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Abstract
To create a scienti�c resource of expression quantitative trail loci (eQTL), we conducted a genome-wide association study (GWAS) using genotypes obtained
from whole genome sequencing (WGS) of DNA and gene expression levels from RNA sequencing (RNA-seq) of whole blood in 2622 participants in
Framingham Heart Study. We identi�ed 6,778,286 cis-eQTL variant-gene transcript (eGene) pairs at p < 5x10− 8 (2,855,111 unique cis-eQTL variants and 15,982
unique eGenes) and 1,469,754 trans-eQTL variant-eGene pairs at p < 1e-12 (526,056 unique trans-eQTL variants and 7,233 unique eGenes). In addition,
442,379 cis-eQTL variants were associated with expression of 1518 long non-protein coding RNAs (lncRNAs). Gene Ontology (GO) analyses revealed that the
top GO terms for cis-eGenes are enriched for immune functions (FDR < 0.05). The cis-eQTL variants are enriched for SNPs reported to be associated with 815
traits in prior GWAS, including cardiovascular disease risk factors. As proof of concept, we used this eQTL resource in conjunction with genetic variants from
public GWAS databases in causal inference testing (e.g., COVID-19 severity). After Bonferroni correction, Mendelian randomization analyses identi�ed putative
causal associations of 60 eGenes with systolic blood pressure, 13 genes with coronary artery disease, and seven genes with COVID-19 severity. This study
created a comprehensive eQTL resource via BioData Catalyst that will be made available to the scienti�c community. This will advance understanding of the
genetic architecture of gene expression underlying a wide range of diseases.

Introduction
Over the past decade, genome-wide association studies (GWAS) have revolutionized understanding of the genetic architecture of complex traits.1 To date,
GWAS have reported more than 59,000 associations (at p < 5×10− 8) between common genetic variants and numerous phenotypes (GWAS Catalog, v1.0.2).2

Yet, despite the clear success of GWAS, most single-nucleotide polymorphisms (SNPs) identi�ed in GWAS reside in non-coding regions3–5 and do not
illuminate causal mechanisms underlying SNP-trait associations.5 We posit that many of these trait-associated non-coding SNPs are likely to be involved in
the regulation of gene expression.

Expression quantitative trait locus (eQTL) analysis seeks to identify genetic variants that affect the expression of local (cis) or distant (trans) genes (eGenes).
Until recently, eQTL analysis has relied on high throughput microarray technologies and spawned a wave of genome-wide eQTL studies6–11 including a recent
study from our group.12 These studies aided the understanding of the functional relevance of many GWAS results. Importantly, a hypothesis-free genome-wide
eQTL approach permits the identi�cation of new putatively functional loci without requiring previous knowledge of speci�c regulatory regions.

Most previous eQTL analyses were limited by small sample sizes and by the imprecision of microarrays. Newer technologies of RNA sequencing (RNA-seq)
and whole genome sequencing (WGS) of DNA add greater precision and relevance to eQTL analyses. In conjunction with the National Heart, Lung, and Blood
Institute’s (NHLBI) Trans-Omics for Precision Medicine (TOPMed) Program,13 the Framingham Heart Study (FHS) has obtained whole genome sequencing
(WGS) in ~ 6100 study participants to help understand the molecular basis of heart, lung, blood, and sleep disorders and to advance precision medicine.
Among FHS participants with WGS, RNA-seq was obtained in 2622 participants. We conducted genome-wide eQTL analyses using high-precision genotypes
obtained via WGS and gene expression levels from RNA-seq of whole blood. The primary objectives of this study were three-fold. Firstly, it sought to provide a
scienti�c resource of cis and trans gene-level eQTL data to facilitate understanding of the genetic architecture of gene expression traits. Secondly, it was
aimed to provide eQTL data for long noncoding RNAs (lncRNAs) that were not captured in prior array-based eQTL studies. Thirdly, it attempted to demonstrate
the utility of the eQTL resource in causal inference analyses.

Results
Of the 2622 FHS participants in eQTL analyses, 720 participants were from the FHS Offspring cohort (mean age 71 ± 8 years; 59% women) and 1902 were
from the Third Generation cohort (mean age 47 ± 8 years; 52% women) (Table 1). We used 19,624,299 SNPs with a minor allele count (MAC) ≥ 10 and 58,870
expression levels in association analyses to identify gene-level eQTLs.
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Table 1
Participant characteristic

Variable

mean (SD) or %

Offspring cohort

(n = 720)

Third Generation cohort

(n = 1902)

Women 58.6 52.3

Age, years 71.3 (8.2) 46.5 (8.7)

BMI, kg/m2 28.5 (5.6) 27.7 (5.6)

SBP, mmHg 126.8 (16.7) 115.9 (14.1)

DBP, mmHg 73.6 (9.8) 74.2 (9.4)

Fasting glucose, mg/dL 105.7 (19.8) 96.5 (19.7)

TC, mg/dL 189.2 (36.4) 186.3 (33.2)

HLD, mg/dL 57.8 (18.7) 60.0 (17.8)

Trig, mg/dL 119.1 (73.5) 110.4 (70.9)

LDL, mg/dL 108.0 (31.9) 104.2 (29.8)

Current smoking 8.2 10.8

Hypertension 48.1 33.6

Diabetes 12.6 5.7

HRX 44.1 19.9

LIPIDRX 41.4 29.0

DMRX 9.1 5.2

BMI, body mass index; SBP/DBP, systolic/diastolic blood pressure; TC, total cholesterol; HDL, high density lipoprotein; Trig, triglyceride; LDL, low-density
lipoprotein; HRX, treatment for hypertension; LIPIDRX, treatment for high lipid level; DMRX, treatment for diabetes.

