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Abstract

Meibography is becoming an integral part of dry eye diagnosis. Being objective and repeat-

able this imaging technique is used to guide treatment decisions and determine the disease

status. Especially desirable is the possibility of automatic (or semi-automatic) analysis of a

meibomian image for quantification of a particular gland’s feature. Recent reports suggest

that in addition to the measure of gland atrophy (quantified by the well-established “drop-out

area” parameter), the gland’s morphological changes may carry equally clinically useful

information. Here we demonstrate the novel image analysis method providing detailed infor-

mation on local deformation of meibomian gland pattern. The developed approach extracts

from every Meibomian image a set of six morphometric color-coded maps, each visualizing

spatial behavior of different morphometric parameter. A more detailed analysis of those

maps was used to perform automatic classification of Meibomian glands images. The

method for isolating individual morphometric components from the original meibomian

image can be helpful in the diagnostic process. It may help clinicians to see in which part of

the eyelid the disturbance is taking place and also to quantify it with a numerical value pro-

viding essential insight into Meibomian gland dysfunction pathophysiology.

Introduction

Assessment of Meibomian glands (MGs) condition has been the focus of many studies in recent

years [1, 2]. This interest results from the fact that dysfunction in MG physiology is a leading fac-

tor of the dry eye disease with the prevalence that varies widely from 3,5% to 70% based on the

age, sex and ethnicity [3, 4]. The most common diagnosis of MGD is based on subjective symp-

toms and more detailed examination of the anterior eye structures [5–7]. These early subjective

methods of the MG state classification (basing on the personal experience of the specialist and

characterized by high inconsistent and low repeatability) are slowly being replaced with the

sophisticated semiautomatic and automatic image analyzing methods [8–18]. Providing standard

quantification of the gland structure, these methods open the possibility for increased measure-

ment repeatability and shortening the diagnostic time [19–29]. Not surprisingly, according to

the latest reports [10–16] there is a strong need to develop new image analysis protocols.
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A well-known objective measure of MGs condition is the “drop-out area” (DOA) which

quantifies the meibomian gland loss [30]. It is defined as the ratio between the area covered by

meibomian glands and the total eyelid area. This simple definition makes the value of DOA

relatively easy to estimate automatically, directly from the meibomian image [19, 20]. The easy

and intuitively understandable definition of DOA makes this parameter the most frequently

used objective measure of MGs condition utilized in quantification of MGD progression. The

other and less obvious MGD symptoms which relate to more subtle changes in the gland mor-

phology with no visible changes in meibomian gland loss. Recently, it has been shown that

apart from the gland atrophy, the distortion in gland’s shape is a valuable complementary clini-

cal feature of MGs [12]. Although the mechanism of the MGD progression is still unclear and

the data regarding gland tortuosity in the general population is still needed [9], a clear correla-

tion between MGs deformation and clinical parameters such as meibum expressibility, lid

margin score, meiboscore, meibum expressibility score, and TBUT has been demonstrated [9,

12, 31]. It is thus believed that the MGD progresses from an early stage characterized by subtle

gland distortion, whereas the loss of MGs is observed only in the advanced stage of the disease

[9, 12, 31, 32]. In this perspective the MG’s shape distortion may be considered as an early

indicator of various ophthalmic diseases (including MGD and dry eye syndrome) which is a

strong motivation for development of methods for objective examination and parametrization

of MGs deformation. The ability to parametrize the local morphology of MGs should allow to

use these measures (in addition to DOA) for better assistance in the diagnosis process and

MGD severity evaluation.

Unfortunately, the objective description of the gland deformity is much more difficult than

just determining the degree of its atrophy (measured by DOA). There are several works intro-

ducing the meibomian gland classification based on their deformation, but so far the gold stan-

dard has not been established [9–12, 24–27]. In searching for other objective descriptors of MG

morphological condition, we have recently presented an approach for quantifying and classify-

ing Meibomian images using 2D Fourier Transform (2DFT) [33]. This global analysis, per-

formed on the whole set of the glands, demonstrated that information on mean gland frequency

(connected with mean width of glands or inter-gland section) and anisotropy in gland periodic-

ity (related to mean spread in gland directions) can be used for automatic image classification.

