# organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

### Methyl 1-benzyl-5-methyl-2,4-diphenyl-1*H*-pyrrole-3-carboxylate

# Justin M. Lopchuk,<sup>a</sup> Gordon W. Gribble<sup>a</sup> and Jerry P. Jasinski<sup>b</sup>\*

<sup>a</sup>Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755-3564, USA, and <sup>b</sup>Department of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA Correspondence e-mail: jjasinski@keene.edu

Received 12 February 2014; accepted 13 February 2014

Key indicators: single-crystal X-ray study; T = 173 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.044; wR factor = 0.119; data-to-parameter ratio = 15.1.

In the title compound,  $C_{26}H_{23}NO_2$ , the dihedral angles between the pyrrole ring and the two phenyl rings are 58.1 (6) and 71.5 (5)°. The mean planes of the 5-methylbenzene ring and the carboxyl group are twisted by 89.5 (3) and 22.1 (9)°, respectively, from the pyrrole ring. In the crystal, weak C-H···O interactions lead to supramolecular layers in the *ab* plane.

#### **Related literature**

For previous münchnone-based approaches to atorvastatin, see: Pandey & Rao (2004); Park *et al.* (2008); Roth *et al.* (1991). For other examples of the synthesis of pyrroles *via* 1,3-dipolar cycloadditions with münchnones, see: Lopchuk & Gribble (2011*a,b*); Lopchuk *et al.* (2013). For related crystal structures, see: Grassi *et al.* (2002); Fang *et al.* (2012); Donohoe *et al.* (2010); Sun *et al.* (2004); Zhang *et al.* (2011).



#### Experimental

Crystal data  $C_{26}H_{23}NO_2$   $M_r = 381.45$ Orthorhombic,  $P2_12_12_1$  a = 8.8056 (2) Å b = 10.6638 (2) Å c = 21.8315 (5) Å

 $V = 2050.00 (8) Å^{3}$  Z = 4Cu K\alpha radiation  $\mu = 0.61 \text{ mm}^{-1}$  T = 173 K $0.28 \times 0.22 \times 0.12 \text{ mm}$ 



12873 measured reflections

 $R_{\rm int} = 0.041$ 

3991 independent reflections

3525 reflections with  $I > 2\sigma(I)$ 

#### Data collection

```
Agilent Xcalibur (Eos Gemini)
diffractometer
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis
RED; Agilent, 2012)
T_{\rm min} = 0.720, T_{\rm max} = 1.000
```

#### Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.044 & \Delta\rho_{\min} = -0.20 \text{ e} \text{ Å}^{-3} \\ wR(F^2) &= 0.119 & \text{Absolute structure: Flack} \\ S &= 1.06 & \text{parameter determined using 1348} \\ 3991 \text{ reflections} & \text{quotients (Parsons et al., 2013)} \\ 264 \text{ parameters constrained} & \Delta\rho_{\max} = 0.24 \text{ e} \text{ Å}^{-3} & 0.02 \text{ (18)} \end{split}$$

# Table 1Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                                 | $D-{\rm H}$             | $H \cdot \cdot \cdot A$      | $D \cdots A$                           | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|--------------------------------------------------|-------------------------|------------------------------|----------------------------------------|--------------------------------------|
| $C17-H17B\cdots O1^{i}$ $C26-H26A\cdots O2^{ii}$ | 0.99<br>0.98            | 2.56<br>2.59                 | 3.177 (3)<br>3.383 (3)                 | 120<br>138                           |
| Symmetry codes: (i) $-x$                         | $+2, y-\frac{1}{2}, -z$ | $+\frac{3}{2}$ ; (ii) $-x+1$ | $, y - \frac{1}{2}, -z + \frac{3}{2}.$ |                                      |

Data collection: *CrysAlis PRO* (Agilent, 2012); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis RED* (Agilent, 2012); program(s) used to solve structure: *SUPERFLIP* (Palatinus *et al.*, 2012); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2*.

JML acknowledges support from a Graduate Assistance in Areas of National Need (GAANN) fellowship. GWG acknowledges support by the Donors of the Petroleum Research Fund (PRF), administered by the American Chemical Society, and by Wyeth. JPJ acknowledges the NSF– MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

Supporting information for this paper is available from the IUCr electronic archives (Reference: TK5295).

#### References

- Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Donohoe, T. J., Race, N. J., Bower, J. F. & Callens, C. K. A. (2010). Org. Lett. 12, 4094–4097.

Fang, Z., Yuan, H., Liu, Y., Tong, Z., Li, H., Yang, J., Barry, B.-D., Liu, J., Liao, P., Zhang, J., Liu, Q. & Bi, X. (2012). *Chem. Commun.* 48, 8802–8804.

