 mL from each of the
larger set of 1000 children in whom multiple micronutrient status

assessment had been carried out were combined to create a ‘‘master plasma

pool’’ (25). Plasma samples (40 mL) from each of the 500 participants

randomly chosen for proteomics evaluation, plus 40 mL from each of the
72 aliquots of the master pool plasma bioarchive, were immuno-depleted

of 85–90% of 6 high abundance proteins (albumin, IgG, IgA, transferrin,

haptoglobin, and antitrypsin) using a Human-6Multiple Affinity Removal

System LC column (Agilent Technologies). Immuno-depleted samples
(100 mg) were digested overnight with trypsin. Tryptic peptide samples

from 7 individual samples plus a master pool were randomly labeled with

iTRAQ 8-plex reagents (AB Sciex) according to manufacturer�s instruc-
tions. The 7 samples and master pool were mixed and fractionated into 24

fractions by strong cation exchange chromatography. iTRAQ-labeled

peptides in each strong cation exchange fraction were desalted and loaded

directly on to a reverse-phase nanobore column and eluted using a 2–50%
acetonitrile and 0.1% formic acid gradient for 110 min at 300 nL/min.

Eluting peptides were sprayed through a 10-mm emitter tip into an LTQ

Orbitrap Velos mass spectrometer (Thermo Scientific) interfaced with a

NanoAcquity ultra-HPLC (Waters). From each survey scan, up to 10
peptide masses (precursor ions) were individually isolated and fragmented.

Precursors and the fragment ions were analyzed at 30,000 and 15,000

resolution, respectively. Isotopically resolved masses in mass spectrometric
and MS/MS spectra were extracted with and without deconvolution using

Thermo Scientific Xtract software and searched against the RefSeq 40

protein database using Mascot (Matrix Science) through Proteome

Discoverer software (v1.3, Thermo Scientific) specifying Homo sapiens,
trypsin as the enzyme allowing one missed cleavage, fixed cysteine

methylthiolation and 8-plex-iTRAQ labeling of N-termini, and variable

methionine oxidation and 8-plex-iTRAQ labeling of lysine and tyrosine.

Peptide identifications from Mascot searches were filtered within the
Proteome Discoverer to identify peptides with$95% confidence [i.e., false

discovery rate (FDR) <5%].

Statistical analysis. Protein relative abundances within each iTRAQ

experiment were estimated using the medians of the log2-transformed

and normalized reporter ion intensities derived from Proteome Discoverer
v1.3, as described in detail elsewhere (25). We initially used a conventional

approach to assess protein abundances by normalizing reporter ion

intensities to those of a master pooled plasma sample included in every

iTRAQ experiment. However, we ultimately employed linear mixed
effects models (LME) to combine the proteomic data from different

experiments and to assess the association of protein relative abundances

with measured micronutrient concentrations. We used logarithmic trans-

formations of plasma vitamin E and selenium data due to their skewed
distributions. For each univariate nutrient-protein analysis, we fit a random

intercept model via restricted maximum likelihood estimation, specifically:

E fNrkg¼ b0 þBr þb1 Prk;

where Nrk denotes the observed (or logarithmic transformed) plasma
concentrations for vitamins A, D, and copper (vitamin E and selenium)

indexed by sample k in iTRAQ experiment r, and Prk are the respective

protein relative abundance estimates. The variable b0 is the fixed effect

for the intercept, Br denotes the random deviation from this fixed effect
in experiment r, and the variable b1 denotes the slope of the nutrient:

protein association. This approach allows for the determination of the

strength of nutrient:protein associations via statistical inference for the

slope variable b1 and to decompose the observed variability in the

micronutrient concentrations into variability explained by protein abun-

dances, differences between the samples in different iTRAQ experiments,
and experimental error. For the mixed effect models, R2 was based on the

observed nutrient concentrations and their respective best linear unbiased

predictions from the MS data (26).