However, despite currently being global, the method can be blind to some important slight local

disturbances in gland patterns. Meanwhile, a recent study has shown the significant differences

in meibography grading between regional zones (nasal, central, temporal) and global grades

[34]. This shows the need for a method able to extract, present and utilize morphological

changes of meibomian gland structure on the local scale. Trying to meet this requirement, in

this work an approach based on 2D Short Time Fourier Transform (2D STFT) is proposed [35].

The main advantage of this method is the application of 2DFT on small fragments of the Meibo-

mian image, thus obtaining local values of the six chosen morphometric parameters. The 2D

plots of those values (maps) provide an excellent tool for qualitative and quantitative description

of the gland pattern. This additional information may help clinicians by highlighting the features

of each morphometric parameter separately. A possible way of defining new morphological

meibo-scores on the basis of the obtained intrinsic images is shown. As a final step we propose

an introduction of new meibo-scores calculated from the morphometric images.

Materials and methods

Subjects

Subjects were healthy volunteers recruited from Faculty of Physics Adam Mickiewicz Univer-

sity in Poznan in Poland. Ethics clearance was issued by the institutional review board of
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Adam Mickiewicz University of Poznan and adhered to the tenets of the Declaration of Hel-

sinki. Before enrolment into the study all participants were informed about procedures used in

the experiment. Written informed consent was obtained from all subjects.

The exclusion criteria were ocular allergies, eyelid and ocular surface disorders, recent ocu-

lar infections, any history of ocular surgery or continuous eye drop use. The 55 participants

were contact lens wearers. Participants followed the recommendation not to wear contact

lenses on a day before the examination procedure.

Meibographic images

The Meibomian gland image analysis developed in this work was tested on the images

acquired in our recent research [33]. A total of 146 images (2 images for both upper eyelids of

each patient) were collected using home-built meibographic imaging equipment (details in the

in the S1 Appendix). The aim was to provide a non-contact and patient-friendly acquisition

method, preferably similar to other commercially available imaging techniques. Thus, the mei-

bography system was mounted on the Topcon SL-D701 slit lamp which allowed to record mei-

bographic images during the routine eye examination. An exemplary Meibomian image

acquired with this device is presented in Fig 1.

In the present study only the images of the upper eyelid were collected for further analysis.

The upper eyelids of the patients were everted to expose the embedded Meibomian glands and

then a series of several images was acquired. The image of the best quality was selected as a rep-

resentative for a given patient. Recorded photographs of the meibomian gland area were first

preprocessed in ImageJ software. A set of filters was applied to firstly enhance the contrast (Fig

1b) and to eventually produce a binary version of the image showing only clear silhouettes of

glands (Fig 1c). Then, the region of eyelid with Meibomian glands was manually marked

(green dashed line in Fig 1b).

The recorded photographs were also subjectively graded by one experienced optometrist

based on their distortions and then grouped into three categories: healthy (24 items), interme-

diate (75 items), unhealthy (47 items). This subjective analysis was based on several features of

the gland pattern: gland direction, gland dilation, cut-off and narrowing [12, 19, 36, 37]. For

example, the pattern was considered as distorted when its direction deviates from eyelid axis

by more than 45˚. Meibographs were graded from 1 to 3 using following rule: no distortion of

the Meibomian glands (healthy–grade 1); 1–4 Meibomian glands with distortion (intermedi-

ate–grade 2); more than five Meibomian glands with distortion (unhealthy–grade 3). Grading

of the images was repeated on the following day. If the grades assigned on the two days were

different, the images were reanalysed again to make a proper decision based on the presented

criteria. Correlations between the evaluation results were estimated at p<0.05 and r = 0.794.

Other ocular symptoms and signs of the dry eye were not collected. The resulting classification

served as a ground-truth standard for comparison with the outcome of the proposed automatic

classification routine.