- Grassi, G., Cordaro, M., Bruno, G. & Nicolo, F. (2002). Helv. Chim. Acta, 85, 196–205.
- Lopchuk, J. M. & Gribble, G. W. (2011a). Heterocycles, 82, 1617-1631.
- Lopchuk, J. M. & Gribble, G. W. (2011b). Tetrahedron Lett. 52, 4106–4108.Lopchuk, J. M., Hughes, R. P. & Gribble, G. W. (2013). Org. Lett. 15, 5218–5221.
- Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575– 580.
- Pandey, P. S. & Rao, T. S. (2004). Bioorg. Med. Chem. Lett. 14, 129-131.

- Park, W. K. C., Kennedy, R. M., Larsen, S. D., Miller, S., Roth, B. D., Song, Y., Steinbaugh, B. A., Sun, K., Tait, B. D., Kowala, M. C., Trivedi, B. K., Auerbach, B., Askew, V., Dillon, L., Hanselman, J. C., Lin, Z., Lu, G. H., Robertson, A. & Sekerke, C. (2008). *Bioorg. Med. Chem. Lett.* 18, 1151– 1156.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.
- Roth, B. D., Blankley, C. J., Chucholowski, A. W., Ferguson, E., Hoefle, M. L., Ortwine, D. F., Newton, R. S., Sekerke, C. S., Sliskovic, D. R., Stratton, C. D. & Wilson, M. W. (1991). J. Med. Chem. 34, 357–366.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sun, X., Wang, C., Li, Z., Zhang, S. & Xi, Z. (2004). J. Am. Chem. Soc. 126, 7172–7173.
- Zhang, S., Zhao, J., Zhang, W.-X. & Xi, Z. (2011). Org. Lett. 13, 1626–1629.

# supplementary materials

Acta Cryst. (2014). E70, o338-o339 [doi:10.1107/S1600536814003316]

# Methyl 1-benzyl-5-methyl-2,4-diphenyl-1H-pyrrole-3-carboxylate

### Justin M. Lopchuk, Gordon W. Gribble and Jerry P. Jasinski

#### 1. Chemical context

#### 2. Structural commentary

During the course of our studies toward a total synthesis of atorvastatin, methyl 1-benzyl-5-methyl-2,4-diphenyl-1*H*-pyrrole-3-carboxylate (I), a pentasubstituted pyrrole, was generated from the reaction of a münchnone with methyl 3-phenylpropiolate. Previously published work on münchnone-based routes toward atorvastatin found that the key münchnone cycloadditions were either low yielding or unselective and delivered 1:1 mixtures of regioisomers (Pandey *et al.*, 2004; Park *et al.*, 2008; Roth *et al.*, 1991). However, our recent studies on the 1,3-dipolar cycloaddition of münchnones showed that high regioselectivies can be obtained by proper selection and combination of the münchnone, dipolarophile, and solvent (Lopchuk *et al.*, 2011*a*, Lopchuk *et al.*, 2011*b*; Lopchuk *et al.*, 2013).

A variety of related highly substituted pyrrole crystal structures have been reported including *N*-((2-methyl-4,5-diphenyl-1*H*-pyrrole-3-carbonyl)oxy)benzamide (Grassi *et al.*, 2002), *N*,1,5-tribenzyl-4-(2-chlorophenyl)-2-methyl-1*H*pyrrole-3-carbothioamide (Fang *et al.*, 2012), 1-(2-benzyl-5-isopropyl-4-phenyl-1*H*-pyrrol-3-yl)-2-methylpropan-1-one (Sun *et al.*, 2004), 5-(4-fluorophenyl)-2-isopropyl-*N*,4-diphenyl-1*H*-pyrrole-3-carboxamide (Donohoe *et al.*, 2010), and 1-(2-benzoyl-5-isopropyl-4-phenyl-1*H*-pyrrol-3-yl)-2-methylpropan-1-one (Zhang *et al.*, 2011). In continuation of our work on münchnone-based routes this paper reports the crystal structure of the title compound, (I), C<sub>26</sub>H<sub>23</sub>NO<sub>2</sub>,

In (I), the dihedral angles between the mean planes of the two phenyl rings (C5–C10 and C11–C16) with that of the pyrrole ring (N1/C1–C4) are 58.1 (6) and 71.5 (5)°, respectively (Fig. 1). The mean planes of the 5-methyl benzene ring (C18–C23) and carboxyl group (O1/O2/C24/C25) are also twisted by 89.5 (3) and 22.1 (9)°, respectively, from that of the pyrrole ring. In the crystal, while no classical hydrogen bonds are observed, weak C—H…O intermolecular interactions are observed (Table 1) which lead to supramolecular layers in the *ab* plane.

#### 3. Supramolecular features

#### 4. Database survey

#### 5. Synthesis and crystallization

A round bottom flask was charged with *N*-benzoyl-*N*-benzylalanine (424 mg, 1.5 mmol), methyl 3-phenylpropiolate (80 mg, 0.5 mmol), and dry THF (20 ml). The reaction was placed under nitrogen and *N*,*N*'-diisopropylcarbodiimide (234 ml, 1.5 mmol) added at room temperature. The mixture was heated to reflux for 24 h (Fig. 2). The reaction was cooled to room temperature and concentrated *in vacuo*. The residue was directly purified by flash chromatography to afford pyrrole I as a clear, colorless oil which solidified upon standing (158 mg, 83%). Pyrrole I was obtained as the major isomer (96:4 ratio of I:II). Single crystals suitable for diffraction were grown from dichloromethane (slow evaporation) at ambient temperature [M.pt. 454- 455 K].

