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While epithelial-fibroblast interactions are viewed as the primary drivers of Idiopathic
Pulmonary Fibrosis (IPF), evidence gleaned from animal modeling and human studies
implicates innate immunity as well. To provide perspective on this topic, this review
synthesizes the available data regarding the complex role of innate immunity in IPF. The
role of substances present in the fibrotic microenvironment including pathogen
associated molecular patterns (PAMPs) derived from invading or commensal
microbes, and danger associated molecular patterns (DAMPs) derived from injured
cells and tissues will be discussed along with the proposed contribution of innate
immune populations such as macrophages, neutrophils, fibrocytes, myeloid
suppressor cells, and innate lymphoid cells. Each component will be considered in
the context of its relationship to environmental and genetic factors, disease outcomes,
and potential therapies. We conclude with discussion of unanswered questions and
opportunities for future study in this area.

Keywords: innate immunity, macrophage, pulmonary fibrosis, microenvironment, biomarker

INTRODUCTION

Idiopathic pulmonary fibrosis (IPF) is a progressive and incurable condition defined by the
radiographic and histopathologic pattern of usual interstitial pneumonia (UIP) in the absence of
an identifiable cause or exposure (American Thoracic Society, 2000; Raghu et al., 2011). With a
5 years survival rate of little more than 50%, it carries one of the worst prognosis of all interstitial
lung diseases (ILDs) (Raghu et al., 2011). Numerous IPF risk factors have been identified including
aging (Raghu et al., 2011), cigarette smoking (Baumgartner et al., 1997), chronic viral infections
(Enomoto et al., 2003), gastroesophageal reflux (Raghu et al., 2006), and genetic predisposition
(Hodgson et al., 2002), but the mechanisms through which these entities are related to the disease
remain unknown. Thus, better understanding of fibrogenic processes affecting the lung remains a
critical unmet need.

Parenchymal fibrosis is proposed to originate from prolonged or perpetuated alveolar epithelial
injury (Fernandez and Eickelberg, 2012). This event stimulates an aberrant wound healing response
characterized by myofibroblast expansion and the obliteration of lung tissue by excessive
extracellular matrix (ECM) (Wynn, 2011). A substantial body of evidence generated from
preclinical studies and clinical trials forms the basis for the current consensus that IPF does not
appear to be a direct result of immune cell dysfunction but rather, that immune and inflammatory
cells can permit, promote, or suppress fibrotic responses in the lung stroma (Figure 1). This article
reviews the evidence in support of this hypothesis.
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HISTORICAL PERSPECTIVE

The clinical features of IPF provide very limited insight into
associated immune factors. Diagnostic criteria for IPF are
essentially the presence of a pattern consistent with Usual
Interstitial Pneumonia on chest imaging or lung biopsy in the
absence of an identifiable cause. Compared to other ILDs, IPF
lungs contains fewer inflammatory cells and chest imaging
contains very little of the ground glass opacities that are
typically reflective of inflammation (Raghu et al., 2011; Travis
et al., 2013). Features of autoimmunity, such as physical exam
findings and serology, as is clinical evidence of an identifiable
antigen-driven immune response, are absent (Raghu et al., 2011).
IPF outcomes are worsened by treatment with low dose
Prednisone, Azathioprine (Idiopathic Pulmonary Fibrosis
Clinical Research Network et al., 2012), and unaffected by
treatment with biologics targeting interferon gamma (King
et al., 2009) or TNFα (Raghu et al., 2008). These clinical
observations have been interpreted by some sources as
indicating the pathogenesis of IPF lacks an immune
component (Blackwell et al., 2014). However, this array of
findings is unlikely to suggest that the immune system is not
involved. On the contrary, the worsening of clinical outcomes by
classical immunosuppression suggests, if anything, that certain
immune responses might be protective and others might be
harmful. Several studies demonstrate that anti-fibrotic and
immunomodulatory macrophage functions are suppressed in
IPF, and classical immunosuppression might aggravate the loss
of anti-fibrotic immune cells (van Geffen et al., 2021). Thus,
better understanding of all forms of immunity has the potential to
advance the understanding of IPF.