We summarize each nutrient:protein comparison by presenting a
series of 3 figures that include a histogram of the serum nutrient con-

centrations, a scatterplot of the nutrient:protein association using the

pooled plasma protein abundance, and a scatterplot of association using

the LME-based protein abundance estimates, displayed as panels A, B,
and C, respectively (Figs. 1–5). The R2 values show the proportion of

variance explained by the fitted values of the nutrient:protein regression

models. The P value reported in each panel B is derived from testing the
hypothesis of no association between nutrient concentration and protein

abundance, and the P value in each panel C is derived from testing the

fixed effects slope of nutrient concentration on protein abundance in the

LME model (b1). P values are not provided for correlations involving
LME-based protein relative abundance values (i.e., nutrient:protein or

protein:protein correlations), because within-experiment protein con-

centrations violate the assumption of independent observations required

for hypothesis testing.
Finally, we extended the above mixed effects approach to a multi-

variate LME model for each nutrient, identifying the protein with the

best explanatory power (i.e., maximizing the coefficient of determina-
tion, LME R2) for the nutrient with the original transport protein in the

model, thus combining relative abundances of 2 proteins to explain

variability in the micronutrients (25). All analyses were carried out using

in-house developed open source software implemented in the statistical
environment R (27).

Results

Nutritional profile of children. Study children (n = 500) were
generally undernourished, reflected by low anthropometric
Z-scores in relation to theWHO reference for children 5–19 y old
(24). Children were, on average, underweight (weight-for-age
Z-score =21.986 0.90), stunted (height-for-age Z-score =21.77
6 0.99), and mildly wasted (BMI-for-age Z-score = 21.20 6
0.91). They were also marginal to deficient in status for most
micronutrients, reflected by the plasma concentrations of retinol
(1.04 6 0.27 mmol/L) (28), 25-hydroxyvitamin D (65.9 6 19.3
nmol/L) (29), and a-tocopherol (12.16 3.2 mmol/L) (30). Copper
status (23.2 6 5.7 mmol/L) was within a normal range (31),
whereas selenium status was marginal (0.86 6 0.26 mmol/L) (32)
(Figs. 1–5, panels A). The percentages of children classified as
deficient were 8.8, 19.2, 17.6, 0, and 13.6% for the 5 nutrients,
respectively.

Proteomic profile of children. Across seventy-three 8-channelled
iTRAQ experiments, we identified 4705 nonredundant proteins
at least one time, with high mass accuracy (<10 ppm) and a FDR
of 5%. Of this number, the relative abundance of 982 proteins
was quantified in >10% of all 500 child plasma samples (i.e., n >
50), of which 455 (46%) comprised extracellular, secretory,
membrane, or lipoprotein-associated proteins (Supplemental

Table 1). One hundred and forty-six (15%) of the listed plasma
proteins were quantified in all 500 children.

Nutrient:protein dyad correlations. With respect to vitamin
A, using the master pool sample as a reference for normalization
among iTRAQ experiments, we observed a coefficient of deter-
mination (R2) of 0.50 (i.e., explaining 50% of variance in nutrient
concentration) between plasma retinol concentration and relative
abundance of RPB4 (Fig. 1B). Using a linear mixed effects model
(LME) (25) for normalization, the R2 increased to 0.77 (Fig. 1C).
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This modeled approach also markedly increased explained
variance in concentration for other nutrients. The correlation
between plasma 25-hydroxyvitamin D concentrations and
the relative abundance of VDBP was absent when using the
pooled sample reference for normalization (Fig. 2B) but became
evident under the LME model (Fig. 2C), increasing the explained
variance in nutrient concentration from 4 to 34%. Marked im-
provements were also observed when assessing the relation of
plasma a-tocopherol and apo C-III (increasing explained variance
from 20 to 41%) (Fig. 3B,C), plasma copper and Cp (increasing

explained variance from 31 to 42%) (Fig. 4B,C), and plasma
selenium and SEPP1 (increasing explained variance from 39 to
63%) (Fig. 5B,C). All LME-based associations were observed at P
values ranging from 9.9 3 1025 to 4.6 3 102220 and q values
ranging from 2.1 3 10229 to 5.9 3 102217 for 4 of 5
comparisons, with one (the vitamin D dyad) having a FDR
(q) of 0.026 (Table 1).