Two relevant morphological features of the gland pattern are shown in Fig 1a. The positions

on the eyelid where the angle of deviation exceeds 45˚ are marked with red squares, whereas

the regions with noticeable narrowing of glands are indicated with blue squares.

Image analysis with 2D Fourier Transform

The use of the 2D Fourier transform (2D FT) method for Meibomian image analysis is justi-

fied by the observation that healthy Meibomian glands forms a periodic stripe pattern, whereas

in the image of the glands described as unhealthy this pattern is often distorted [12, 24–25, 27].

The result of the 2D FT operation applied to different gland structures is schematically
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presented in Fig 2. If the analyzed image shows a unidirectional gland structure with a constant

width and a constant distance between the glands (which corresponds to a well-defined spatial

frequency), then a pair of characteristic sharp peaks appear in the Fourier-transformed image

(Power Spectral Density, PSD, Image) with the center of coordinate system as the center of

symmetry (Fig 2). Their distance from the center of the PSD image is a measure of the spatial

frequency (corresponding to gland width or separation), while their orientation corresponds

to the direction of the gland structure. As illustrated in Fig 2, the change in the gland pattern

orientation and in the width of the glands results in corresponding characteristic changes in

the PSD image. Real Meibomian gland structures are never perfect and there is always a distri-

bution in gland’s width or separation, as well as in their orientation. As a result, broadening of

the spectral features in PSD images occurs. Therefore, the information on gland’s distortion is

encoded in the shape of the spectral features of PSD image.

Determination of intrinsic images with 2D Short-Time Fourier Transform

To determine the morphological properties locally, the method utilizes the so called Short-

Time Fourier Transform (STFT) in a manner similar to that used previously to enhance the

analysis of fingerprint images [38]. Application of 2D SFTF applied to the real Meibomian

image (Fig 1) is shown in Fig 3. The analyzed image (Fig 3a) is divided into smaller regions

and the 2D FT transformation is performed for each region separately. The regions are selected

by a window of a given shape and position (Fig 3b and 3e). In order to achieve a uniform map

of calculated parameters, the window position was assigned to every 10th pixel of the original

Meibomian image (blue dots in Fig 3a). Details of the 2D STFT analysis are provided in the S2

and S3 Appendices.

The PSD image represents the distribution of spatial frequencies along (x,y) coordinates of

the original image (Fig 3c and 3f). In this representation, the distance (q) from the center of

the Fourier transformed image is a measure of the spatial frequency of the gland pattern

(related to gland width), whereas the angle (θ) is connected to the orientation of the gland pat-

tern. The PSD image was transformed from cartesian (qx, qy) to polar coordinates (q, θ) (Fig

3d and 3g). The advantage of this operation is that PSD(q, θ) can be interpreted as distribution

of probability p(q, θ) for gland features of a given frequency, q, and orientation, θ, existing in

the analyzed region of Meibomian image. Marginal density function p(q) and p(θ) calculated

from p(q, θ) (S2 Appendix) were then compared with theoretical models. The result of this

procedure is presented on Fig 4.

Fig 1. Pre-processing and grading of Meibomian images. a) original meibogram. Red squares show the positions where an angle of deviation exceeds

45˚. Blue squares indicate regions with noticeable narrowing of glands. b) Meibomian image with increased contrast. The green dashed line marks the

area of eyelid with Meibomian glands. c) binarized Meibomian image.

https://doi.org/10.1371/journal.pone.0270473.g001
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As follows from Fig 4, experimental p(q) and p(θ) distributions (open symbols) show a

clear peaks localized at certain positions and characterized by their width. In order to parame-

trize these features, an assumption was made that gland frequency, q, and orientation, θ, are

random variables described by normal distributions and Gaussian and von Mises [39] distri-

butions (S4 Appendix) were used to fit experimental p(q) and p(θ), respectively (solid lines).

