
The metastasis-inducing protein AGR2 is O-glycosylated
upon secretion from mammary epithelial cells

Christopher Clarke1 • Philip Rudland1 • Roger Barraclough1

Received: 24 April 2015 / Accepted: 4 July 2015 / Published online: 14 July 2015

� The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract AGR2 is overexpressed in multiple cancers,

particularly those arising from breast and prostate tissues,

and higher levels of AGR2 are associated with earlier

patient death. Although AGR2 is normally resident within

the endoplasmic reticulum, the protein has been found in

the extracellular space in several model systems. However,

it has never been expressly demonstrated that this extra-

cellular form of the protein is secreted and does not just

accumulate in the extracellular space as a result of cell

lysis. We show in this paper that AGR2 protein is secreted

by both human and rat mammary epithelial cells in culture.

Furthermore, this secreted form of AGR2 becomes O-

glycosylated, with no detectable presence of N-glycosyla-

tion. Importantly, this post-translationally modified AGR2

is only detected in the conditioned medium from non-leaky

cells, suggesting that membrane integrity must be main-

tained to allow AGR2 glycosylation. The results suggest a

possible role for O-glycosylation in modulating the extra-

cellular functions of AGR2.
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Introduction

Anterior gradient protein 2 (AGR2) is a member of the

protein disulphide isomerase family of endoplasmic retic-

ulum (ER) chaperones [1], and its major role to date

appears to be in promoting the secretion of several mucin

glycoproteins, including MUC1 [2], MUC2 [3, 4], MUC4

[5], MUC5B and MUC5AC [6, 7]. It also appears to pro-

mote cell differentiation and, as such, is involved in the

development of lung [7], breast [8], liver [9] and gut [10]

tissues.

Expression of AGR2 is induced by physiological stress

[11], ER stress [3, 6, 11–14], and is strongly oestrogen- and

androgen-responsive, particularly in breast and prostate

tissue [15–18]. For this reason, overexpression of AGR2 is

often reported in a number of cancers, particularly in those

arising from the breast, prostate, ovary and pancreas. In

these cancers, higher expression levels of AGR2 generally

correlate with decreased patient survival time [5, 19–24].

The reduced survival time is thought to be caused by an

increase in the rate of metastasis of AGR2-expressing

cancers, as a number of studies have shown an increase in

AGR2 expression in metastatic cells relative to their pri-

mary tumours [16, 25–31] and importantly, AGR2 was able

to induce metastasis of a benign rat mammary cell line

when cells overexpressing AGR2 were injected into syn-

geneic rats [16].

AGR2 is largely tethered to the ER through its C-ter-

minal ER-retention sequence [4, 14, 32–34], but several

studies have reported the presence of AGR2 in the extra-

cellular compartment [35–38], although it has never been

demonstrated that this AGR2 is not just simply released as

a result of cell death and lysis. However, in vivo, AGR2

has been detected in both human colonic mucus [35] and

murine intestinal mucus [35–37]. This suggests that AGR2

may have an extracellular role, perhaps in a similar way to

nAG, the newt homologue of AGR2, which binds to the

cell surface receptor Prod1 and can induce limb regenera-

tion in a salamander model [39, 40]. As further evidence of

an extracellular role for AGR2, a recent study showed that

the addition of extracellular recombinant AGR2 to
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pancreatic cancer cells promoted their growth, migration

and invasion by signalling through the C4.4a cell surface

receptor [41]. Interestingly, C4.4a is a structural homo-

logue of the urokinase-type plasminogen activator receptor

(uPAR), which, along with CD59, is the most closely

related human homologue of Prod1 [42]. Extracellularly-

added recombinant AGR2 has also been shown to promote

adhesion of rat mammary epithelial cells [16, 43] and the

migration and tube formation of human umbilical vein

endothelial cells (HUVEC) [38], indicating a possible role

for extracellular AGR2 in the promotion of angiogenesis.

Changes in both cell adhesion and induction of angiogen-

esis may be important for a pro-metastatic phenotype.