INNATE VS ADAPTIVE IMMUNITY

Immune responses are dichotomized into innate and adaptive
processes. The former component, which is the focus of this
review, is currently understood as a rapid and programmed
response to chemical or physical stimuli and the latter being a
specific response to a particular antigen. While abnormalities in
both components have been described in IPF, the available
evidence suggests a pathogenic contribution of innate
immunity whereas the role of adaptive immunity is less clear.
Thus, this review will focus on the innate immune processes that
could contribute to IPF.

INNATE IMMUNE LIGANDS IN IDIOPATHIC
PULMONARY FIBROSIS: PATHOGEN
ASSOCIATED MOLECULAR PATTERNS VS.
DANGER ASSOCIATED MOLECULAR
PATTERNS

Fibrotic immunopathology has been reported in the context of
pattern recognition receptor (PRR) activation. PRRs respond to
the physical or chemical structure of their respective ligands to
initiate and in some cases perpetuate host defense. PRR-activating
structures derived from microorganisms are termed “pathogen
associated molecular patterns,” or “PAMPs” and substances
generated by tissue injury are called “danger associated
molecular patterns,” or “DAMPs” (Tang et al., 2012). Another
type of PRR ligand, “homeostatic associated molecular patters,”
or “HAMPs” has recently been described but has not yet been
studied in IPF. It should be noted that while cells of the immune
system and lung stroma contain functional PRRs, the focus of this
review is restricted to professional immune cells involved in host
defense (Mogensen, 2009). Thus, PAMPs, DAMPS, and PRRs
will only be discussed in these contexts.

Pathogen associated molecular patterns.While not viewed as
an infectious process, several lines of evidence derived from
animal and human studies support a connection between IPF
and microbes. The contribution of viral and bacterial PAMPs has
been explored as follows (Ellson et al., 2014).

Viruses. IPF has been linked to a number of viruses. Several
studies have shown that the Herpes virus family member Epstein-
Barr virus is enriched in IPF bronchoalveolar lavage (BAL) fluid
and lung tissues (Tang et al., 2001; Manika et al., 2007), and may
contribute to induction of TGFβ1 expression and epithelial
acquisition of mesenchymal properties (Sides et al., 2011).
Likewise, Cytomegalovirus has been shown to exacerbate
bleomycin induced fibrosis in mice through a mechanism
involving canonical TGFβ1 activation and Vimentin
expression (Li et al., 2016). A study in human lung epithelium
revealed Herpesvirus saimiri infection promotes IL-17
production (Folcik et al., 2014). In line with these findings,
antiviral therapy has shown modest benefit in animal models
(Mora et al., 2007) and one small human study (Egan et al., 2011)
but more widespread studies of efficacy and mechanism are
currently lacking.

FIGURE 1 |Current model of IPF pathogenesis. Epithelial injury results in
fibrosis primarily through an interaction with fibroblasts (A) rather than the
recruitment and activation of immune cell populations (B). Immune cells
accumulate in the injured lung and orchestrate the development,
maintenance, progression or regression of fibrosis.
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Bacteria. Data linking bacteria to IPF have also been
described. One study of IPF BAL revealed an inverse
relationship between bacterial load and clinical outcomes
where detection of organisms such as Haemophilus,
Streptococcus, Neisseria, and Veillonella were predictive of lung
function decline (Molyneaux et al., 2014). A separate study found
that IPF BAL was enriched for strains of Staphylococcus and
Streptococcus (Han et al., 2014), with the latter species aligning
with increased nucleotide-binding oligomerization domain-like
(NOD) receptor signaling and poor outcomes (Huang et al.,
2017). While the reasons for these observations remains
unclear, the known association of IPF with gastroesophageal
reflux disease (GERD) (Lee et al., 2010), raises the possibility
of chronic microaspiration as an inoculation source. Thus, the
microbiome is emerging as a new area of study in IPF and has led
to studies examining antibiotics as a novel treatment approach
(Kawamura et al., 2017).