Linear mixed effects model estimation. The above analysis
confirms thatMSmeasurement of relative abundance can generate

FIGURE 1 Plasma retinol and RBP4 relative abundance distributions in Nepalese children 6–8 y of age (n = 500). (A) Histogram showing the

frequency distribution of retinol concentrations: range = 0.30–2.11 mmol/L, 8.8% (n = 44) deficient (,0.70 mmol/L, dark gray), 45.6% (n = 228),

marginal (0.70 to ,1.05 mmol/L, medium gray), and 45.6% (n = 228) adequate ($1.05 mmol/L, light gray) in status. (B) Plasma retinol by relative

abundance of RBP4 by a traditional estimation method using a master plasma pool in one randomly assigned iTRAQ channel within each 8-plex

experiment to normalize the protein distribution across iTRAQ runs. (C) Plasma retinol by relative abundance of RBP4 by an estimation method

that relies on an LME model that combines abundance estimates from all 72 iTRAQ experiments (25). R2 values represent the proportion of

variance in the nutrient explained by the fitted values of the nutrient-protein regression models. The P value in B is derived from testing the

hypothesis of no association between the nutrient and protein abundance, whereas the P value in C is derived from testing the fixed effects slope

for the protein abundance in the LME model. Shading of circles in B and C corresponds to bars. Horizontal lines indicate cutoffs for changes in

micronutrient status. iTRAQ, isobaric tags for relative and absolute quantification; LME, linear mixed effects (model); RBP4, retinol binding

protein isoform 4.

FIGURE 2 Plasma 25-hydroxyvitamin D and VDBP relative abundance distributions in Nepalese children 6–8 y of age (n = 500). (A) Frequency

distribution of 25-hydroxyvitamin D concentrations: range, 18.6–173.5 nmol/L, 19.2% (n = 96) deficient (,50 nmol/L, dark gray), and 80.8% (n =

404, medium gray) adequate ($50 nmol/L) in status. (B,C) Plasma 25-hydroxyvitamin D by relative abundance of VDBP by traditional master

plasma pool normalization and LME-adjusted methods, respectively (see Fig. 1 for details). LME, linear mixed effects (model); VDBP, vitamin D

binding protein; 25(OH)D, 25-hydroxyvitamin D.
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high correlations between expected plasma nutrient:protein dyads.
There were also an additional 3–108 proteins from among the 982
quantified in >10% of all subjects (Supplemental Table 1) that
substantially correlated (q < 0.05) (33) with plasma concentra-
tions of each nutrient. Most proteins, however, were measured
in fewer than 500 children (data not shown). This missingness,
inherent in tandem MS-generated data, limits the ability to
construct multivariable models without imputation. Still, to
explore the predictive potential with the primary protein
entered, we modeled one additional, substantially correlated
protein from each nutrient-specific protein cluster that explained
the most additional variability in nutrient concentration. With
vitamin A, we obtained relative abundance estimates for com-
plement C1r in all 500 samples, a protein that was negatively
associated with plasma retinol (Table 1) but not correlated with
RBP4 (r = 0.04), and thus potentially added information,
independent of RBP4, about plasma retinol concentration. In-

cluding both RBP4 and complement C1r in a LME model
explained 79% (vs. 77% with RPB4 alone) of the variability in
the plasma retinol concentration (Fig. 1C).