The prevalence of AGR2 overexpression in several

tumour types and its correlation with patient survival has

engendered much interest in the use of AGR2 as a serum or

urine biomarker for disease detection [29, 44–47]. Further

understanding of the nature of secreted AGR2 may be

important in maximising the accuracy and sensitivity of

such tests, and may also shed light on the extracellular

functions of AGR2. We show here that AGR2 is O-gly-

cosylated upon secretion from human and rat cell lines, and

that this form of the protein is released from healthy cells

and not as a result of cell lysis.

Materials and methods

Cell culture and transfection

The oestrogen receptor-positive MCF7A human mammary

epithelial cell line was grown in Dulbecco’s Modified

Eagle’s Medium (DMEM, Life Technologies) including

non-essential amino acids (NEAA) and supplemented with

10 % (v/v) foetal bovine serum (FBS), 4 mM L-glutamine

and 10 lg/mL insulin (Sigma). Rama 37 rat mammary

benign epithelial tumour cells [48] were grown in DMEM

including NEAA and supplemented with 5 % (v/v) FBS,

4 mM L-glutamine, 10 ng/mL insulin and 10 ng/mL

hydrocortisone (Sigma). Cells were transfected with the

PiggyBac EF1a-IRES-neomycin plasmid vector (Systems

Biosciences, vector only), or the same vector containing a

human AGR2 cDNA, using FuGENE6 transfection reagent,

according to the manufacturer’s protocol (Promega).

Transfected cellsweremaintained in normal growthmedium

supplemented with 1 mg/mL G418 (Melford). Clonal cell

lines were created by serial dilution of transfected cells down

to a single cell in a known volume and growing these for

several weeks until confluent cultures were obtained.

Collection of conditioned medium

Cells were grown to 30–40 % confluence, washed four

times in phosphate-buffered saline (PBS) supplemented

with 900 lM CaCl2 and 500 lM MgCl2, in order to

remove the maximum amount of FBS whilst limiting cell

detachment. These cells were then incubated in Opti-MEM

(Minimum Essential Medium) serum-free medium (Life

Technologies) supplemented with a final concentration of

25 mM glucose, 1.8 mM CaCl2, 4 % (v/v) non-essential

amino acids (NEAA, Life Technologies) and 10 ng/mL

hydrocortisone, in order to make this serum-free medium

as close to the formulation of normal culture medium as

possible. After 24 h, medium was collected, centrifuged at

10009g at 4 �C and concentrated using an Amicon ultra

centrifugal filter (Millipore).

Western blotting

Whole cell lysates were prepared from cells grown to

70–80 % confluence and lysed in RIPA buffer [50 mM

Tris–HCl, pH 6.8, 150 mM NaCl, 2 mM EDTA, 1 % (v/v)

NP-40, 0.5 % (w/v) sodium deoxycholate, 0.1 % (w/v)

SDS and complete protease inhibitor cocktail (Roche)].

Secreted protein samples were obtained as described

above. Samples were subjected to SDS-PAGE, transferred

to PVDF membrane (Millipore) and probed with a mouse

monoclonal antibody specific for AGR2 (Millipore,

MABC48) or a polyclonal rabbit anti-LDHA (Cell Sig-

naling Technology, #2012) serum. Horseradish peroxidase-

coupled secondary antibodies were obtained from Dako.

Protein molecular weights were estimated by plotting a

standard curve of molecular weight and relative migration

distance for known protein standards, and calculating the

molecular weights of different forms of AGR2 using their

relative migration distance.