The obtained values of the peak positions (q0 and θ0) correspond to the mean values of gland

frequency and orientation, respectively, whereas peak widths (parametrized by variances σq,fit

and σθ,fit) represent uncertainties in estimation of these parameters. Interpretation of such

obtained variances needs some caution. As p(q) and p(θ) distributions were obtained from a

Fourier transform of a windowed image, the widths of these distributions are naturally broad-

ened resulting from a finite size of the window (see S3 Appendix). The ideal p(q) and p(θ) dis-

tributions, expected for perfect gland structure (characterized by a constant frequency and

constant orientation), are shown in Fig 4 as shaded areas. These distributions will be widened

if the real gland image differs from the ideal one (as the gland distortion increases). For such a

case, Δσ parameter (being the difference between the widths of real and ideal distributions)

will take a finite (non-zero) value.

As the real Meibomian gland pattern always shows distortions, the shapes of corresponding

probability distributions will change across the eyelid and will depend on the window position

(Fig 2). The p(q) and p(θ) distributions were then determined for different window positions

so to cover the entire Meibomian gland image (blue dots in Fig 3a). For every window position

the values of four parameters (namely: q0, Δσq, θ0, Δσθ) were directly extracted from probabil-

ity distributions. Plotting the color-coded values of these parameters as a function of window

position produces four maps being spatial distributions of individual morphometric parame-

ters’ values. The images of gland frequency, q0, and gland orientation, θ0, were used to generate

two additional maps, namely the map of frequency gradient, Gq, and the map of angular

Fig 2. Schematic illustration of 2D Fourier Transformation. Transformation of an image of undistorted gland pattern results in a PSD image

showing two sharp peaks of well-defined position and orientation (black circles in bottom images). Orientation and separation of these peaks

correspond to direction and frequency of the gland pattern, respectively. When the gland pattern is not uniform, some distribution in frequency and

orientation occur. As a result, the spectral features in PSD images tend to smear out.

https://doi.org/10.1371/journal.pone.0270473.g002
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Fig 3. 2D Short-Time Fourier Transform (STFT) used for determination of local probability density for gland

frequency, p(q) and orientation, p(θ). Panel a) shows original (binarized) Meibomian gland image, f(x,y). During the

STFT analysis of an image, the Gaussian window is placed in strictly defined positions (xw,yw), which are illustrated a

grid of blue dots. Two arbitrary positions of the window, w1 and w2, are presented as a red and a green circle,

respectively. Panels b) and e) shows a Meibomian image limited by windows w1 and w2, respectively. The radius of the

dashed circles show the width (variance) of the Gaussian window, σr. The image limited by w1 shows broader and

more inclined gland structure then that seen in w2. Panels c) and f) shows PSD in Cartesian coordinates calculated for

images limited by windows w1 and w2, respectively. The dark spots are the spectral features whose radial distance, q,

informs about gland pattern spatial frequency, whereas the angular distance, θ, corresponds to the gland orientation.

The thick colored arrow (pointing at θ+90˚ direction) indicates the mean gland orientation. Notice how it complies

with the real structure shown in panels b) and e). Panels d) and g) show PSD in polar coordinates calculated for images

limited by windows w1 and w2, respectively. In this representation PSD corresponds to a probability map of finding a

gland structure with a given frequency, q, and orientation, θ. Marginal plots show local probability distributions p(q)

and p(θ) which were obtained by projection of p(q, θ) on the appropriate axis (S2 Appendix).

https://doi.org/10.1371/journal.pone.0270473.g003
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incoherence, Cθ (details are given in S4 Appendix). Therefore, as a result of 2D STFT analysis

are six morphometric maps are generated from a single Meibomian image.

Results

Fig 5 shows the result of a 2D Short Time Fourier Transform 2D STFT analysis performed on

three exemplary Meibomian images belonging to different categories. A direct comparison of

the original images (Fig 5 row a) shows that well-defined unidirectional stripe pattern charac-

teristic for healthy glands gradually disappears with an ailment progression. For the

‘Unhealthy” case it is possible to identify specific regions of the image where the gland width

(or separation) clearly changes, as well as areas where glands obviously change their direction.