Plexin-D1, a protein associated with plasma 25-hydroxyvitamin
D (Table 1), was measured in only 117 of 500 samples. While
also correlated with VDBP (r = 0.69), plexin-D1 still provided
sufficient additional information about the plasma concentra-
tion of 25-hydroxyvitamin D to raise the explained variance in
vitamin D from 34 to 48% in the LME model (Fig. 2C). For
vitamin E, we measured relative abundance of the regulator of
G-protein signaling 8 isoform 2 in 56 of 500 samples, a protein
negatively correlated with a-tocopherol and weakly correlated
with apoC-III (r = 0.12) (Table 1).Modeling both proteins, 65%of
the variability in a-tocopherol concentration was explained
compared with 41% achieved by apo C-III alone. For copper,
CDC42-binding protein kinase alpha-isoform A (CDC42BPKaA)
was observed in 143 samples. Strong in its marginal association

FIGURE 3 Plasma a-tocopherol and Apo C-III relative abundance distributions in Nepalese children 6–8 y of age (n = 500). (A) Frequency

distribution of a-tocopherol concentrations: range, 4.1–26.9 mmol/L, 17.6% (n = 88) deficient (,9.3 mmol/L, dark gray), 37.4% (n = 187) marginal

(9.3 to ,12 mmol/L, medium gray), and 45% (n = 225) adequate ($12 mmol/L, light gray) in status. (B,C) Plasma a-tocopherol by relative

abundance of Apo C-III by traditional master plasma pool normalization and LME-adjusted methods, respectively (see Fig. 1 for details). LME, linear

mixed effects (model).

FIGURE 4 Plasma copper and Cp relative abundance distributions in Nepalese children 6–8 y of age (n = 494). (A) Plasma copper concen-

trations: range, 11.6–35.8 mmol/L, 100% were adequate (.10 mmol/L, gray). Six implausible values (4 ,5 mmol/L, and 1 each at 62.3 mmol/L and

100.5 mmol/L) were removed from this analysis. (B,C) Plasma copper by relative abundance of Cp by traditional master plasma pool normalization

and LME-adjusted methods, respectively (see Fig. 1 for details). Cp, ceruloplasmin; LME, linear mixed effects (model).
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with plasma copper and Cp (r = 0.69), CDC42BPKaA modeled
with Cp increased the explained variation in plasma copper
concentration from 42 to 61% (Table 1). Finally, the relative
abundance of glutathione peroxidase-3 (GPx-3) observed in
499 samples was highly correlated with plasma selenium but
weakly correlated with SEPP1 (r = 0.19) (Table 1). Modeled, these
proteins together explained 64% of the variability in plasma
selenium concentration, representing a small but substantial
increase over 63% obtained with SEPP1 alone.

Discussion

This study offers credible evidence of correlation between plasma
distributions of proteins, measured by quantitative proteomics,
and micronutrient ligands, measured by conventional assays, in
an undernourished Nepalese child population. The strength and
expected directions of association observed between 3 vitamins
(A, D, and E) and 2 minerals (copper and selenium) and their
cognate plasma proteins, with explained variation reaching 34–
77%, suggests that a nutrient-linked plasma proteome can be
detected by MS. Establishing this proof of concept further
suggests that comparably strong, but less well-understood nu-
trient:protein correlations, are likely to reflect metabolic networks
with functional biomarkers that can also reflect plasma micro-
nutrient concentrations. In this regard, we identified for each
nutrient a second protein that, when entered into a linear mixed
effects model (25), added important, independent information
about plasma nutrient variability.

Our analysis revealed expected and novel nutrient:protein
associations. With respect to vitamin A, we identified a strong
correlation (r = 0.88) with RBP4, its cognate plasma protein. On
release from hepatic stores, retinol circulates in an equimolar
complex with RBP4 and a larger protein, transthyretin, which
delivers vitamin A to peripheral tissues for cellular uptake (18).
The observed correlation between plasma retinol and RPB4 was
found to lie within an often-reported range of 0.62–0.93 (34),
explaining about three-fourths of the variance in retinol con-
centration. The remaining, unexplained variation could in part
reflect lack of specificity, because RBP4 also circulates as an
apo-protein when lacking its ligand and may further participate
in energy regulatory pathways apart from its association with

vitamin A (35). In our statistical model, we found complement
C1r, a protease involved in initiating the classical complement
cascade (36) and negatively correlated with plasma vitamin A
and RBP4, adding independent information and raising the
explained variance in plasma retinol to nearly 80%, a level
considered adequate for population prediction.