Gene-level eQTL results

cis-eQTLs
Cis-eQTLs was de�ned as SNPs within 1 Mb of the transcription start sites (TSSs) of targeting genes. We identi�ed 6,778,286 signi�cant cis-eQTL variant-
eGene pairs from 2,855,111 unique cis-eQTL variants and 15,982 unique eGenes (at p < 5x10− 8) (Table 2). The median number of cis-eQTL variants per gene
was 183 (interquartile range = 47,463). The eGenes harboring the largest numbers of cis-eQTL variants are located in the human leukocyte antigen (HLA) or
major histocompatibility complex (MHC) on chromosome 6, re�ecting a large number of SNPs in strong linkage disequilibrium (LD) at the MHC locus.14

Owing to the computational burden, we selected the strongest cis-eQTL variant (i.e., the lead variant) as that which had the lowest p-value per eGene. If several
cis-eQTLs displayed the same p-value (i.e., they are in perfect LD, r2 = 1), we randomly select one lead eQTL variant per eGene (Table 3 & Supplemental
Table 1). Of the 6,778,286 signi�cant cis-eQTL variant-eGene pairs, 82.8% (n = 13,226) of SNPs were within 100 kb of the TSSs of the respective eGenes, 9.3%
(n = 1492) within 101 kb – 200 kb region, 5.7% (n = 910) within 201 kb – 500 kb region, and 2.2% (n = 352) within 501 kb – 1 Mb (Fig. 1). Among the selected
lead cis-eQTL variants, 85% (n = 13584) explained a small proportion of variation (R2 < 0.2) in expression of the respective eGenes, 197 (1.2%) and 27 (0.17%)
of lead cis-eQTL variants explained a moderately large (R2 0.6 to 0.8) or a very large proportion of variation in expression (R2 > 0.80) of the corresponding
eGenes (Fig. 1).

Table 2
Cis- and trans-eQTL in the Framingham Heart Study

  eQTLs at gene level lncRNA eQTLs

Cis-eQTL-eGene (p < 5e-8)

Number of pairs 6,778,286 pairs 442,379 cis-eQTLs are located in 1518 cis-lncRNAs genes

2,855,111 unique cis-eQTLs and 15,982 eGenes

Trans-eQTL-eGene (p < 1e-12)

Number of pairs 1,469,754 pairs 117,862 trans-eQTLs are located in 475 trans-lncRNAs genes

526,056 unique trans-eQTLs and 7,233 trans-eGenes
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Table 3
Top 25 cis-eQTLs (p < 5e-8)

Gene
Symbol

SNP Chr SNP
position

Gene start

position

R2 Beta log10P OA EA EAF Type

PPIE rs7513045 1 39738494 39692182 0.84 11.40 -1029.25 G T 0.36 protein_coding

CCDC163 rs4660860 1 45480561 45493866 0.90 -3.10 -1286.89 T A 0.30 protein_coding

CYP26B1 rs13430651 2 72215195 72129238 0.81 1.98 -920.005 G A 0.15 protein_coding

MAP3K2-DT rs2276683 2 127389186 127389130 0.88 -1.61 -1176.37 G C 0.23 lincRNA

SLC12A7 rs35188965 5 1104823 1050384 0.81 -29.87 -915.459 C T 0.44 protein_coding

ENC1 rs112772452 5 74631048 74627406 0.83 14.53 -986.798 CA C 0.11 protein_coding

ERAP2 rs2910686 5 96916885 96875939 0.85 36.98 -1044.91 T C 0.43 protein_coding

BTNL3 rs72494581 5 181003797 180988845 0.82 13.52 -950.405 T C 0.30 protein_coding

HLA-DRB5 rs68176300 6 32558713 32517353 0.83 -178.13 -1003.76 T G 0.15 protein_coding

AL512625.3 rs1845054 9 62906092 62856999 0.83 -1.19 -993.655 T C 0.13 lincRNA

CUTALP rs13299616 9 120832525 120824828 0.86 -23.25 -1092.88 T C 0.40 transcribed_unitary_pseud

LDHC rs201993031 11 18412985 18412318 0.82 0.16 -946.833 CCCTTCCTT C 0.12 protein_coding

ACCS rs2074038 11 44066439 44065925 0.83 16.69 -997.26 G T 0.11 protein_coding

FADS2 rs968567 11 61828092 61792980 0.88 31.41 -1186.37 C T 0.17 protein_coding

XRRA1 rs10899051 11 74931506 74807739 0.91 5.38 -1327.88 G A 0.26 protein_coding

B4GALNT3 rs1056008 12 553672 460364 0.85 6.71 -1043.34 T C 0.25 protein_coding

DDX11 rs3891006 12 31073506 31073860 0.86 -13.25 -1102.08 A G 0.44 protein_coding