Danger Associated Molecular Patterns Substances generated
by tissue injury can function as danger associated molecular
patterns, or “DAMPs.” Normal tissue turnover generates low
levels of DAMPs which support homeostasis through the removal
of debris, resolution of injury, and completion of repair (Ellson
et al., 2014). DAMP overabundance, however, appears to favor a
microenvironment characterized by PRR activation and
inflammation (Land, 2015) that may emulate or differ from
responses caused by PAMPs (Piccinini et al., 2016). PRR
ligands generated by homeostatic mechanisms (homeostatic
associated molecular patters, HAMPs) have also been
described (Liston and Masters, 2017) but have not yet been
studied in IPF.

Numerous substances can function as DAMPs. The easiest to
conceptualize may be cellular components such as nucleic acid
and organelles that are passively generated by the necroptotic
lysis of dying/dead cells or actively released via exocytosis of
membrane bound vesicles or endosomes. DAMPs are also
generated by the cleavage of extracellular proteins into
fragments that can act as signaling molecules. The PRRs that
recognize DAMPs are, for the most part, also activated by PAMPs
(Ellson et al., 2014) and in the setting of pulmonary fibrosis can be
protective or pathogenic depending on the context. For example,
absence of the dsRNA sensor toll-like receptor 3 (TLR3) worsens
bleomycin induced pulmonary fibrosis in mice and humans
possessing the Leu412 Phe polymorphism in the TLR3 gene
develop a rapidly progressive form of IPF (O’Dwyer et al.,
2013). TLR4 deficiency worsens, and TLR4 agonists improve,
bleomycin induced fibrosis in mice via at least two mechanisms:
augmentation of lung progenitor cell renewal (Liang et al., 2016)
andmodulation of TGFβ1 and IL-17 production (Liu et al., 2010).
The role of TLR4 appears to be complex as its inhibition can also
be protective (He et al., 2009; Li et al., 2015). A connection to IPF
is suggested by the finding that endogenous TLR4 ligands such as
high mobility group box 1 (HMGB1) (Park et al., 2004; Li et al.,
2014), tenascin-C (Midwood et al., 2009; Carey et al., 2010;
Bhattacharyya et al., 2016), S100 protein (Park et al., 2004)
and hyaluronan fragments (Jiang et al., 2005) are enriched in
IPF BAL and lung tissues (Huebener and Schwabe, 2013).
Additional evidence linking TLR4 to IPF is the discovery

mutations in the TLR2/4 adaptor protein Toll interacting
protein (TOLLIP) increases disease susceptibility (Noth et al.,
2013), though the mechanism of this association remains
unknown. Intriguingly, N-acetylcysteine therapy is reported to
be efficacious for individuals with IPF with an rs3750920
(TOLLIP) TT genotype (Oldham et al., 2015), therefore
elucidating underlying biology of interaction between DAMPs
and their receptors along with future clinical trials targeting these
entities might lead to substantial clinical benefit.

The connection to innate immunity extends beyond Toll like
receptors as shown by data implicating the NACHT, LLR and
PYD domains-containing protein 3 (NALP3) inflammasome
activation in IL-1β associated fibrosis in the bleomycin mouse
model (Gasse et al., 2009; Tian et al., 2017). Recent work links this
process to the mitochondrial antiviral signaling (MAVS) pathway
in mice and humans with IPF (Kim et al., 2020). The
inflammation may also be activated via toll-like receptor 9
(TLR9) (Trujillo et al., 2010) which along with its endogenous
ligand mitochondrial DNA (mtDNA) is increased in IPF (Ryu
et al., 2017). In fact, previously normal lung fibroblasts stimulated
with TLR9 agonists develop features of myofibroblasts (Kirillov
et al., 2015; Ryu et al., 2017) and excessive concentrations of
circulating mtDNA is predictive of poor outcomes in several IPF
cohorts (Ryu et al., 2017; Sakamoto et al., 2021). The
inflammatory nature of the bleomycin model has made this
biology difficult to understand (Luckhardt et al., 2011),
heightening the need for experimental systems that are more
reflective of the healthy and diseased human lung. Finally,
abnormal responses to DAMP recognition have been described
as one form of immunosenescence (Huang et al., 2015) and it is
intriguing to consider this concept in relationship to the
telomerase mutations that are associated with the IPF disease
state. Thus, the connection of PAMPs, DAMPs, and PRRs in IPF
is an area warranting further studies.