#### 6. Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with atom—H lengths of 0.95 Å (CH), 0.99 Å (CH<sub>2</sub>) or 0.98 Å (CH<sub>3</sub>). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH<sub>2</sub>) or 1.5 (CH<sub>3</sub>) times  $U_{eq}$  of the parent atom. Idealized methyl groups were refined as rotating.

#### **Computing details**

Data collection: *CrysAlis PRO* (Agilent, 2012); cell refinement: *CrysAlis PRO* (Agilent, 2012); data reduction: *CrysAlis RED* (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus *et al.*, 2012); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov *et al.*, 2009); software used to prepare material for publication: OLEX2 (Dolomanov *et al.*, 2009).



#### Figure 1

ORTEP drawing of (I), C<sub>26</sub>H<sub>23</sub>NO<sub>2</sub>, showing the labeling scheme with 30% probability displacement ellipsoids.



#### Figure 2

Reaction scheme for  $C_{26}H_{23}NO_2$ .

#### Methyl 1-benzyl-5-methyl-2,4-diphenyl-1*H*-pyrrole-3-carboxylate

| Crystal data               |                                |
|----------------------------|--------------------------------|
| $C_{26}H_{23}NO_2$         | <i>b</i> = 10.6638 (2) Å       |
| $M_r = 381.45$             | c = 21.8315 (5) Å              |
| Orthorhombic, $P2_12_12_1$ | V = 2050.00 (8) Å <sup>3</sup> |
| a = 8.8056 (2) Å           | Z = 4                          |
|                            |                                |

F(000) = 808 $D_{\rm x} = 1.236 {\rm Mg} {\rm m}^{-3}$ Cu Ka radiation,  $\lambda = 1.5418$  Å Cell parameters from 4659 reflections  $\theta = 4.1 - 72.4^{\circ}$ 

| Data collection                                      |                                                                     |
|------------------------------------------------------|---------------------------------------------------------------------|
| Agilent Xcalibur (Eos Gemini)                        | $T_{\min} = 0.720, T_{\max} = 1.000$                                |
| Radiation source: Enhance (Cu) X-ray Source          | 3991 independent reflections                                        |
| Graphite monochromator                               | 3525 reflections with $I > 2\sigma(I)$                              |
| Detector resolution: 16.0416 pixels mm <sup>-1</sup> | $R_{\rm int} = 0.041$                                               |
| $\omega$ scans                                       | $\theta_{\rm max} = 72.6^{\circ}, \ \theta_{\rm min} = 4.1^{\circ}$ |
| Absorption correction: multi-scan                    | $h = -10 \rightarrow 10$                                            |
| (CrysAlis PRO and CrysAlis RED; Agilent,             | $k = -13 \rightarrow 11$                                            |
| 2012)                                                | $l = -26 \rightarrow 26$                                            |
| Refinement                                           |                                                                     |
| Refinement on $F^2$                                  | Hydrogen site location: inferred from                               |
| Least-squares matrix: full                           | neighbouring sites                                                  |
| $R[F^2 > 2\sigma(F^2)] = 0.044$                      | H-atom parameters constrained                                       |
| -                                                    |                                                                     |

 $\mu = 0.61 \text{ mm}^{-1}$ T = 173 K

Irregular, colourless

 $0.28 \times 0.22 \times 0.12 \text{ mm}$ 

 $wR(F^2) = 0.119$ S = 1.063991 reflections 264 parameters 0 restraints Primary atom site location: structure-invariant direct methods

 $w = 1/[\sigma^2(F_0^2) + (0.0691P)^2]$ where  $P = (F_0^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{\rm max} < 0.001$  $\Delta \rho_{\rm max} = 0.24 \text{ e} \text{ Å}^{-3}$  $\Delta \rho_{\rm min} = -0.20 \ {\rm e} \ {\rm \AA}^{-3}$ Absolute structure: Flack parameter determined using 1348 quotients  $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons et al., 2013) Absolute structure parameter: 0.02 (18)

#### Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

|    | x          | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|----|------------|--------------|--------------|-----------------------------|--|
| 01 | 0.9445 (2) | 0.4206 (2)   | 0.84521 (12) | 0.0598 (7)                  |  |
| O2 | 0.7077 (2) | 0.43820 (19) | 0.87973 (9)  | 0.0393 (5)                  |  |
| N1 | 0.7361 (2) | 0.1689 (2)   | 0.72021 (10) | 0.0315 (5)                  |  |
| C1 | 0.6106 (3) | 0.1444 (2)   | 0.75598 (12) | 0.0309 (5)                  |  |
| C2 | 0.6162 (3) | 0.2209 (2)   | 0.80673 (12) | 0.0286 (5)                  |  |
| C3 | 0.7518 (3) | 0.2943 (2)   | 0.80125 (11) | 0.0288 (5)                  |  |
| C4 | 0.8227 (3) | 0.2603 (2)   | 0.74693 (12) | 0.0310 (6)                  |  |
| C5 | 0.5074 (3) | 0.2152 (2)   | 0.85815 (12) | 0.0307 (5)                  |  |
| C6 | 0.3528 (3) | 0.2348 (3)   | 0.84848 (13) | 0.0366 (6)                  |  |
| H6 | 0.3174     | 0.2554       | 0.8086       | 0.044*                      |  |
| C7 | 0.2498 (3) | 0.2246 (3)   | 0.89631 (15) | 0.0451 (7)                  |  |
| H7 | 0.1448     | 0.2385       | 0.8890       | 0.054*                      |  |
| C8 | 0.2991 (4) | 0.1945 (3)   | 0.95452 (15) | 0.0467 (7)                  |  |
| H8 | 0.2284     | 0.1861       | 0.9871       | 0.056*                      |  |

| C9   | 0.4528 (4) | 0.1765 (3) | 0.96491 (14) | 0.0458 (7)  |  |
|------|------------|------------|--------------|-------------|--|
| H9   | 0.4876     | 0.1573     | 1.0050       | 0.055*      |  |
| C10  | 0.5561 (3) | 0.1864 (3) | 0.91732 (13) | 0.0369 (6)  |  |
| H10  | 0.6611     | 0.1734     | 0.9250       | 0.044*      |  |
| C11  | 0.9580 (3) | 0.3149 (2) | 0.71660 (11) | 0.0319 (6)  |  |
| C12  | 0.9505 (3) | 0.4354 (3) | 0.69197 (14) | 0.0402 (6)  |  |
| H12  | 0.8580     | 0.4811     | 0.6938       | 0.048*      |  |
| C13  | 1.0765 (4) | 0.4889 (3) | 0.66490 (15) | 0.0437 (7)  |  |
| H13  | 1.0706     | 0.5715     | 0.6488       | 0.052*      |  |
| C14  | 1.2107 (3) | 0.4232 (3) | 0.66111 (13) | 0.0413 (7)  |  |
| H14  | 1.2972     | 0.4604     | 0.6425       | 0.050*      |  |
| C15  | 1.2193 (3) | 0.3033 (3) | 0.68443 (14) | 0.0419 (7)  |  |
| H15  | 1.3114     | 0.2573     | 0.6813       | 0.050*      |  |
| C16  | 1.0935 (3) | 0.2494 (3) | 0.71249 (14) | 0.0386 (6)  |  |
| H16  | 1.1005     | 0.1672     | 0.7290       | 0.046*      |  |
| C17  | 0.7718 (3) | 0.1039 (3) | 0.66289 (12) | 0.0355 (6)  |  |
| H17A | 0.7508     | 0.0134     | 0.6684       | 0.043*      |  |
| H17B | 0.8818     | 0.1131     | 0.6546       | 0.043*      |  |
| C18  | 0.6847 (3) | 0.1500 (3) | 0.60767 (13) | 0.0357 (6)  |  |
| C19  | 0.6183 (4) | 0.2672 (3) | 0.60486 (15) | 0.0450 (7)  |  |
| H19  | 0.6225     | 0.3213     | 0.6394       | 0.054*      |  |
| C20  | 0.5454 (4) | 0.3065 (4) | 0.55163 (18) | 0.0598 (9)  |  |
| H20  | 0.5000     | 0.3873     | 0.5500       | 0.072*      |  |
| C21  | 0.5387 (5) | 0.2287 (4) | 0.50119 (17) | 0.0668 (11) |  |
| H21  | 0.4888     | 0.2555     | 0.4649       | 0.080*      |  |
| C22  | 0.6049 (5) | 0.1122 (4) | 0.50404 (16) | 0.0688 (11) |  |
| H22  | 0.6016     | 0.0585     | 0.4694       | 0.083*      |  |
| C23  | 0.6765 (4) | 0.0727 (3) | 0.55703 (15) | 0.0529 (8)  |  |
| H23  | 0.7205     | -0.0086    | 0.5586       | 0.063*      |  |
| C24  | 0.8137 (3) | 0.3888 (2) | 0.84308 (12) | 0.0316 (5)  |  |
| C25  | 0.7587 (4) | 0.5348 (3) | 0.92114 (14) | 0.0446 (7)  |  |
| H25A | 0.7974     | 0.6061     | 0.8975       | 0.067*      |  |
| H25B | 0.8397     | 0.5016     | 0.9473       | 0.067*      |  |
| H25C | 0.6736     | 0.5623     | 0.9467       | 0.067*      |  |
| C26  | 0.5022 (3) | 0.0412 (3) | 0.73991 (14) | 0.0387 (6)  |  |
| H26A | 0.4606     | 0.0560     | 0.6989       | 0.058*      |  |
| H26B | 0.4192     | 0.0394     | 0.7698       | 0.058*      |  |
| H26C | 0.5558     | -0.0393    | 0.7405       | 0.058*      |  |
|      |            |            |              |             |  |