Enzymatic deglycosylation of proteins

All enzymes and reagents were acquired from New Eng-

land Biolabs. Cell lysates and samples of conditioned

medium were first denatured by incubation with 0.5 % (w/v)

SDS, 40 mM DTT and subsequent heating at 98 �C for

5 min. Samples were then subjected to treatment with

either PNGase F, O-glycosidase/neuraminidase mix or

protein deglycosylation mix (consisting of PNGase F, O-

glycosidase, neuraminidase, b1-4 galactosidase and b-N-
acetylglucosaminidase) for 4 h at 37 �C, as per the man-

ufacturer’s instructions.
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Results

AGR2 is secreted in a higher molecular weight form

from cultured rat and human mammary cells

A number of studies have reported that AGR2 is secreted,

both from cultured cells [17, 25, 49] and into intestinal

mucus in mice [35]. In the present experiments, AGR2 was

recovered from the culture medium of Rama 37 cells

expressing wild-type (WT) AGR2 protein and displayed an

apparent molecular weight 0.90 (SD ± 0.12) kDa higher

than that of intracellular AGR2 (Fig. 1). This mass dif-

ference in extracellular AGR2 shows that its presence in

the culture medium is not due to intracellular AGR2

released from lysed or leaky cells, and this is further

confirmed by the lack of detectable levels in the culture

medium of AGR2-expressing Rama 37 cells of the intra-

cellular marker protein, lactate dehydrogenase A (LDHA).

To ensure that this release of higher molecular weight

AGR2 was not restricted to transfected rat mammary cells,

the release of AGR2 from AGR2-expressing human

MCF7A cells [16] was investigated (Fig. 2). Furthermore,

to investigate further whether this higher molecular weight

form is actively released from cells rather than released by

cell lysis, MCF7A cells were incubated in increasingly

nutrient-poor media, and the presence of AGR2 in these

conditioned media was monitored by Western blot (Fig. 2).

All incubation media were serum-free (see ‘‘Materials

and methods’’ section), and cells incubated in either

DMEM with or without non-essential amino acids

(NEAA), or with Opti-MEM medium without NEAA

released large amounts of lower molecular weight AGR2

into the culture medium, but there was no detectable higher

molecular weight AGR2 under any of these conditions.

Furthermore, cells incubated in these media also released

high amounts of LDHA, suggesting that AGR2 is released

from these cells as a result of cell lysis. Conversely, cells

incubated in Opti-MEM medium containing NEAA

released a form of AGR2 with apparent molecular weight

0.93 (SD ± 0.09) kDa larger than intracellular AGR2, but

barely detectable levels of LDHA. These data suggest that

the higher molecular weight form of AGR2 is released only

from intact cells that do not leak intracellular proteins.

Secreted AGR2 contains O-linked, but not N-linked,

glycans

Given that only small amounts of AGR2 protein are

secreted from both Rama 37 and MCF7A cells, we created

a Rama 37 cell line expressing a mutant form of AGR2

lacking the C-terminal ER-retention sequence (DKTEL
AGR2), leading to increased secretion of AGR2, and thus

facilitating the determination of the increase in molecular

weight of secreted AGR2. As expected, AGR2 was secre-

ted in higher amounts from DKTEL AGR2-expressing cells

but, interestingly, secreted DKTEL AGR2 displayed the

same sized shift in apparent molecular weight compared to

intracellular WT AGR2 (0.94 (SD ± 0.09) kDa, Fig. 3) as

did secreted WT AGR2 (Fig. 1), despite the KTEL deletion

rendering the intracellular protein apparently 0.87

Fig. 1 A higher molecular weight form of AGR2 is released into the

medium of AGR2-expressing rat mammary epithelial tumour cells.

Conditioned medium was collected from vector only-expressing or

WT AGR2-expressing Rama 37 cells and analysed for the presence of

AGR2 and lactate dehydrogenase (LDHA) by Western blot. The

presence of LDHA in the conditioned medium was used as an

indication of the contamination of the secreted protein pool by

intracellular proteins [64]. Extracellular AGR2 was 0.90 (SD ± 0.12)

kDa larger than intracellular AGR2 on average (n = 3)

Fig. 2 In human mammary epithelial cells, higher molecular weight

AGR2 is only released from non-leaky cells. MCF7A cells were

incubated for 24 h in serum-free DMEM or serum-free Opti-MEM

medium, with and without non-essential amino acids (NEAA).