INNATE IMMUNE CELLS

As the first line of defense against invading pathogens, cells of the
innate immune system have important roles in host defense and
tissue homeostasis. The best studied cells in the context of IPF are
macrophages and neutrophils, though more recently described
populations such as fibrocytes, myeloid-derived suppressor cells
(MDSCs), and innate lymphoid cells (ILCs), may also be
involved. It is worth noting that stromal populations such as
fibroblasts and epithelium also demonstrate innate immune
functions (Selman and Pardo, 2006) but because these cells are
not professional immune cells, their at best speculative
contribution to IPF immune dysfunction will not be discussed
herein.

Macrophages are both the major antimicrobial phagocytes in
the lungs and central mediators of fibrotic lung disease (Wynn
and Vannella, 2016). Macrophages can regulate both injury and
repair in various models of fibrosis and macrophage driven
processes have been important areas of study in IPF for more
than 50 years (Bitterman et al., 1986; Blackwell et al., 2014). Older
paradigms proposed dichotomized phenotypic categories of
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classically activated macrophages, or “M1s” generated by INFγ
and TNFα exposure as being antifibrotic, and alternatively
activated macrophages or “M2s” generated by IL-4, IL-10, IL-
13, and TGFβ1 stimulation as being profibrotic (Pechkovsky
et al., 2010; Wynn and Vannella, 2016). However, as
macrophage classification schemes have become increasingly
nonbinary, the M1/M2 dichotomy may be grossly
oversimplified (Gordon et al., 2014) yet conceptually useful
when describing the functional characteristics of these
adaptable cells. Specifically, in this context, a moderate excess
of M1-like macrophages suppresses fibroblast activation and
ECM accumulation, while a large excess may cause epithelial
cell death and diffuse alveolar damage similar to that occurring in
acute exacerbations of IPF. Similarly, a controlled balance of M2
macrophages stimulates appropriate repair and regeneration
while an excess of M2 macrophages drives the lung towards
progressive and inexorable fibrosis (Zhou et al., 2014). Animal
modeling of IPF reveals that the plasticity and diversity of lung
macrophages involves contributions from long lived, lung
resident alveolar macrophages (Larson-Casey et al., 2016) and
from populations of interstitial macrophages arriving from the
bone marrow and circulation (Peng et al., 2016). In humans,
accumulating evidence suggests that an increase in circulating
monocytes predicts poor outcomes, as one of the most validated
cellular biomarkers in IPF (Scott et al., 2019) though it is currently
unknown whether these findings relate to a primary
hematopoietic defect or are simply undergoing appropriate
recruitment to the injured and fibrotic lung. Either way,
because monocytes presumably give rise to interstitial
macrophages these observations could be used to develop
cellular biomarkers reflective of pathogenesis and outcome.
While differences in polarization markers precludes direct
comparison of mouse and human macrophages, the
preponderance of available evidence indicates that expression
of scavenger receptors and profibrotic markers is a cross-species
feature of many forms of lung fibrosis including IPF (Christmann
et al., 2014; Zhou et al., 2014; Zhou et al., 2015) though again, why
these cells are aberrantly polarized and whether they promote
disease in humans remains unknown.

Macrophages are implicated in fibrotic processes via a large
number of mechanisms, none of which involve direct production
of extracellular matrix. Since the 1980s, alveolar macrophages
from IPF patients have been known to modulate fibroblast
activation via the production of mediators that have come to
be associated with M2 activation. At the time that these studies
were first performed, the concept of innate immunity had not yet
been established and these observations were viewed as IPF being
an inflammatory condition though this idea is being continuously
refined and reimagined as the field evolves. More recent studies
have shown that interstitial macrophages from mice and humans
display fibrosis promoting properties (Zhou et al., 2014), as do
circulating monocytes isolated from patients with IPF (Zhou
et al., 2014). The latter finding is notable for demonstrating
that monocytes are programmed to promote fibrosis before
entering the lung. Mouse modeling has shown that removal
(Gibbons et al., 2011; Murray et al., 2011) or repolarizing
(Murray et al., 2011) of lung macrophages can prevent and

reverse experimentally induced mouse fibrosis. The
repolarization hypothesis forms the basis for the use of the
evolutionarily conserved pattern recognition protein pentraxin
2, which is under investigation as a novel therapeutic in several
fibrotic diseases including IPF (Murray et al., 2010; Murray et al.,
2011).