In reality, changes in the width and orientation of the glands may be more subtle, sometimes

even difficult to see, and occur over the entire eyelid area where regions of varying width and

orientation interpenetrate each other. With a 2D STFT analysis these various contributions

were disentangled to create separate images (morphometric maps), each showing spatial distri-

bution of only one of morphological parameter of the gland pattern. These intrinsic images are

shown in Fig 5b–5g.

As follows from Fig 5, the corresponding maps calculated from images representing various

glands condition clearly differ from each other and reflect the gland’s condition. In order to

parametrize these changes, for each parameter, the distribution of its values was determined

(Fig 6) and the shapes of the distributions were quantified with five measures of distribution,

namely: Entropy, Mean, Variance, Skewness and Kurtosis (S5 Appendix). This gives in total

30 descriptive features for each Meibomian image.

Fig 4. Derivation of morphometric parameters (q0, σq, θ0, σθ) by the analysis of local probability distributions for a single window position

(window w2 from Fig 3). Panel a) shows the p(q) distribution indicating a probability of finding a gland structure with a given spatial frequency,

q. Open circles are experimental data. Solid line is the fitting result with normal distribution providing the values of maximum, q0, and the

variance, σq,fit. The maximum of the distributions is a measure of the local gland frequency, q0. Shaded area shows the ideal distribution with a

variance, σq,id, expected for a constant frequency gland pattern limited by a Gaussian window. Broadening of the experimental distribution with

respect to the ideal one, Δσq, normalized to the σq,id, is a measure of true gland frequency variance, σq. The inset in (a) shows the p(q) in the whole

range of q values. Panel b) shows the p(θ) distribution indicating a probability of finding a gland pattern with a given orientation, θ. Open circles

are experimental data. Solid line is the fitting result with von Mises distribution providing the values of maximum, θ0, and the variance, σθ,fit. The

maximum of the distributions is a measure of the local gland orientation, θ0. The shaded area shows the ideal distribution with a variance, σθ,id,

expected for a constant frequency gland structure limited by a Gaussian window. Broadening of the experimental distribution with respect to the

ideal one, Δσθ, normalized to the σq,id, is a measure of true gland frequency variance, σθ. The inset in (b) shows the p(θ) in whole range of θ values.

https://doi.org/10.1371/journal.pone.0270473.g004
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Using principal component analysis (PCA) and linear discriminant analysis (LDA) [40] the

dimensionality of the dataset was reduced from 30 features to only 2 new variables which best

describe the data: PCA1,2 (or LDA1,2). The correlation plots of both PCA1,2 (and LDA1,2) com-

ponents extracted for all meibomian images are shown on Fig 7. Marginal plots on Fig 7 were

interpreted as probability distributions of corresponding components (PCA1,2 or LDA1,2).

Knowing the probability distributions of a given component (PCA1,2 or LDA1,2) for each

category, a simple threshold classifiers were created: an image being parametrized with a pair

of component values (PCA1/PCA2 or LDA1/LDA2) is assigned to a category specified by the

highest value of the product of corresponding probability functions (p(PCA1)p(PCA2) or p
(LDA1)p(LDA2)). The classification performance of this approach is presented in Table 1. For

more information see S6 Appendix.

Discussion

Fig 1 shows how the morphological condition of the glands are “traditionally” assessed.

Although more descriptive features have been defined in the literature [19–20, 24–28], the fol-

lowing discussion focuses on only two examples: the angle of deflection and the narrowing of

Fig 5. Six sets of morphometric maps calculated from three Meibomian images classified as healthy, intermediate

and unhealthy (in columns). Subsequent rows show: a) original (binarized) Meibomian images; b) maps of gland

frequency, q0; c) maps of gland frequency variance, σq; d) maps of frequency gradient, Gq.; e) maps of gland

orientation, θ0; f) maps of gland orientation variance, σθ; g) maps of angular incoherence, Cθ.

https://doi.org/10.1371/journal.pone.0270473.g005
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the glands. From Fig 1 it is clear that both these features occur in different and separate loca-

tions on the eyelid surface. Moreover, there are regions were glands shows clear angular devia-

tion but the angle value is smaller than the arbitrary threshold value (45˚ in this case).