Atomic displacement parameters  $(Å^2)$ 

|    | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|----|-------------|-------------|-------------|--------------|--------------|--------------|
| 01 | 0.0366 (12) | 0.0751 (16) | 0.0676 (15) | -0.0174 (11) | 0.0058 (11)  | -0.0342 (14) |
| O2 | 0.0370 (11) | 0.0398 (11) | 0.0411 (10) | -0.0007 (8)  | 0.0007 (8)   | -0.0131 (9)  |
| N1 | 0.0321 (11) | 0.0329 (11) | 0.0294 (11) | -0.0004 (9)  | -0.0020 (8)  | -0.0042 (9)  |
| C1 | 0.0296 (12) | 0.0307 (13) | 0.0324 (13) | -0.0007 (10) | -0.0031 (10) | -0.0002 (10) |
| C2 | 0.0284 (12) | 0.0276 (12) | 0.0299 (12) | 0.0008 (10)  | -0.0038 (10) | 0.0016 (10)  |
| C3 | 0.0283 (12) | 0.0273 (12) | 0.0308 (12) | 0.0015 (10)  | -0.0030 (10) | -0.0002 (10) |
| C4 | 0.0301 (13) | 0.0303 (13) | 0.0325 (13) | 0.0006 (10)  | -0.0016 (10) | -0.0015 (10) |
| C5 | 0.0318 (13) | 0.0263 (12) | 0.0339 (13) | -0.0025 (10) | 0.0008 (10)  | -0.0031 (10) |
|    |             |             |             |              |              |              |

| 0.0329 (14) | 0.0388 (15)                                                                                                                                                                                                                                                                                     | 0.0382 (15)                                          | -0.0016 (11)                                         | -0.0021 (11)                                         | 0.0008 (12)                                          |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| 0.0303 (14) | 0.0480 (18)                                                                                                                                                                                                                                                                                     | 0.0569 (19)                                          | -0.0003 (13)                                         | 0.0058 (13)                                          | -0.0027 (14)                                         |
| 0.0483 (17) | 0.0467 (17)                                                                                                                                                                                                                                                                                     | 0.0452 (17)                                          | -0.0068 (13)                                         | 0.0180 (14)                                          | -0.0043 (14)                                         |
| 0.0546 (19) | 0.0511 (18)                                                                                                                                                                                                                                                                                     | 0.0317 (14)                                          | -0.0035 (15)                                         | 0.0047 (13)                                          | 0.0018 (13)                                          |
| 0.0349 (14) | 0.0403 (15)                                                                                                                                                                                                                                                                                     | 0.0354 (14)                                          | -0.0021 (12)                                         | -0.0004 (11)                                         | 0.0008 (11)                                          |
| 0.0321 (13) | 0.0350 (14)                                                                                                                                                                                                                                                                                     | 0.0285 (12)                                          | -0.0026 (10)                                         | 0.0000 (10)                                          | -0.0051 (10)                                         |
| 0.0409 (15) | 0.0354 (15)                                                                                                                                                                                                                                                                                     | 0.0443 (15)                                          | -0.0004 (12)                                         | 0.0041 (12)                                          | -0.0057 (13)                                         |
| 0.0517 (18) | 0.0359 (16)                                                                                                                                                                                                                                                                                     | 0.0436 (16)                                          | -0.0072 (12)                                         | 0.0050 (14)                                          | 0.0007 (12)                                          |
| 0.0412 (16) | 0.0508 (17)                                                                                                                                                                                                                                                                                     | 0.0320 (13)                                          | -0.0128 (12)                                         | 0.0068 (11)                                          | -0.0053 (13)                                         |
| 0.0316 (15) | 0.0529 (17)                                                                                                                                                                                                                                                                                     | 0.0413 (15)                                          | 0.0013 (12)                                          | 0.0022 (11)                                          | -0.0034 (13)                                         |
| 0.0351 (14) | 0.0402 (15)                                                                                                                                                                                                                                                                                     | 0.0406 (15)                                          | 0.0010 (11)                                          | -0.0015 (11)                                         | 0.0052 (12)                                          |
| 0.0365 (14) | 0.0373 (14)                                                                                                                                                                                                                                                                                     | 0.0328 (13)                                          | 0.0038 (11)                                          | -0.0005 (11)                                         | -0.0079 (11)                                         |
| 0.0338 (14) | 0.0413 (15)                                                                                                                                                                                                                                                                                     | 0.0319 (14)                                          | -0.0047 (12)                                         | 0.0047 (10)                                          | 0.0002 (11)                                          |
| 0.0449 (16) | 0.0459 (18)                                                                                                                                                                                                                                                                                     | 0.0443 (16)                                          | -0.0021 (14)                                         | 0.0027 (13)                                          | 0.0018 (13)                                          |
| 0.058 (2)   | 0.062 (2)                                                                                                                                                                                                                                                                                       | 0.060(2)                                             | -0.0049 (17)                                         | -0.0040 (17)                                         | 0.0243 (18)                                          |
| 0.069 (2)   | 0.094 (3)                                                                                                                                                                                                                                                                                       | 0.0374 (17)                                          | -0.016 (2)                                           | -0.0051 (16)                                         | 0.0245 (19)                                          |
| 0.086 (3)   | 0.090 (3)                                                                                                                                                                                                                                                                                       | 0.0295 (16)                                          | -0.013 (2)                                           | -0.0009 (17)                                         | -0.0045 (17)                                         |
| 0.064 (2)   | 0.058 (2)                                                                                                                                                                                                                                                                                       | 0.0362 (15)                                          | 0.0005 (16)                                          | 0.0042 (14)                                          | -0.0082 (15)                                         |
| 0.0309 (13) | 0.0313 (13)                                                                                                                                                                                                                                                                                     | 0.0325 (13)                                          | -0.0025 (10)                                         | -0.0015 (10)                                         | 0.0001 (11)                                          |
| 0.0581 (19) | 0.0387 (16)                                                                                                                                                                                                                                                                                     | 0.0369 (15)                                          | 0.0006 (14)                                          | -0.0044 (14)                                         | -0.0110 (12)                                         |
| 0.0351 (14) | 0.0369 (14)                                                                                                                                                                                                                                                                                     | 0.0440 (16)                                          | -0.0066 (11)                                         | -0.0027 (12)                                         | -0.0084 (12)                                         |
|             | 0.0329 (14)<br>0.0303 (14)<br>0.0483 (17)<br>0.0546 (19)<br>0.0349 (14)<br>0.0321 (13)<br>0.0409 (15)<br>0.0517 (18)<br>0.0412 (16)<br>0.0316 (15)<br>0.0351 (14)<br>0.0365 (14)<br>0.038 (14)<br>0.0449 (16)<br>0.058 (2)<br>0.069 (2)<br>0.086 (3)<br>0.064 (2)<br>0.0309 (13)<br>0.0351 (14) | $\begin{array}{llllllllllllllllllllllllllllllllllll$ | $\begin{array}{llllllllllllllllllllllllllllllllllll$ | $\begin{array}{llllllllllllllllllllllllllllllllllll$ | $\begin{array}{llllllllllllllllllllllllllllllllllll$ |