Conditioned medium was collected and probed for AGR2 and LDHA

by Western blot. The presence of LDHA in the conditioned medium

was used as an indication of the contamination of the secreted protein

pool by intracellular proteins under each serum-free condition.

Extracellular AGR2 was 0.93 (SD ± 0.09) kDa larger than intracel-

lular AGR2 on average (n = 3)
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(SD ± 0.01) kDa smaller than intracellular WT AGR2

(measured by polyacrylamide gel electrophoresis, data not

shown).

As the majority of secreted proteins are glycosylated

[50], it is likely that the cause of the increase in apparent

molecular weight of secreted AGR2 was one or more

glycosylation events. Indeed, secreted DKTEL AGR2 (but

not intracellular WT AGR2) reacted weakly with periodic

acid-Schiff stain, a glycoprotein stain (data not shown).

Therefore, we investigated the nature of the probable gly-

cosylation using specific deglycosylating enzymes (Fig. 4).

Conditioned medium from DKTEL AGR2-expressing

cells treated with the N-glycosidase PNGase F showed no

change in the apparent molecular weight of AGR2,

remaining 0.80 (SD ± 0.04) kDa larger than intracellular

AGR2, both with and without PNGase F treatment

(Fig. 4a). Under these same reaction conditions, however,

PNGase F reduced the apparent molecular weight of a-acid
glycoprotein by approximately 30 kDa, indicating that the

enzyme was active in the conditioned medium (Fig. 4b).

Treatment of DKTEL AGR2-conditioned medium with

either O-glycosidase (and neuraminidase) or a commercial

mix of deglycosylation enzymes, consisting of PNGase F,

O-glycosidase, neuraminidase, b1-4 galactosidase and b-N-
acetylglucosaminidase, reduced the apparent molecular

weight of secreted AGR2 by 0.53 (SD ± 0.04) kDa, but

not back down to the apparent molecular weight of intra-

cellular AGR2. Deglycosylation enzymes had no effect on

the size of intracellular AGR2 (Fig. 4a). These experiments

indicate that the secreted form of AGR2 does not contain

any detectable N-glycosylation sites, but contains at least

one digestible O-glycosylation site.

Discussion

It is shown here for the first time that AGR2 secreted from

both rat and human mammary epithelial cells becomes O-

glycosylated. While it was possible to distinguish that

secreted AGR2 was O-glycosylated, but not N-glycosy-

lated, it is clear that neither treatment with O-glycosidase/

neuraminidase nor the deglycosylation enzyme cocktail

(Fig. 4) fully reduced the apparent molecular weight of the

secreted AGR2 to that of the unmodified intracellular

AGR2. This likely reflects the presence of glycan structures

not digestible by the enzymes used herein, but while

secreted AGR2 is not phosphorylated (data not shown), we

cannot totally rule out the presence of some other, less

common, post-translational modification. In addition, the

similar-sized shift in apparent molecular weight observed

between secreted WT and DKTEL AGR2 (Figs. 1, 3),

despite the smaller size of the DKTEL polypeptide chain,

implies that the secreted DKTEL AGR2 may be more

heavily glycosylated than WT protein. The presence of a

KTEL sequence has been previously shown to alter the

make-up of O-linked glycans, and probably relates to the

differences in transit time of the protein from ER to Golgi

and to the extracellular space [51]. Due to the limitations of

the SDS polyacrylamide gel electrophoresis technique, it

was not possible to draw further conclusions about the

detailed nature of the O-linked modifications from size

differences of the observed bands.

Possible sites of these O-glycosylated residue(s) in

AGR2 are shown in Fig. 5, based on prediction by the

NetOGlyc 4.0 server [52]. All of these predicted sites lie

within the unstructured N-terminal region of AGR2, which

we described previously [43], consistent with a recent

bioinformatics finding that O-glycosylation sites are loca-

ted preferentially in unstructured protein regions, whereas

the opposite is true for N-glycosylation [53].