Similarly, there are many locations where glands obviously narrow (or broadens), however as

the “narrowing” of glands is not well defined, it is hard to pinpoint those regions. It is clear

that any valuation protocol being based on comparing the value of a certain morphological fea-

ture with an accepted threshold value will focus only on very specific regions of an eyelid.

Regions other than those will be omitted in assessment procedure and treated as clinically

irrelevant. Lastly, the clinical description of a single Meibomian image with only two morpho-

logical features requires many annotations and calculations and, because of arbitrariness in the

feature definition, is very subjective.

The method proposed in this work allows for overcoming the difficulties mentioned above

by automatic mapping of objectively determined values of different morphometric properties

across entire eyelid surface. The results of such analysis are presented in the form of 6 morpho-

metric maps, as in Fig 5.

One of the most obvious morphological feature of Meibomian gland pattern is their width

or their separation. The presented image analysis method estimates this property using the

gland pattern frequency, q0 (being an inverse of gland width and/or gland-gland separation)

and visualizes this property on the entire surface of the eyelid. Comparing original gland struc-

tures (row a in Fig 5) with corresponding maps of gland frequency q0 (row b on Fig 5), it is

Fig 6. Distributions of pixel values for 6 morphometric maps plotted for Meibomian images classified as healthy, intermediate and unhealthy.

Notice that the shape of each distribution depends on the image category (gland ailment). To quantify these changes five measures of distribution were

calculated (Entropy, Mean, Variance, Skewness and Kurtosis) giving in total 30 descriptive features for each Meibomian image.

https://doi.org/10.1371/journal.pone.0270473.g006
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clear that the regions with higher values of q0 correspond to regions where narrower glands

are observed. Hence, the map of gland frequency q0 allows for easy identification of glands nar-

rowing regions.

If the gland separation changes within the window of STFT analysis, then the value of q0 is

estimated with some uncertainty. This property is shown on the map of gland pattern fre-

quency variance, σq (row c of Fig 5). Areas with low σq values correspond to a gland pattern

with well-defined value of frequency (well-defined gland width or well-defined separation).

For better localization of areas in which narrowing or broadening of Meibomian glands

occurs, it is helpful to determine how quickly the glands are changing their width (or separa-

tion). The map of frequency gradient, Gq (Fig 5d), shows the rate of change in the gland pat-

tern frequency. Looking at this map one notices that areas where gland narrowing or

broadening occurs are clearly highlighted, whereas regions where the frequency of gland struc-

ture does not change much are mapped with low value of Gq.

As mentioned earlier (Fig 1), a common method of assessing the glands morphology is

based on the absolute values of the gland’s angle of deflection and involves counting the events

of exceeding a certain threshold angle value (45˚). This task can be facilitated by determining

Fig 7. Correlation plots between first two components of a) Principal Component Analysis (PCA) and b) Linear Discriminant Analysis (LDA)

for images classified as healthy, intermediate and unhealthy. Marginal plots show probability distributions of corresponding components. Notice

that although both analyses provide noticeable separation of categories, the LDA analysis (being a supervised method) provides much better

clustering of classes.

https://doi.org/10.1371/journal.pone.0270473.g007

Table 1. Classification efficiency (in percentage of correctly classified) for different classifiers (column headers) used to distinguish images of Meibomian glands.

95% Confidence Interval (see S7 Appendix for details).

Classifier Healthy Intermediate Unhealthy

PCA 83±12 48±4 83±9

LDA 88±14 79±9 91±12

PCA [33] 88±11 46±3 83±10

https://doi.org/10.1371/journal.pone.0270473.t001
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an exact value of glands angle for every position of an eyelid. This is exactly what is presented

on the map of gland orientation, θ0 (Fig 5e).