RPS26 rs1131017 12 56042145 56041351 0.81 -134.34 -929.902 C G 0.39 protein_coding

C17orf97 rs7503725 17 410351 410325 0.85 1.89 -1055.68 G T 0.25 protein_coding

AC126544.2 rs2696531 17 46278268 45586452 0.86 1.04 -1097.79 C A 0.21 lincRNA

SPATA20 rs9890200 17 50547162 50543058 0.81 -11.01 -934.173 A C 0.37 protein_coding

CEACAMP3 rs3745936 19 41586462 41599735 0.84 1.11 -1040.05 A T 0.22 transcribed_unprocessed_

PWP2 rs2277806 21 44089769 44107373 0.87 3.16 -1139.85 A C 0.19 protein_coding

GATD3A rs3788104 21 44092213 44133610 0.86 4.25 -1104.35 G A 0.18 protein_coding

FAM118A rs576259663 22 45363712 45308968 0.86 43.45 -1108.47 T TA 0.12 protein_coding

EA, effect allele; OA, the other allele

trans-eQTLs
Trans-eQTLs referred to the SNPs that were beyond of 1 Mb of the TSSs of the eGenes on the same chromosome or those on the different chromosomes of
the eGenes. We identi�ed 1,469,754 signi�cant trans-eQTL variant-eGene pairs (p < 1e-12) from 526,056 unique trans-eQTL variants and 7,233 trans-eGenes
(Table 2). The median number of signi�cant-eQTL variants per eGene was 11 (interquartile range = 2, 76).14 With the same method used to select the lead cis-
eQTL variants, we selected the lead trans-eQTL variant based on p-values for each trans-eGene (Supplemental Table 2). The top 25 trans-eQTL are listed in
Table 4. Among the lead trans-eQTL variants, 95.8% (n = 6926) explained a small proportion of variation in expression (R2 < 0.2) of the corresponding eGenes,
27 (0.37%) and �ve (0.07%) lead trans-eQTL variants explained a moderately large (R2 in 0.6 to 0.8) or a very large (R2 > 0.80) proportion of variation in
expression of the corresponding trans-eGenes. The trans-eQTL variants, rs1442867716 (GATD3A), rs74987185 (RPSAP58), rs538628 (AC126544.2),
rs16997659 (EIF2S3B), rs3927943 (NPIPB15) explained > 0.8 of variance in the expression of their respective trans-eGenes.
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Table 4
Top 25 top trans-eQTLs (p < 1e-12)

Gene
Symbol

SNP Gene

Chr

SNP

Chr

SNP

Pos

Gene Start
Pos

R2 Beta t value log10P OA EA EAF Gene type

EMBP1 rs4549528 1 5 50372700 121519112 0.70 1.63 78.04 -677.53 T C 0.48 transcribed_unp

AL365357.1 rs4841 1 5 150446963 178411616 0.64 2.79 67.64 -570.81 C T 0.25 processed_pseu

AL591846.1 rs13161099 1 5 150442799 206695837 0.62 1.87 65.67 -549.988 G A 0.25 processed_pseu

AC004057.1 rs1131017 4 12 56042145 113214046 0.61 -0.42 -63.03 -521.823 C G 0.39 transcribed_proc

RPL10P9 rs6655287 5 X 154396528 168616352 0.64 4.11 68.52 -580.03 A G 0.10 processed_pseu

PSPHP1 rs34945686 7 7 65809663 55764797 0.61 0.05 64.11 -533.329 C G 0.18 unprocessed_ps

AC104692.2 rs6593279 7 7 55736277 152366763 0.60 0.05 62.97 -521.195 G A 0.20 processed_pseu

RNF5P1 rs8365 8 6 32180626 38600661 0.78 0.97 96.24 -850.788 G C 0.19 processed_pseu

TUBB8 rs28652789 10 16 33807 46892 0.61 0.32 63.35 -525.289 G C 0.25 protein_coding

COX20P1 rs10927332 10 1 244837362 68632371 0.62 0.10 64.57 -538.221 C T 0.19 processed_pseu

EIF2S3B rs16997659 12 X 24057745 10505602 0.81 0.99 106.39 -939.701 A G 0.17 protein_coding

RPS2P5 rs2286466 12 16 1964282 118246084 0.80 71.71 101.17 -894.683 A G 0.21 processed_pseu

LINC00431 rs41288614 13 13 112486035 110965704 0.70 0.20 76.92 -666.36 A G 0.15 transcribed_unp

NPIPB15 rs3927943 16 16 69977282 74377878 0.80 3.79 103.12 -911.688 T A 0.40 protein_coding

TUBB8P7 rs28652789 16 16 33807 90093154 0.75 0.51 88.54 -779.687 G C 0.25 transcribed_unp

RPL13P12 rs2280370 17 16 89561052 17383377 0.69 36.16 75.78 -654.808 T G 0.19 processed_pseu