Geometric parameters (Å, °)

| 01—C24  | 1.202 (3) | C13—H13  | 0.9500    |
|---------|-----------|----------|-----------|
| O2—C24  | 1.337 (3) | C13—C14  | 1.376 (4) |
| O2—C25  | 1.442 (3) | C14—H14  | 0.9500    |
| N1-C1   | 1.379 (3) | C14—C15  | 1.378 (4) |
| N1-C4   | 1.368 (3) | C15—H15  | 0.9500    |
| N1-C17  | 1.465 (3) | C15—C16  | 1.390 (4) |
| C1—C2   | 1.377 (4) | C16—H16  | 0.9500    |
| C1—C26  | 1.499 (4) | C17—H17A | 0.9900    |
| С2—С3   | 1.433 (3) | C17—H17B | 0.9900    |
| C2—C5   | 1.477 (4) | C17—C18  | 1.511 (4) |
| C3—C4   | 1.388 (4) | C18—C19  | 1.381 (4) |
| C3—C24  | 1.465 (4) | C18—C23  | 1.381 (4) |
| C4—C11  | 1.482 (4) | C19—H19  | 0.9500    |
| С5—С6   | 1.394 (4) | C19—C20  | 1.392 (5) |
| C5-C10  | 1.395 (4) | C20—H20  | 0.9500    |
| С6—Н6   | 0.9500    | C20—C21  | 1.380 (6) |
| С6—С7   | 1.387 (4) | C21—H21  | 0.9500    |
| С7—Н7   | 0.9500    | C21—C22  | 1.374 (6) |
| С7—С8   | 1.381 (5) | C22—H22  | 0.9500    |
| С8—Н8   | 0.9500    | C22—C23  | 1.383 (5) |
| С8—С9   | 1.385 (5) | C23—H23  | 0.9500    |
| С9—Н9   | 0.9500    | C25—H25A | 0.9800    |
| C9—C10  | 1.385 (4) | C25—H25B | 0.9800    |
| C10—H10 | 0.9500    | C25—H25C | 0.9800    |
| C11—C12 | 1.394 (4) | C26—H26A | 0.9800    |
| C11—C16 | 1.386 (4) | C26—H26B | 0.9800    |
|         |           |          |           |