Vitamin D status was measured by an immunoassay method
that captures total 25-hydroxyvitamin D, a conventional bio-
marker of vitamin D intake and photoproduction, and the major
ligand for VDBP. Although strongly correlated with VDBP (r =
0.56), the relatively low observed variation in plasma vitamin
25-hydroxyvitamin D explained by VDBP (34%) may be because
VDBP circulates in concentrations 100-fold >25-hydroxyvitamin
D, binds to other vitamin D metabolites, and has many non-
vitamin D-related functions such as actin scavenging and fatty
acid binding (37). Our findings demonstrate a need to find other
vitamin D-networked proteins to increase explained variance
and strengthen the potential to predict vitamin D status. The
glycoprotein plexin-D1 entered our model, raising explained
variance to 48%. Interestingly, although it was observed in only
23% of samples, plexin-D1 exhibited a stronger correlation with
25-hydroxyvitamin D than did VDBP (Table 1). Plexin-D1 is a
member of transmembrane surface receptors that transduce
pleiotropic signals of semaphorins, widely involved in genesis
and maintenance of neural, vascular, immune, and osteoid tissues
(38–40). Metabolic linkages between plexin-D1 and vitamin D
have not been established but are plausible given the roles of both
plexins and vitamin D metabolites in skeletal (39–41), immune
(39,42,43), angiogenic, and vascular (39,44–46) development
and homeostasis.

Vitamin E, a major lipid-soluble membrane and lipoprotein
antioxidant protectant, has no specific plasma carrier protein.
Rather, following absorption, different forms of vitamin E are
released into circulation associated with chylomicrons, redis-
tributed to other plasma lipoproteins and tissues, and delivered
to the liver (47). Hepatic a-tocopherol reenters circulation
initially associated with VLDL prior to being redistributed to
other low- to intermediate-density lipoproteins (47) for trans-
port to the periphery. Strong correlations were expected and
found between plasma a-tocopherol and apolipoproteins, espe-
cially with apo C-III (r = 0.62), which is a principal component

FIGURE 5 Plasma selenium and SEPP1 relative abundance distributions in Nepalese children 6–8 y of age (n = 499). (A) Plasma selenium

concentrations: range, 0.4–2.1 mmol/L; 13.6% (n = 68) deficient (,0.6 mmol/L, dark gray) and 86.4% (n = 431) adequate ($0.6 mmol/L, medium

gray) in status. (B,C) Plasma selenium by relative abundance of SEPP1 by traditional master plasma pool normalization and LME-adjusted

methods, respectively (see Fig. 1 for details). LME, linear mixed effects (model); SEPP1, selenoprotein P isoform 1.
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of VLDL (48), and explained 41% of the vitamin�s variability in
plasma. In our exploratory regression analysis, the regulator of
G-protein signaling 8 (RGS8) protein, although evident in only
11% of specimens, was sufficiently strong in its positive, inde-
pendent association with vitamin E to raise the explained variance
to 65%. Although no direct linkwith vitamin E has been identified,
RGS8 is a cytosolic protein that modulates neuronal G-protein
signaling in myelinated, lipid-rich regions of the brain (49,50),
where a-tocopherol–dependent lipid redox homeostasis is likely
critical for maintaining the stability, structure, and function of
transduction proteins.