The values of deviation angle, θ0, are estimated with some uncertainty. The measure of this

uncertainty is shown on the map of gland orientation variance, σθ (Fig 5f). Similarly to σq map,

regions with low values of σθ correspond to gland pattern with well-defined orientation. We

recall that this parameter but measured on the global scale (for the whole Meibomian image),

was used previously as a measure of anisotropy in gland periodicity [33].

Aside from a knowledge of the glands angle at certain location, it may be just as important

to visualize where this angle is changing. This property is shown on the map of angular inco-

herence, Cθ (Fig 5f), which shows the spatial variation in the mean direction of gland pattern.

Comparing original Meibomian images (row a in Fig 5) with corresponding maps of Cθ, one

can easily notice that regions where the orientation of glands suddenly changes are

highlighted. Regions with low value of Cθ correspond to locations where glands are orientated

in roughly similar direction.

It is worth recalling that the morphometric maps are calculated directly from a raw Meibo-

mian image. Therefore, if the described approach was implemented in the meibograph control

software, the clinician would have access to them immediately after taking a picture of the

glands. Thanks to the large amount of objective information collected in the form of morpho-

metric maps, qualitative analysis of meibomian gland morphological condition is made easier.

Even simple visual inspection of the maps presented in Fig 5 may be useful in clinical practice

and may improve the accuracy of the diagnosis.

It is also possible to attempt a more advanced analysis of the obtained results. Because the

presented method produces new images, a further image analysis can be performed on each of

them. For example, similarly to the popular drop-out area parameter (the ratio between the

area occupied by Meibomian glands to the total area of the eyelid), it is possible to define sim-

ple measures of gland deformity by comparing the areas occupied by glands considered to be

deformed to the total area of the eyelid. This measure can easily be obtained by firstly compar-

ing the pixel numbers present in the appropriate morphometric map from Fig 5, with a certain

value considered as the threshold between undisturbed and distorted state. Then the value of a

new morphometric parameter is calculated as the ratio between the number of pixels that

exceed the threshold value to the total number of pixels in the map. The effect of such a proce-

dure performed on the image of frequency gradient, Gq (Fig 5d) and on the image of angular

incoherence, Cθ (Fig 5f) is presented in Fig 8. Using these particular images, the values of two

morphometric measures were estimated: 1) Aq quantifies the percentage of an eyelid area

where significant changes in the glands width occur (that is narrowing and broadening); 2) Aθ

measures the percentage of an eyelid area where the change in glands orientation is noticed.

Fig 8 clearly shows that the area covered by deformed Meibomian glands correlate with the

ailment progression. In an Meibomian image classified as unhealthy, morphological changes

concern a significant area of the eyelid and meiboscores Aq and Aθ take correspondingly high

values. The surface of healthy glands is much less affected which results in lower values of Aq

and Aθ. Interestingly, the regions indicated by the human specialist and considered to be dis-

turbed coincide roughly with the areas highlighted automatically with the presented method

(compare Fig 1a with the Fig 8b/Intermediate). Looking at the values of Aq and Aθ it is also

clear that some of them are similar even if estimated for images belonging to different catego-

ries. This shows that a correct morphological condition assessment should not be based on a

single parameter only.

The above-estimated morphometric scores (Aq and Aθ) are only an example of the possibil-

ity offered by the presented method. On the basis of morphometric maps (Fig 5), other mea-

sures of the morphological state can be defined just as easily. This makes the proposed
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approach very promising as there is a strong evidence that the Meibomian gland morphologi-

cal changes correlate with the ocular symptoms and signs of the dry eye [10–12]. The further

work should focus on the associations between the obtained local morphometric features and

the ocular symptoms and signs of the dry eye disease, which may confirm the clinical useful-

ness of the proposed approach.