These contributions are accompanied by additional
mechanisms (Wynn and Vannella, 2016), some of which
include interactions with dead or dying cells (Ellson et al.,
2014). For example, efferocytosis (engulfment of apoptotic
cells) induces transcriptional activation of Tgfb1 in alveolar
and interstitial macrophages (Freire-de-Lima et al., 2006)
which is in line with a well-established literature implicating
alveolar macrophages and/or LysM + cells as a source of TGFβ1
in humans (Toossi et al., 1996) and mice (Young et al., 2016). The
functions of apoptotic cell clearance and TGFβ1 production are
augmented by production of cytokines (TNFα, IL-1, IL-6, IL-8,
IL-10, and IL-12) and chemokines such as CXCL1, CXCL2,
CXCL9, CXCL10, CXCL12, CCL5, CCL17, and CCL18
(Arango Duque and Descoteaux, 2014). Through production
of lipid mediators such as eicosanoids they might contribute
to fibrosis (Huang and Peters-Golden, 2008), though this
function has yet to be confirmed in IPF tissues and
experimental modeling (Castelino, 2012). Additional functions
include ECM remodeling and matrix metalloproteinase
production (Rohani et al., 2015) as well as the ingestion and
recycling of collagen (Madsen et al., 2013). While several studies
indicate that macrophages might also contribute to pulmonary
fibrosis by regulating epithelial cell activation (Young et al., 2016),
this area remains largely unexplored in the context of IPF.
Macrophages are also known to direct (Biswas and Mantovani,
2012) and respond to the metabolic products of adjacent cells
(Biswas and Mantovani, 2012; Xie et al., 2015) and because they
recycle surfactant (Wright, 1990), they may be involved in the
poorly understood recycling association between surfactant
protein mutations and IPF (Lawson et al., 2004). Macrophages
regulate the expression of pro- and anti-fibrotic angiogenic
factors such as vascular endothelial growth factor (VEGF)
(Stockmann et al., 2010), which may be relevant given the
efficacy of therapies targeting vascular endothelial growth
factor 2 (VEGFR2) in IPF (Barratt et al., 2018). Macrophages
express neuronal guidance proteins such as Netrin-1 which
appears to control a newly recognized form of adrenergic
nerve associated fibrosis in mouse models and in patients with
IPF (Gao et al., 2021). Macrophages show a connection to
epithelial regeneration through their production of WNT-
containing exosomes (Saha et al., 2016) which may also be
implicated in the poorly understood association between
innate immune activation and lung progenitor cell survival
(Liang et al., 2016). Finally, macrophages both contribute to
(Solis et al., 2019) and respond to altered mechanical
properties in the fibrotic lung, suggesting an
immunomechanical function (Solis et al., 2019). The fibrosis
promoting functions of lung macrophages are depicted in
Figure 2.

The compelling connection between macrophages and fibrosis
has fostered the development of immune targeted therapies in
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IPF. To date, most clinical trials in this arena examining a specific
mediator have failed to show a benefit of this strategy. Specifically,
TNFα neutralization with Etanercept, which would be expected to
suppressM1 activation, did not affect outcomes in a Phase III trial
(Raghu et al., 2008). An approach targeting macrophage
recruitment with a monoclonal antibody targeting chemokine
C-C chemokine ligand 2 (CCL2) was similarly unsuccessful
(Raghu et al., 2015). Additionally, despite early promise,
administration of recombinant interferon gamma was also
abandoned due to lack of efficacy (Raghu et al., 2004). While
disappointing in terms of efficacy, these studies were useful in
revealing that inhibition of one specific macrophage mediator or
function is insufficient in delaying disease progression. The
multiple combined body of work suggests that successful
targeting of macrophages may require a more pleiotropic
approach activation state and might be more efficacious. This
hypothesis forms the rationale for the recently initiated Phase III
trial of recombinant Pentraxin 2, an acute phase reactant that
interferes with innate immune activation by binding to debris and
inhibiting Fcγ receptor driven inflammatory process in
phagocytic cells (Castano et al., 2009).