LRRC37A2 rs56328224 17 17 45495053 46511511 0.80 5.91 101.76 -899.821 C T 0.24 protein_coding

POLRMTP1 rs14155 17 19 619021 62136972 0.69 0.62 75.32 -650.176 G C 0.50 processed_pseu

TUBB8P12 rs2562131 18 16 33887 47390 0.65 0.47 68.64 -581.244 C A 0.25 protein_coding

AP001005.3 rs28652789 18 16 33807 49815 0.61 0.15 64.25 -534.859 G C 0.25 lincRNA

RPSAP58 rs74987185 19 3 39414963 23827162 0.84 10.17 117.60 -1031.88 G GCT 0.31 processed_pseu

GATD3B rs2277806 21 21 44089769 5079294 0.74 -3.83 -84.78 -743.85 A C 0.19 protein_coding

FP565260.1 rs2277806 21 21 44089769 5130871 0.76 -2.96 -90.65 -799.469 A C 0.19 protein_coding

SIRPAP1 rs115287948 22 20 1915413 30542536 0.75 1.12 89.28 -786.711 G A 0.36 processed_pseu

GPX1P1 rs7643586 X 3 49394214 13378735 0.61 16.44 64.25 -534.823 C G 0.43 processed_pseu

EA, effect allele; OA, the other allele

Long noncoding RNA (lncRNA) eQTLs
lncRNAs are usually more than 200 bases in length, share no conserved sequence homology, and have variable functions.15 Of the 58,870 transcripts captured
by RNA-seq 7696 (13%) are lncRNAs. Of the signi�cant cis-eQTL variant-eGene pairs (p < 5e-8), 447,598 cis-eQTL variants are associated with expression of
1518 unique cis-lncRNAs. The top cis-eQTL-lncRNA variant-gene pairs are listed in Supplemental Table 3. Of the signi�cant trans-eQTL variant-eGene pairs (p 
< 1e-12), 121,241 trans-eQTL variants were associated with expression of 475 trans-lncRNAs. The top trans-eQTL-lncRNA variant-gene pairs are listed in
Supplemental Table 4. Three cis-eQTL-lncRNA pairs were observed among the top 25 cis-eQTL results (Table 3). The top cis-lncRNA, the MAP3K2 divergent
transcript (MAP3K2-DT), is the only lncRNA that is located adjacent to a protein coding gene, the 5’-end of mitogen-activated protein kinase kinase kinase 2
(MAP3K2) on chromosome 2 (q14.3) (Fig. 2). The correlation of expression of expression of MAP3K2 and MAP3K2-DT was weak (Pearson correlation = 0.08;
p = 0.12). Among the top 25 trans-eQTL pairs, we identi�ed one trans-eQTL-lncRNA pair (Table 4). The top trans-lncRNA, AP001005.3 on chromosome 18, is
not adjacent to any known genes.

Gene Ontology analyses
We identi�ed 100 signi�cant GO terms for the top 1000 cis-eGenes at FDR < 0.05. Of these Go terms, there were 58 for Biological Process, 31 for Cellular
Component, and 11 for Molecular Function (Supplemental Table 5). Of note, the top GO terms appeared to be related to immune functions. For example, the
top two Biological Processes are “leukocyte degranulation” (FDR = 1e-6) and “myeloid leukocyte mediated immunity” (FDR = 2e-6) and the top two Cellular
Components are cytoplasm (FDR = 3e-6) and MHC protein complex (FDR = 6e-6). The top 1000 top trans-eGenes gave rise to 75 signi�cant (FDR < 0.05) GO
terms including 37 for Biological Process, 32 for Cellular Component, and 6 for Molecular Function. The top GO terms for the top 1000 trans-eGenes were
enriched in pathways and molecular functions related to immune functions (Supplemental Table 5).
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GWAS enrichment analyses
We linked 1,855,111 cis-eQTL variants (P < 5e-8) to GWAS Catalog variants. At FDR < 0.05, the cis-eQTL variants were enriched with GWAS SNPs associated
with 815 traits, representing 28% of the traits in the GWAS Catalog. The top traits identi�ed in enrichment analyses include several cardiovascular disease risk
factors. For example, cis-eQTL variants are enriched with BMI-associated SNPs (fold enrichment = 84, FDR = 3.3e-267), total cholesterol (fold enrichment = 98,
FDR = 7.3e-162) (Supplemental Table 6). We identi�ed 193 GWAS traits enriched for the trans-eQTL variants (Supplemental Table 7). The top traits in the trans
enrichment analysis included neuroticism measurement (fold enrichment = 3, FDR = 1.9e-89) and BMI-adjusted waist circumference (fold enrichment = 2, 6.4e-
87).