Analysis of the mineral:protein dyads revealed additional
facets of a plasma nutriproteome. Copper is a transition metal
ubiquitously involved in gene transcription, cellular respiration,
and enzyme activation whose deficiency impairs neural and
immune function (21). Its plasma concentration is considered to
poorly reflect individual hepatic or total body copper nutriture
(21). However, the distribution of the plasma copper concen-
tration has been shown to respond to copper supplementation
and may reflect population status (51). Although copper binds
to numerous intracellular and extracellular proteins, up to
95% of its plasma content is bound to Cp, a largely hepatic-
derived, acute-phase reactant and ferroxidase that regulates iron
metabolism and homeostasis (52,53). A strong association was
expected and found (r = 0.65) between plasma copper concen-
tration and relative abundance of Cp, explaining 42% of the
mineral�s variance. However, an unexpected protein, the Ras-
subfamily member CDC42BPKaA, next entered the regression
model, increasing the explained variance in plasma copper to
61% and reflecting predictive potential. Although a specific
role for copper in the metabolism of CDC42BPKaA has not been
elucidated, upstream copper influx across the cell plasma mem-
brane is known to activate Ras and mitogen-activated protein
kinase signaling within the cytoplasm of the cell (54), suggesting a

metabolic basis for the existence and direction of the observed
correlation.

SEPP1, a glycoprotein expressed and secreted largely from
the liver, comprises the major circulatory protein that delivers
selenium to tissues throughout the body (22). In humans, circulating
SEPP1 has been shown to decrease in response to selenium
deficiency (55) and respond to selenium supplementation (32).
In animals, experimental deletion of the SEPP1 gene increases
whole-body selenium excretion (56). Thus, a strong associa-
tion, confirmed by an r = 0.79 and explained variance of 63%,
was anticipated with this dyad. Residual, unexplained varia-
tion in plasma selenium may be reflecting varied strengths of
its binding with SEPP1 isoforms and other plasma proteins,
including albumin and glutathione peroxidases (57). GPx-3, a
seleno-enzyme synthesized in the kidney that circulates in plasma
(58), emerged as the second most informative protein following
SEPP1, building a model that explained 64% of the variance in
plasma selenium. GPx-3 is also considered a protein biomarker of
selenium status (32,56), possibly explaining the small increase in
fit following its introduction into the model.

The quantitative proteomics and computational methods
employed in this study were well suited for protein discovery and
assessing linear associations between plasma nutrient concentra-
tions and protein abundance. The observed correlations, markedly
higher than those based on a conventional master pool approach
to normalization, were obtained by utilizing LME models that
incorporate nutrient status information into each correlation
estimate (25). However, limitations remain to be solved before
a proteomic approach can be applied to reliably predict multiple
micronutrient status. For example, although 982 proteins were
identified in >10% of subjects (Supplemental Table 1), missing
data were common within iTRAQ runs such that only 146
proteins were observed in all 500 children. Missingness can be
expected when assessing protein abundance by data-dependent

TABLE 1 Individual and combined estimates of association between plasma micronutrient concentrations derived by conventional
assays and protein relative abundance derived by iTRAQ MS and linear mixed effects models in Nepalese children 6–8 y of age (n = 500)

Micronutrient/candidate protein1

(accession no.) Samples

Nutrient:protein association2

r b1 P q LME3R2

n %

Retinol

RBP4 (gi55743122) 500 0.88 0.83 4.6 3 102220 5.9 3 102217 79

Complement C1r (gi66347875) 500 20.49 20.33 5.6 3 10205 1.2 3 10203

25-hydroxyvitamin D

VDBP (gi32483410) 500 0.58 25.6 9.9 3 10205 0.026 48

Plexin-D1 (gi157694524) 117 0.69 44.2 3.6 3 10206 0.0056

a-Tocopherol

Apo C-III (gi4557323) 500 0.64 36.6 1.4 3 10232 2.1 3 10229 65

RGS8 (gi156416024) 56 20.64 29.0 1.0 3 10203 2.4 3 10202

Copper

Cp (gi4557485) 494 0.65 16.1 6.3 3 10252 7.5 3 10249 61

CDC42BPKaA (gi30089960) 143 0.70 14.4 4.0 3 10222 9.5 3 10220

Selenium

SEPP1 (gi62530391) 499 0.79 106.9 3.5 3 10279 5.7 3 10276 64

GPx-3 (gi6006001) 499 0.60 30.3 7.7 3 10206 4.2 3 10203

1 For each model, the first protein was chosen based on biological information and the second protein identified as a covariate that maximized the coefficient of determination in a