AGR2 is an ER-resident chaperone protein and other

such chaperones have also been reported to be secreted

[54–57]. Notably, the AGR2-related protein disulphide

isomerase, ERp44, which, like AGR2, contains a divergent

CXXS-active site, is O-glycosylated upon secretion [57]. It

is possible therefore that O-glycosylation of normally ER-

resident chaperones by the Golgi body is a more general

phenomenon, rather than an AGR2-specific event, and may

stem from ‘leakiness’ of the KDEL-dependent retrograde

transport of proteins from Golgi to ER [51]. Furthermore,

although most secreted proteins passing through the Golgi

are glycosylated, there are several examples of non-gly-

cosylated secreted proteins, notably insulin [58], serum

albumin [59] and elastin [60]. This suggests that glycosy-

lation of secreted ER proteins may have functional con-

sequences, rather than being the result of some default

Fig. 3 A highly secreted mutant form of AGR2 is also released in a

high molecular weight form from rat mammary tumour cells. Rama

37 cells were engineered to express AGR2 devoid of the C-terminal

KTEL ER-retention sequence in order to increase its secretion. Note

that, as DKTEL AGR2 is highly secreted, intracellular levels are

almost undetectable and thus expression of intracellular WT AGR2 is

shown for size comparison. Extracellular AGR2 was 0.94

(SD ± 0.09) kDa larger than intracellular AGR2 on average (n = 3)
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programme of glycosylation for any protein passing

through the Golgi.

It is not yet known how the presence of the O-linked

glycosylation might affect the biological activity of AGR2.

The protein plays a role in cell adhesion [16, 43], although it

should be noted that these experiments were performed

using bacterially-derived (i.e. non-glycosylated) AGR2, but

it is interesting that O-glycosylation status has been reported

to influence cell adhesion; for example, in pancreatic

carcinoma cells, enhancement or reduction of cell adhesion

depended upon the cell surface O-linked glycosylation state

of the cells [61], and similarly, alterations in the O-glyco-

sylation patterns of the transmembrane proteins a2b1 inte-

grin and E-cadherin altered the migratory and invasive

potential of pancreatic adenocarcinoma cells [62]. Loss of

O-glycosylation sites in the secreted metastasis-inducing

protein osteopontin was also shown to increase its pro-ad-

hesive effects [63]. Thus, the degree and pattern of O-

Fig. 4 Treatment with O-glycosidase reduces the molecular weight

of secreted AGR2. a Conditioned medium from DKTEL AGR2-

expressing cells (secreted AGR2) and whole cell lysate from WT

AGR2-expressing cells (intracellular AGR2) were treated with the

indicated deglycosylation enzymes for 4 h at 37 �C, as per the

manufacturer’s instructions. Treated samples were subjected to

Western blot and probed for AGR2. PNGase F is an N-glycosidase.

O-glycosidase-treated samples were simultaneously treated with

neuraminidase, as the presence of terminal sialic acid residues blocks

the activity of O-glycosidase [65]. Deglycosylation mix consists of

PNGase F, O-glycosidase, neuraminidase, b1-4 galactosidase and b-
N-acetylglucosaminidase. Untreated extracellular AGR2 was 0.80

(SD ± 0.04) kDa larger than intracellular AGR2 on average (n = 3),

and extracellular AGR2 treated with O-glycosidase or deglycosyla-

tion mix was 0.27 (SD ± 0.04) kDa larger than intracellular AGR2 on

average (n = 3). b To ensure that PNGase F was active in the

presence of culture medium components, a-acid glycoprotein (a-AG)
was added to conditioned medium and treated with PNGase as in a.
Reaction mixtures were run on an SDS-PAGE gel and stained with

Coomassie blue
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glycosylation in both cell surface and secreted proteins

appear to play roles in cell adhesion. We have already

shown that the unstructured region of AGR2, comprising

amino acids 21–40, is required for AGR2-promoted cell

adhesion [43], and we have shown here that it is also the

possible site of O-linked glycosylation in AGR2 (Fig. 5).

Glycosylation of extracellular AGR2 may therefore be

important for AGR2-mediated cell adhesion.
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