Mendelian randomization analysis
We performed two-sample MR to test for potential causal association of the cis-eGenes with SBP, CAD, and COVID-19 severity. We found 1558 genes
containing at least one eQTL variant (median 29; interquartile range [IQR] 6, 88) that coincided with variants from GWAS of SBP (p < 5e-8).16 After Bonferroni
correction for multiple testing, MR identi�ed putative causal associations for 60 genes with SBP (i.e., p < 0.05/1558) (Table 5 & Supplemental Table 8). Of
these 60 genes, six lncRNAs (AC066612.1, AC069200.1, AC092747.4, AC100810.3, AL590226.2, and LY6E-DT) showed putative causal associations with SBP.
For CAD, 173 genes contained at least one eQTL variant [median 5; IQR (2, 18) that also were associated with CAD in GWAS.17 Thirteen genes showed putative
causal associations with CAD (i.e., p < 0.05/173) (Table 5 & Supplemental Table 8); none of the 13 putative causal genes was a lncRNA. Using results of a
recent GWAS of COVID-19 severity18 and a study that investigated circulating proteins in�uencing COVID-19 susceptibility and severity,19 we identi�ed 24
genes with cis-eQTL variants [median 3, IQR; (2, 126)] that coincide with COVID severity variants. MR analyses identi�ed seven putatively causal genes for
COVID-19 severity (Table 5 and Supplemental Tables 8 & 9). Two of the genes included the 2'-5'-oligoadenylate synthetase 1 gene (OAS1) (MR IVW p = 1.6E-
04) and the interferon-alpha/beta receptor beta chain gene (IFNAR2) (MR IVW p = 1.8E-06). A recent study identi�ed an alternative splicing variant (sQTL),
rs10774671, at exon 7 of OAS1 for which the “G” allele leads to a “prenylated” protein that is protective against severe COVID.20 Additional MR analysis using
rs10774671 as the instrumental variable demonstrated that splice variation of OAS1 is also causal for COVID-19 severity (p = 4e-6).

Table 5
Top results in Mendelian randomization analyses

        INV MR1  

Exposure Chr Gene type Outcome Beta SE p N SNPs

PSRC1 1 Protein coding CHD -0.084 0.0075 4.8E-29 7

LTA 6 Protein coding CHD -0.069 0.011 1.3E-09 5

MIR6891 6 miRNA CHD 1.72 0.28 2.0E-09 25

LIPA 10 Protein coding CHD 0.0033 0.00039 2.9E-17 18

PHETA1 12 Protein coding CHD -0.078 0.013 4.7E-09 3

ACSL6 5 Protein coding COVID-19 0.19 0.064 0.0025# 4

DPP9 19 Protein coding COVID-19 -0.044 0.017 0.0078# 3

HLA-DRB1 6 Protein coding COVID-19 0.00099 0.00018 1.9E-08# 35

IFNAR2 21 Protein coding COVID-19 -0.023 0.0037 1.8E-06# 11

OAS1 12 Protein coding COVID-19 -0.0086 0.0022 1.6E-04$ 1

SLC22A31 12 Protein coding COVID-19 0.32 0.11 0.0029 13

TYK2 21 Protein coding COVID-19 0.011 0.0021 2.8E-08 3

AC006460.2 2 Bidirectional

promoter lncRNA

SBP -5.60 0.55 2.3E-24 3

MAP4 3 Protein coding SBP 0.092 0.0086 4.6E-27 4

PHETA1 12 Protein coding SBP -0.92 0.058 1.9E-58 3

SLC5A11 16 Protein coding SBP -0.82 0.066 5.3E-35 21

ACADVL 17 Protein coding SBP -0.035 0.0030 1.5E-31 3

1, Beta/SE and p-value were obtained by inverse variance weighted MR method.

#,Heterogeneity was observed in MR analyses. Sensitivity analyses were performed with median-based and mode-based MR methods in Supplemental
Table 9.

$, MR analysis was performed at gene level. At splice variation level (rs10774671), the MR p = 4E-06.

Replication analyses
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Of the reported 10,914 cis-eQTL-eGene pairs from the study by Battle et al. 21 (FDR < 0.05), 21 6782 (62%) pairs displayed p < 5e-8 in the present study. The
average proportion of variance explained by these 6782 cis-eQTL variants in respective genes was 0.11 (Supplemental Table 10). Of the 269 trans-eQTL-
eGene pairs (FDR < 0.05) reported by Battle et al. 21 47 (18%) pairs displayed p < 1e-12 in the current study. The average proportion of variance explained by
these 47 trans-eQTL variants in respective genes was 0.076. Of note, all 47 trans-eQTL variants and respective trans-eGenes are located on the same
chromosomes (Supplemental Table 11). The average distance between these trans-eQTL variants and respective trans-eGenes is within 22 Mb.

We conducted additional replication analysis for the cis-eQTL variant-eGene pairs generated from 8,372,247 SNPs and 20,188 gene transcripts that were
common to our study (n = 2622 participants) and to GTEx(6) (n = 755 participants) (Supplemental Fig. 1). At p < 5e-8, we identi�ed 1,080,485 cis-eQTL variant-
eGene pairs in GTEx and 3,852,182 pairs in our study; of these, 951,085 pairs (88% of pairs in GTEx) displayed the same effect direction as in our larger study.
At p < 1e-4, we identi�ed 1,815,208 cis-eQTL variant-eGene pairs in GTEx and 6,364,173 pairs in this study; of these, 1,797,977 (99% of pairs in GTEx) displayed
the same effect directionality with our study (Supplemental Fig. 1).