| C12—H12                            | 0.9500               | C26—H26C                            | 0.9800               |
|------------------------------------|----------------------|-------------------------------------|----------------------|
| C12—C13                            | 1.381 (4)            |                                     |                      |
|                                    |                      |                                     |                      |
| C24—O2—C25                         | 116.0 (2)            | C14—C15—H15                         | 119.9                |
| C1—N1—C17                          | 124.5 (2)            | C14—C15—C16                         | 120.2 (3)            |
| C4—N1—C1                           | 109.9 (2)            | C16—C15—H15                         | 119.9                |
| C4—N1—C17                          | 125.6 (2)            | C11—C16—C15                         | 120.4 (3)            |
| N1—C1—C26                          | 121.2 (2)            | C11—C16—H16                         | 119.8                |
| C2—C1—N1                           | 108.3 (2)            | C15—C16—H16                         | 119.8                |
| C2—C1—C26                          | 130.3 (3)            | N1—C17—H17A                         | 108.6                |
| C1—C2—C3                           | 106.6 (2)            | N1—C17—H17B                         | 108.6                |
| C1—C2—C5                           | 124.3 (2)            | N1—C17—C18                          | 114.8 (2)            |
| C3—C2—C5                           | 128.8 (2)            | H17A—C17—H17B                       | 107.5                |
| C2—C3—C24                          | 129.3 (2)            | С18—С17—Н17А                        | 108.6                |
| C4—C3—C2                           | 107.7 (2)            | C18—C17—H17B                        | 108.6                |
| C4—C3—C24                          | 123.0 (2)            | C19—C18—C17                         | 123.0 (3)            |
| N1—C4—C3                           | 107.4 (2)            | C23—C18—C17                         | 118.1 (3)            |
| N1—C4—C11                          | 122.5 (2)            | C23—C18—C19                         | 118.9 (3)            |
| C3—C4—C11                          | 129.8 (2)            | С18—С19—Н19                         | 119.9                |
| C6—C5—C2                           | 120.8 (2)            | C18—C19—C20                         | 120.3 (3)            |
| C6—C5—C10                          | 118.2 (2)            | С20—С19—Н19                         | 119.9                |
| C10—C5—C2                          | 120.9 (2)            | C19—C20—H20                         | 119.8                |
| С5—С6—Н6                           | 119.6                | C21—C20—C19                         | 120.3 (4)            |
| C7—C6—C5                           | 120.9 (3)            | C21—C20—H20                         | 119.8                |
| С7—С6—Н6                           | 119.6                | C20—C21—H21                         | 120.4                |
| С6—С7—Н7                           | 119.8                | $C_{22}$ $C_{21}$ $C_{20}$          | 119.3 (3)            |
| C8-C7-C6                           | 120 3 (3)            | $C^{22}$ $C^{21}$ $H^{21}$          | 120.4                |
| C8—C7—H7                           | 119.8                | $C_{21} = C_{22} = H_{22}$          | 119.8                |
| C7—C8—H8                           | 120.3                | $C_{21} - C_{22} - C_{23}$          | 120.5 (4)            |
| C7 - C8 - C9                       | 1194(3)              | $C^{23}$ $C^{22}$ $H^{22}$          | 119.8                |
| C9—C8—H8                           | 120.3                | $C_{18} - C_{23} - C_{22}$          | 1207(4)              |
| С8—С9—Н9                           | 119.7                | $C_{18} - C_{23} - H_{23}$          | 119.6                |
| C10-C9-C8                          | 120 5 (3)            | $C^{22}$ $C^{23}$ $H^{23}$          | 119.6                |
| C10-C9-H9                          | 119.7                | $01 - C^{24} - 0^{2}$               | 122.4(3)             |
| $C_{5}$ $C_{10}$ $H_{10}$          | 119.7                | $01 - C^{24} - C^{3}$               | 122.4(3)<br>125.0(3) |
| C9-C10-C5                          | 120.6 (3)            | $0^{2}-0^{2}-0^{2}$                 | 123.0(3)<br>112.6(2) |
| C9-C10-H10                         | 119.7                | $O_2 = C_2 = C_2 = H_2 = A$         | 109 5                |
| $C_{12}$ $C_{11}$ $C_{4}$          | 119.8 (2)            | $O_2 = C_{25} = H_{25R}$            | 109.5                |
| $C_{12} = C_{11} = C_{4}$          | 119.8(2)<br>121.5(2) | 02 - C25 - H25C                     | 109.5                |
| $C_{16} - C_{11} - C_{12}$         | 121.3(2)<br>1187(3)  | $H_{25}A = C_{25} = H_{25}B$        | 109.5                |
| $C_{11}$ $C_{12}$ $H_{12}$         | 110.7 (5)            | $H_{25A} = C_{25} = H_{25D}$        | 109.5                |
| $C_{12}$ $C_{12}$ $C_{11}$         | 119.7                | H25R C25 H25C                       | 109.5                |
| $C_{13}$ $C_{12}$ $H_{12}$         | 110.7                | C1 - C26 - H26A                     | 109.5                |
| $C_{12} = C_{12} = H_{12}$         | 110.8                | C1 - C26 + H26B                     | 109.5                |
| C12 - C13 - C13                    | 120 4 (3)            | C1 - C26 - H26C                     | 109.5                |
| C14 - C13 - C12<br>C14 - C13 - H13 | 110.8                | $H_{26} = C_{26} = H_{26} = H_{26}$ | 109.5                |
| C13 - C13 - H14                    | 120.1                | $H_{201} = C_{20} = H_{200}$        | 109.5                |
| $C_{13} = C_{14} = C_{15}$         | 120.1                | $H_{26R} = C_{26} = H_{26C}$        | 109.5                |
| $C_{15} = C_{14} = C_{15}$         | 120.1                | 11200-020-11200                     | 107.5                |
| 013-014-1114                       | 120.1                |                                     |                      |