multivariate LME model (LME R2) for each plasma nutrient (dependent variable). CDC42BPKaA, CDC42-binding protein kinase alpha-isoform A; Cp, ceruloplasmin; FDR, false

discovery rate; GPx-3, glutathione peroxidase-3; iTRAQ, isobaric tags for relative and absolute quantification; LME, linear mixed effects (model); RBP4, retinol binding protein

isoform 4; RGS8, regulator of G-protein signaling 8 (isoform 2); SEPP1, selenoprotein P isoform 1; VDBP, vitamin D binding protein.
2 Association between the nutrient and single-protein LME fitted values from the fixed effects hypothesis tests (26): r, the nutrient:protein correlation; b1, the slope of the nutrient-

protein association, with b1 representing the change in nutrient concentration [for retinol, 25-hydroxyvitamin D, copper] or percent change (for log-transformed nutrients

a-tocopherol and selenium) per 2-fold change in protein relative abundance; P value for the null hypothesis that b1 = 0; q values, FDRs.
3 Variance in nutrient distribution (R2) explained by fitted values from a 2-protein covariate linear mixed effects model (25).
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tandemMS (59), a phenomenon that affects more proteins as the
number of samples under evaluation increases. The resulting
incomplete database for proteins of potential interest limited our
ability to use multivariate analyses to explore nutrient status
prediction, restricting present models to 2 protein covariates.
Imputation (60) or likelihood-based methods (61) applied to
missing proteomic data can be expected to markedly increase
available proteins for estimation of nutrient status. These statis-
tical techniques will be employed for more extensive, individual,
nutrient-specific proteomic analyses in the future.

Notably, whereas nearly one-half (46%) of the 982 proteins
presented in Supplemental Table 1 have been classified as ex-
tracellular, secretory, membrane, or lipoprotein associated, others,
including the second proteins added to our current models, are
not typically considered plasma proteins but are frequently
observed in plasma proteomic studies. More than a decade ago,
Anderson and Anderson (62) estimated that the plasma pro-
teome consists of more than a half-million proteins in multitudes
of isoforms and other variants, including proteins involved in
transport, leakage, and cell turnover. Recently, Farrah et al. (13)
constructed a high-confidence human plasma proteome refer-
ence set with estimated concentrations using raw MS data from
several large-scale studies, reporting 1929 proteins identified with
a 1% FDR threshold. Their list similarly contains transcriptional-
regulating proteins, RNA-processing proteins, cell growth-
related proteins, histone-related proteins, IL-related proteins,
methyltransferases, nuclear pore complex proteins, and upstream
element binding proteins, as was observed in the present study.
The vast majority of these proteins are classically thought to be
restricted to the intracellular compartments rather than secreted
into plasma. The degree to which identified proteins may be due to
normal homodynamics, tissue growth, and other developmental,
disease, or sample collection processes is an important issue to
explore. Notwithstanding, highly substantial, strong nutrient:
protein correlations in either direction can be considered evidence
of cellular processes that covary with micronutrient nutriture.
Whether their presence is a reflection of cause, effect, or an indirect
association does not detract from the protein being a potential
marker of population micronutrient status.

We have reported in this study evidence of a strong corre-
lation between plasma concentrations of micronutrients and
their proteomics-derived, cognate plasma protein biomarkers.
Although expected, we suggest that these validating associations
may strengthen confidence in other, metabolically less direct and
understood but precisely estimated plasma nutrient:protein pairs
revealed by proteomics, illustrated by several second proteins
added to our models. We expect that micronutrients lacking
bound plasma proteins may have less recognizable, but none-
theless valid, correlated protein partners, which we are currently
exploring. These findings from a large population sample of
Nepalese children suggest that quantitative plasma proteomics
may provide a new basis for identifying functional biomarkers
that will eventually improve our ability to assess micronutrient
status and deficiencies in populations.
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