Discussion
We leveraged WGS and RNA-seq data from 2,622 FHS participants to create a powerful scienti�c resource of eQTLs. We identi�ed signi�cant unique cis-eQTL
variants-eGene pairs (n = 2,855,111 unique variants with cis-15,982 eGenes) and 526,056 unique trans-eQTL variants-eGene pairs (526,056 unique variants
and unique 7,233 trans-eGenes. A large proportion of reported cis-eQTL variant-eGene pairs were replicated with directionally concordant in our study including
88% of cis-variant-eGene pairs from GTEx.

Consistent with our previous study and others, 7–12,22,23 90% of eQTL variants identi�ed in the present study are located in within 1 Mb of the corresponding
cis-eGene and 83% are within 100 kb of the TSSs of the corresponding eGene. While the majority of (85% of cis- and 96% of trans-) lead eQTL variants
explained only a small proportion (R2 < 0.2) of interindividual variation in expression of the corresponding eGenes, 15% of lead cis-eQTL variants and 4% of
lead trans variant explained 20% or more of interindividual variation in expression of the corresponding eGenes 24. Additionally, eQTL variants were enriched
(p < 0.0001) in disease-associated SNPs identi�ed by GWAS. We further demonstrated the utility of our eQTL resource for conducting causal inference testing.
Our MR analyses revealed putatively causal relations of gene expression to several disease phenotypes including SBP, CAD, and COVID-19 severity. Taken
together, the comprehensive eQTL resource we provide can advance understanding of the genetic architecture of gene expression underlying a wide variety of
diseases. The interactive and browsable eQTL resource will be posted to the National Heart, Lung, and Blood Institute’s BioData Catalyst site and will be freely
accessible to the scienti�c community.

Our study expands current knowledge by creating an accessible and browsable resource of eQTLs based on WGS and RNA-seq technologies. It also includes
eQTLs for lncRNAs that were not reported in prior eQTL studies that used array-based expression pro�ling. Over the past decade, accumulating evidence
shows that lncRNAs are widely expressed and have key roles in gene regulation.25,26 It is estimated that the human genome contains 16,000 to 100,000
lncRNAs.25 We identi�ed 447,598 cis-eQTL variants for 1518 cis-lncRNAs and 121,241 trans-eQTLs for 475 trans-lncRNAs (Supplemental Tables 3 &4). In
addition, we identi�ed six lncRNAs that showed putative causal associations with SBP. However, the functions of these six lncRNAs remain to be determined.
Thus, our novel eQTL database may also help in the study of non-protein-coding RNAs in relation to health and disease.

As a proof of concept of the application of the eQTL resource, we performed MR analyses on a small number of cardiovascular traits and COVID-19 severity
and demonstrated that the eQTL database can identify promising candidate genes with evidence of putatively causal relations to disease that may merit
functional studies. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread across the globe and caused millions of deaths since it
emerged in 2019. Recent GWAS of COVID-19 susceptibility and severity 27–29 have identi�ed SNPs in several loci on chromosomes 3, 9 and 21.30 Using our
eQTL resource in conjunction with COVID-19 GWAS, we conducted MR analyses that identi�ed seven genes, including OAS1 and IFNAR2, as putatively causal
for COVID-19 severity. The OAS1/2/3 cluster has been identi�ed as a risk locus for COVID-19 severity.27. This area harbors a protective haplotype of
approximately 75 kilo-bases (kb) at 12q24.13 among individuals of European ancestry.19 A recent study identi�ed an alternative splicing variant, rs10774671,
at exon 7 of OAS1 for which the protective allele “G” leads to a more active OAS1 enzyme.20 Our MR results suggest that both the OAS1 gene expression level
and its splice variation are causal for COVID-19 severity.

The IFNAR2 gene encodes a protein in the type II cytokine receptor family. Mutations in IFNAR2 are associated with Immunode�ciency and measles virus
susceptibility and play an essential and a narrow role in human antiviral immunity.31 A recent study further showed that loss-of-function mutations in IFNAR2
are associated with severe COVID-19.32 These studies, considered alongside our MR results provide evidence of a causal role of IFNAR2 expression in severe
COVID-19 infection.

This study has several noteworthy limitations. This study included White participants of European ancestry who were middle-aged and older; therefore, the
eQTLs identi�ed may not be generalizable to other races or age ranges. The current RNA-seq platform included ~ 7700 lncRNAs, which is a modest subset of
all lncRNAs in the human genome.25 We used MR analyses to infer causal relation of genes to disease traits. MR analysis is predicated on a set of critical
assumptions that may not be testable in the setting of eQTL analysis.33,34 Replication of our eQTL �ndings is warranted in studies with larger sample sizes
and more diverse populations.

Our study also has several strengths. The advent of high-throughput RNA sequencing technology provides an unparalleled opportunity to accelerate
understanding of the genetic architecture of gene expression. Our study extends and expands the existing literature by identifying novel eQTLs based on WGS
and RNA-seq. We demonstrate the potential applications of a vast eQTL resource by analyzing the concordance of eQTL variants with SNPs from GWAS of
several disease phenotypes followed by causal inference analyses that identi�ed promising disease-related genes that may merit functional studies. We
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created an open and freely accessible eQTL repository that can serve as a promising scienti�c resource to better understand of the genetic architecture of
gene expression and its relations to a wide variety of diseases.