Neutrophils are another innate immune population which
may impact IPF in several ways. Early studies of BAL neutrophilia
identified in a subgroup of IPF patients experiencing reduced
survival (Kinder et al., 2008) and the neutrophil chemoattractant,
CXCL8, is increased in IPF (Xaubet et al., 1998) suggesting an
association between these entities. Additionally, BAL neutrophils
are directly proportional to concentrations of an alveolar
epithelial marker, cytokeratin 19, which further supports a
connection in this regard (Inage et al., 2000). While these
studies are most easily interpreted as supporting fibrosis as a
neutrophil driven process, an alternate explanation is that
neutrophils are in fact protective and that their accumulation
represent the host’s attempt at restoring homeostasis. This
hypothesis would be supported by observations made in other
modeling systems in which neutrophils were found to suppress
alveolar injury through their transfer of miR223 containing
extracellular vesicles (Neudecker et al., 2017). However,
because this function has not been shown in IPF, its relevance
in this condition and related processes is at best uncertain.

Neutrophils also play an important role in ECM turnover.
Specifically, the most well studied proteolytic product of alveolar

FIGURE 2 | Proposed contributions of innate immunity in pulmonary fibrosis. Innate immune cell populations, ranging from macrophages to innate lymphoid cells,
have displayed fibromodulatory properties in response to stimuli such as pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns
(DAMPs). Alveolar and interstitial macrophages produce TGFβ1, angiogenic factors, various cytokines and chemokines, lipid mediators, and neuronal guidance proteins,
induce ECM remodeling, and regulate surfactant recycling and mechanical properties of the lung. Neutrophils also participate in the regulation of ECM remodeling,
as well as the formation of extracellular neutrophil traps, which may have pro-fibrotic effects. Fibrocytes, in accordance with their multilineage features, exhibit a variety of
fibrosis-promoting functions, including antigen presentation, cytokine and chemokine production, differentiation into fibroblasts and myofibroblasts, and wound
contraction. Myeloid-derived suppressor cells (MDSCs) function to dampen immune responses and are also involved in vascular remodeling while innate lymphoid cells
(ILCs) have been shown to produce pro-fibrotic cytokines.

Frontiers in Molecular Biosciences | www.frontiersin.org August 2021 | Volume 8 | Article 6765695

Ishikawa et al. Innate Immune Mechanisms of IPF

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


neutrophils, neutrophil elastase (NE), is increased in IPF BAL
(Obayashi et al., 1997). The involvement of NE in the generation
of DAMPs and ECM degradation (Hedstrom, 2002; Chua et al.,
2007) suggests one function for this enzyme. Furthermore, NE
itself may regulate fibroblast responses in a manner that does not
involve ECM breakdown (Gregory et al., 2015). When viewed in
this light, it is notable that mice deficient in NE are protected from
fibrosis in several lung models (Chua et al., 2007; Gregory et al.,
2015) and that the NE inhibitor, Sivelestat, dampens fibrosis in
the bleomycin model (Takemasa et al., 2012). Neutrophils also
participate in by controlling the balance of TIMPs and MMPs
(Beeh et al., 2003; Kruger et al., 2015) such as the pro-fibrotic
MMP-2, MMP-8, and MMP-9 (Corbel et al., 2001; Henry et al.,
2002), though the relevance of these findings to human IPF
remains unclear.

Finally, an additional fibrogenic neutrophil function is the
formation of extracellular neutrophil traps. These highly
inflammatory aggregates of chromatin and neutrophils
regulate activation of immune cells (Kaplan and Radic, 2012)
and fibroblasts (Chrysanthopoulou et al., 2014). Detection of
neutrophil extracellular traps (NETs) has been reported in the
lungs of bleomycin exposed mice and in some forms of fibrotic
ILD but not, as yet, in IPF (Chrysanthopoulou et al., 2014).
Further studies are warranted to understand whether NETs play a
role in IPF pathogenesis.