In addition to the above detailed analysis of individual morphometric maps, it is interesting

to check whether the mapped values of morphometric parameters can be used for the auto-

matic classification of images. This will serve as an additional indirectly confirmation that the

morphometric maps contain clinically useful information. As follows from Fig 5, for healthy

Meibomian glands, the morphological properties sensitive to homogeneity in the frequency

and in the orientation of Meibomian glands (σq, Gq, σθ and Cθ) take very low values and their

maps are rather uniform. However, when gland ailment progresses, the shape of the glands

begins to distort in some place. As a result, the values of homogeneity-sensitive properties

increase in the corresponding position of the image. This observation suggests that distribu-

tion of pixel values presented on intrinsic images should be different for different categories.

For healthy images most pixel values are expected to be low. Distribution should move to

higher pixel values when the ailment progresses. This situation is well illustrated on Fig 6

where pixel value distributions for each intrinsic image are presented. The shapes of these dis-

tributions were quantified by determining their Entropy, Mean, Variance, Skewness and Kur-

tosis. As a result, for each Meibomian image 30 descriptive features were determined (6

intrinsic images x 5 measures of distribution).

Differences in the values of the 30 descriptive features found for each Meibomian image

can be used to automatically categorize the images into subjective categories. There are a num-

ber of machine learning algorithms that can be used for this purpose. Finding the best solution

based on its classification efficiency is beyond the scope of the present work. Therefore, the

performance of only one simple classifier was tested, which separates Meibomian images

based on their probability of belonging to a certain category. The classification performance of

this approach is presented in Table 1.

Fig 8. Definition of exemplary new morphometric parameters using the maps presented in Fig 5. Row a) original Meibomian images; Row b)

locations where frequency gradient (blue regions) or angular incoherence (red regions) exceed an arbitrary threshold values of 0.007 and 0.1,

respectively; Row c) percentages of the areas covered by glands with significant changes in the glands width (Aq, are of blue region) and with noticeable

change in glands orientation (Aθ, area of red region).

https://doi.org/10.1371/journal.pone.0270473.g008
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As follows from Table 1, both classification approaches give satisfactory results, although

the PCA classifier performs worse than the LDA. This is especially true for the category “inter-

mediate”. This observation can be explained by broad and strongly overlapped probability dis-

tributions (marginal plots in Fig 7a) making the distinction between the classes inherently

uncertain. Comparing current results from PCA classifier with the previous outcomes [33]

one sees that increasing the number of descriptive features (current 30 features vs. previous 2)

is not the way for improving categorization efficiency. The data reduction method based on

maximizing variability in the data set (utilized by PCA approach) has probably hit the limit of

efficiency. Further increase in categorization performance can be obtained using different

algorithms. This is demonstrated by the output of the same type of classifier but using LDA

data reduction method. As follows from Fig 7b, for LDA approach much better clustering of

data points belonging to different categories was obtained. As a result, appropriate probability

distributions are narrower and better separated which translates into observed classification

improvement.

Conclusions

The presented method for Meibomian image analysis allows for a truly objective estimation of

few strictly defined morphometric parameters. The newly developed automated procedure cal-

culates numerical values of these parameters and generates their maps across entire eyelid area

thereby allows for tracking the local morphometric changes. Moreover, each map presenting

particular morphological property can be subjected to further detailed analysis to extract even

more quantitative information and define new morphometric scores. Isolating individual mor-

phometric components from the original Meibomian image may help clinicians to see in

which part of the eyelid disturbance is taking place and also to quantify it with a numerical

value providing a better insight into disease pathophysiology. Since many ophthalmic disor-

ders start with a slight deformation of the meibomian glands (before their atrophy begins) the

results based on the presented method may be particularly important in detection of the initial

stages of Meibomian gland disease.

Automatic categorization of Meibomian images was successfully performed confirming

that the maps of morphological parameters contain clinically useful information and that tak-

ing into account more morphological features can improve classification efficiency.

The presented method is fast, user-friendly and can be integrated with Meibograph soft-

ware. To confirm its clinical utility, further work should focus on the associations between the

introduced morphometric parameters with the ocular symptoms and signs of the dry eye

disease.
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