Methods

Study participants
This study included participants from the FHS Offspring [10] and Third Generation cohorts [11]. Blood samples for RNA seq were collected from Offspring
participants who attended the ninth examination cycle (2011–2014) and the Third Generation participants who attended the second examination cycle
(2008–2011). Protocols for participant examinations and collection of genetic materials were approved by the Institutional Review Board at Boston Medical
Center. All participants provided written, informed consent for genetic studies. All research was performed in accordance with relevant guidelines/regulations.

Isolation of RNA from whole blood and RNA-seq
Peripheral whole blood samples (2.5 mL) were collected from FHS participants (Offspring participants at the ninth examination cycle and the Third Generation
participants at the second examination cycle) using PAXgene™ tubes (PreAnalytiX, Hombrechtikon, Switzerland), incubated at room temperature for 4 hours
for RNA stabilization, and then stored at − 80°C until use. Total RNA was isolated using a standard protocol using a PAXgene Blood RNA Kit at the FHS
Genetics Laboratory (FHS Third Generation cohort) and the TOPMed contract laboratory at Northwest Genomics Center (Offspring cohort). Tubes were
allowed to thaw for 16 hours at room temperature. White blood cell pellets were collected after centrifugation and washing. Cell pellets were lysed in
guanidinium-containing buffer. The extracted RNA was tested for its quality by determining absorbance readings at 260 and 280 nm using a NanoDrop ND-
1000 UV spectrophotometer. The Agilent Bioanalyzer 2100 micro�uidic electrophoresis (Nano Assay and the Caliper LabChip system) was used to determine
the integrity of total RNA.

All RNA samples were sequenced by an NHLBI TOPMed program 13 reference laboratory (Northwest Genomics Center) following the TOPMed RNA-seq
protocol. All RNS-seq data were processed by University of Washington. The raw reads (in FASTQ �les) were aligned using the GRCh38 reference build to
generate BAM �les. RNA-SeQC35 was used for processing of RNA-seq data by the TOPMed RNA-seq pipeline to derive standard quality control metrics from
aligned reads. Gene-level expression quanti�cation was provided as read counts and transcripts per million (TPM). GENCODE 30 annotation was used for
annotating gene-level expression.

Whole blood cell counts
Whole blood cell counts include white blood cell (WBC) count, red blood cell count, platelet count, and WBC differential percentages (neutrophil percent,
lymphocyte percent, monocyte percent, eosinophil percent, and basophil percent). Contemporaneously measured blood cell counts were available in 2094
(80%) of the 2622 FHS participants used in eQTL analyses. We performed partial least squares (PLS) prediction method36 with three-fold cross-validation (2/3
samples for training and 1/3 for validation) to impute these blood cell components using gene expression from RNA-seq. Prediction accuracy (R-squared)
varied across blood component: WBC: 0.58, platelet: 27%, neutrophil percentage: 82%, lymphocyte percentage: 85%, monocyte percentage: 77%, eosinophil
percentage: 87%, basophil percentage: 32%. Because 80% of the participants in this study had directly measured cell count variables and only 20% received
imputed variables, we used the measured (in 2094 participants) and predicted (in 528 participants) blood cell components as covariates in regression models
for eQTL analyses.

RNA-seq quality control, and data adjustment
To minimize confounding, expression residuals were generated by regressing transcript expression level on age, sex, measured or predicted blood cell count
and differential cell proportions, and genetic principal components. Principal component (PC) analysis is a technique for reducing the dimensionality in large
data sets. 37 It has been widely used in regression analyses to minimize unknown confounding. We included �ve PCs computed from FHS genotype pro�les to
account for population strati�cation. We also included 15 PCs computed from the transcriptome pro�le to account for unknown confounders that may affect
gene expression. In addition, we adjusted for a relatedness matrix, and technical covariates including year of blood collection, batch (sequencing machine and
time, plate and well), and RNA concentration.

Whole genome sequencing
Whole genome sequencing of genomic DNA from whole blood was conducted in ~ 6,000 FHS participants as part of NHLBI’s TOPMed program.13 Standard
procedures were used to obtain DNA fragmentation and library construction. Sequencing was performed by a TOPMed reference laboratory (the Broad
Institute of MIT and Harvard) using Hi Seq X with sequencing software HiSeq Control Software (HCS) version 3.3.76, then analyzed using RTA2 (Real Time
Analysis). The DNA sequence reads were aligned to a human genome build GRCH38 using a common pipeline across all TOPMed WGS centers. A sample’s
sequence was considered complete when the mean coverage of nDNA was ≥ 30x. This analysis used genetic variants generated from TOPMed Freeze 10a.13