| N1—C1—C2—C3    | -0.3 (3)   | C5—C2—C3—C24    | -4.4 (4)   |
|----------------|------------|-----------------|------------|
| N1-C1-C2-C5    | -175.1 (2) | C5—C6—C7—C8     | -0.2 (5)   |
| N1-C4-C11-C12  | 105.7 (3)  | C6-C5-C10-C9    | 0.5 (4)    |
| N1-C4-C11-C16  | -74.9 (4)  | C6—C7—C8—C9     | 1.1 (5)    |
| N1-C17-C18-C19 | 21.3 (4)   | C7—C8—C9—C10    | -1.2 (5)   |
| N1-C17-C18-C23 | -161.1 (3) | C8—C9—C10—C5    | 0.4 (5)    |
| C1—N1—C4—C3    | 0.5 (3)    | C10—C5—C6—C7    | -0.6 (4)   |
| C1—N1—C4—C11   | -174.4 (2) | C11—C12—C13—C14 | 0.9 (5)    |
| C1—N1—C17—C18  | 80.0 (3)   | C12—C11—C16—C15 | 0.1 (4)    |
| C1—C2—C3—C4    | 0.6 (3)    | C12—C13—C14—C15 | 0.0 (5)    |
| C1—C2—C3—C24   | -179.0 (3) | C13—C14—C15—C16 | -0.9 (4)   |
| C1—C2—C5—C6    | -59.7 (4)  | C14—C15—C16—C11 | 0.8 (5)    |
| C1—C2—C5—C10   | 118.3 (3)  | C16—C11—C12—C13 | -1.0 (4)   |
| C2—C3—C4—N1    | -0.7 (3)   | C17—N1—C1—C2    | 178.6 (2)  |
| C2—C3—C4—C11   | 173.8 (3)  | C17—N1—C1—C26   | 3.4 (4)    |
| C2-C3-C24-O1   | 157.7 (3)  | C17—N1—C4—C3    | -178.2 (2) |
| C2—C3—C24—O2   | -22.4 (4)  | C17—N1—C4—C11   | 6.9 (4)    |
| C2—C5—C6—C7    | 177.4 (3)  | C17—C18—C19—C20 | 177.1 (3)  |
| C2-C5-C10-C9   | -177.5 (3) | C17—C18—C23—C22 | -176.7 (3) |
| C3—C2—C5—C6    | 126.6 (3)  | C18—C19—C20—C21 | 0.0 (5)    |
| C3—C2—C5—C10   | -55.4 (4)  | C19—C18—C23—C22 | 0.9 (5)    |
| C3—C4—C11—C12  | -67.9 (4)  | C19—C20—C21—C22 | -0.1 (6)   |
| C3—C4—C11—C16  | 111.5 (3)  | C20—C21—C22—C23 | 0.6 (6)    |
| C4—N1—C1—C2    | -0.1 (3)   | C21—C22—C23—C18 | -1.0 (6)   |
| C4—N1—C1—C26   | -175.3 (2) | C23—C18—C19—C20 | -0.4 (5)   |
| C4—N1—C17—C18  | -101.5 (3) | C24—C3—C4—N1    | 178.9 (2)  |
| C4—C3—C24—O1   | -21.8 (4)  | C24—C3—C4—C11   | -6.7 (4)   |
| C4—C3—C24—O2   | 158.1 (2)  | C25—O2—C24—O1   | 1.6 (4)    |
| C4—C11—C12—C13 | 178.4 (3)  | C25—O2—C24—C3   | -178.3 (2) |
| C4-C11-C16-C15 | -179.3 (3) | C26—C1—C2—C3    | 174.3 (3)  |
| C5—C2—C3—C4    | 175.1 (2)  | C26—C1—C2—C5    | -0.6 (4)   |

### Hydrogen-bond geometry (Å, °)

| D—H···A                             | <i>D</i> —Н | H···A | D····A    | <i>D</i> —H··· <i>A</i> |
|-------------------------------------|-------------|-------|-----------|-------------------------|
| C17—H17 <i>B</i> ···O1 <sup>i</sup> | 0.99        | 2.56  | 3.177 (3) | 120                     |
| C26—H26A····O2 <sup>ii</sup>        | 0.98        | 2.59  | 3.383 (3) | 138                     |

Symmetry codes: (i) -x+2, y-1/2, -z+3/2; (ii) -x+1, y-1/2, -z+3/2.