Association analyses of expression levels with SNPs
We performed association analyses of expression levels with genome-wide SNPs with minor allele frequencies (MAFs) ≥ 0.01. In a simple regression model, a
SNP was used as an independent variable and the residuals of a transcript expression level was used as the dependent variable. All analyses were performed
on the NIH-supported STRIDES cloud infrastructure. A graphical Processing Unit (GPU)-based program 12 was used to facilitate computation. Effect sizes,
standard error, partial R-squared, and p-values for all SNP-gene expression pairs were stored to enable complete lookups and to facilitate later meta-analysis.
In this study, we de�ned cis-eQTLs as targeting genes within 1 Mb of their transcription start site (TSS). Trans-eQTLs referred to those that were beyond of 1
Mb of the TSSs of the eGenes on the same chromosome or those on the different chromosomes of the eGenes. A signi�cant cis-eQTL of an eGene was
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identi�ed if a SNP within 1 Mb of that gene was associated with expression of a transcript of that gene at P < 5x10− 8. A signi�cant trans-eQTL was de�ned as
a SNP beyond 1 Mb that gave rise to P < 1x10− 12 in association a gene.

Gene Ontology analyses
We selected the single, most signi�cant eQTL variant (i.e. lead variant) for each eGene (for the gene level analysis) from cis- and trans-eQTL results separately.
The eGenes annotated to the selected lead cis and trans eQTL variants were matched into Entrez IDs. We used the “goana” function from the “limma”
package38 to test for over-representation of gene ontology (GO) terms or KEGG pathways applied to the top 1000 eGenes. We used FDR < 0.05 to report GO
terms including Biological Process, Cellular Component, and Molecular Function.

Enrichment analyses using GWAS Catalog
We linked the eQTL variants with SNPs from the GWAS Catalog 2 (data downloaded on October 22, 2021), which included 243,618 entries for 2,960 mapped
traits at p < 5e-8. Cis- and trans-eQTL variants were analyzed separately. Unique SNP RS IDs were used for enrichment analysis with Fisher’s test. FDR < 0.05
was used for signi�cance.

Correlation analysis of selected lncRNA and protein coding genes
For lncRNAs that were in the top 25 cis-eQTL variant-eGene pairs, we performed partial Pearson correlation analyses between the expression level of the
lncRNA and its nearby protein coding gene, adjusting for the same set of covariates that were included in eQTL analysis. We performed random sampling of
1000 genes 500 times to derive null distributions of partial Pearson correlation of these gene pairs. We calculated an empirical p-value to evaluate whether the
partial Pearson correlation coe�cient between the expression level of an lncRNA and its nearby protein coding gene was signi�cantly higher than the average
partial Pearson correlation coe�cient from randomly selected gene pairs. The empirical p-value was calculated as the proportion of partial Pearson correlation
coe�cients that were more extreme than the correlation coe�cient of an lncRNA and its nearby protein coding gene.

Mendelian randomization analysis
We conducted Mendelian randomization (MR) to demonstrate the application of the eQTL resource in causal inference analysis. We tested for potential causal
association of the cis-eGenes with SBP, coronary artery disease (CAD), and COVID-19 severity. SBP-associated SNPs were obtained from GWAS of over
1 million people.16 CAD-associated SNPs were obtained from the study of 34,541 CAD cases and 261,984 controls of UK Biobank resource followed by
replication in 88,192 cases and 162,544 controls from CARDIoGRAMplusC4D.17 COVID-19 associated SNPs were obtained from a recent GWAS including
14,134 COVID-19 cases and 1,284,876 controls of European ancestry by the COVID-19 Host Genetics Initiative.27 We performed two-sample MR analyses34

using the TwoSampleMR R package.39 The instrumental variables (IVs) were independent cis-eQTL variants (LD r2 < 0.1) from this study. The primary analysis
used the inverse variance weighted (IVW) method. We also assessed heterogeneity of the IVs in each gene and conducted sensitivity analysis using the MR-
Egger method to test for potential horizontal pleiotropy. We also performed the median-based method40 and mode-based method41 when heterogeneity was
present in MR analyses due to outliers among the IVs42. We reported putative causal genes if Bonferroni correction p < 0.05/n (n is the number of genes
tested).

Replication analyses
A previous study reported 10,914 cis-eQTL variant-eGene pairs and 269 trans pairs (FDR < 0.05) through RNA-sequencing of 922 individuals.21 We performed
replication analyses using the reported cis- and trans-eQTL variant-eGene pairs in conjunction with the pairs in the present study.21 We also used the cis-eQTL
database generated from GTEx whole blood (version 8) (https://www.gtexportal.org/home/datasets) for replication of our cis-QTL �ndings. Whole genome
sequencing and RNA-seq were conducted in whole blood of 755 samples in GTEx. The replication was only performed using the cis-eQTL-variant-eGene pairs
generated by 8,372,247 SNPs and 20,188 gene transcripts that were found in common between our study and GTEx. Because this study was aimed to provide
eQTL resource for the broad scienti�c community, we present replication results using both p < 5e-8 and p < 1e-4 for replicating cis-eQTL variant-eGene pairs.
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Figure 1

Variance in eGenes explained by signi�cant cis-eQTLs in relation to the distance of signi�cant cis-eQTLs to the transcription start site of the cis-gene.

Figure 2

Cis-long noncoding RNA, MAP3K2-DT, and the lead cis-eQTL, rs2276683.
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