To summarize, neutrophils could participate in IPF through
their production of soluble mediators, regulation of epithelial
injury, control of ECM turnover, and formation of NETs.
(Figure 2). However, because IPF lung tissue contains few
neutrophils their role in this disease state remains unclear.

Fibrocytes are bone marrow-derived cells displaying
characteristics of leukocytes, hematopoietic progenitor cells,
and fibroblasts. Viewed as originating from monocytes, they
are found in the systemic circulation from which they migrate
to areas of tissue injury and participate in wound repair (Strieter
et al., 2009). Fibrocytes are associated with conditions
characterized by chronic inflammation and fibroblast-mediated
tissue remodeling such as IPF (Reilkoff et al., 2011) and related
conditions affecting the lung (Odackal et al., 2020) and other
organs (Reilkoff et al., 2011). They can be identified through their
multilineage features ranging from cell surface markers to the
production of various extracellular matrix components
(Gomperts and Strieter, 2007; Strieter et al., 2009). Their
mesenchymal properties are further reflected by their potential
for differentiation into myofibroblasts with subsequent αSMA
expression and involvement in wound healing (Hong et al., 2007;
Herzog and Bucala, 2010; Kao et al., 2011). Fibrocytes have also
been shown to influence fibrosis progression in mouse models
through mechanisms involving paracrine regulation of fibroblast
proliferation and activation (Madala et al., 2014) and augmenting
accumulation of WT-1 positive mesenchymal cells in severely
fibrotic lung regions (Sontake et al., 2015). Immunomodulatory
functions of fibrocytes include expression of chemokine receptors
such as CCR3, CCR5, CCR7, and CXCR4 which likely participate
in their migration to areas of tissue injury. Fibrocytes might also
contribute to a pro-inflammatory microenvironment by
producing soluble mediators such as cytokines (IL-1β, IL-6,

IL-10, and TNF-α) and chemokines (MIP-1α, MIP-1β, MCP-1,
IL-8, and GRO-α). They can also initiate adaptive immune
responses by presenting antigens to T helper cells (Chesney
et al., 1997; Chesney et al., 1998; Quan et al., 2006; Fan and
Liang, 2010). Although current technical challenges involving
both detection and reproducibility limit their use in the clinical
setting (Hu et al., 2015), fibrocytes may serve as both therapeutic
target and predictor of poor outcome (Griffiths et al., 2018).
Other areas of uncertainty include whether fibrocytes are a
unique leukocyte population or are instead a subset of
inflammatory monocytes characterized by collagen production
(Etich et al., 2019), and whether the increase in circulating
fibrocytes reported in IPF and related conditions indicates
specific expansion of these cells or merely reflects the
monocytosis described earlier in this article. Given their
functional association with fibrogenesis, the specific role of
fibrocytes in IPF pathogenesis is an area of interest that would
benefit from further investigation. The fibrosis promoting
functions of fibrocytes are depicted in Figure 2.

Myeloid-derived suppressor cells (MDSCs) are a heterogenous
population of myeloid origin first observed in cancer patients.
Despite their reported heterogeneity, MDSCs share the common
function of contributing to regulatory T cell (Treg) expansion
and, subsequently, suppressing T cell activation and proliferation.
Pathologically, there is an increasing evidence of MDSCs being
involved in non-malignant inflammatory diseases including
fibrotic disorders (Gabrilovich and Nagaraj, 2009; Lindau
et al., 2013; Zoso et al., 2014). Specific to IPF, at least one
study has shown that enrichment of monocytic MDSCs in the
peripheral blood of IPF patients correlates with worsened lung
function in those patients (Fernandez et al., 2016). Along those
lines, MDSCs have also been associated with severe pulmonary
hypertension, a well-known complication of IPF, in the
bleomycin mice model with attenuation of the diseased
condition achieved through chemokine receptor inhibition
reducing MDSC recruitment (Bryant et al., 2018). The
vascular remodeling observed in this complication may not
only be a byproduct of fibrotic disease but has also been
suggested to play a role in the progression of fibrosis through
the mediation of epithelial injury and repair (Murray et al., 2017).
The recruitment and involvement of MDSCs in the creation of a
pro-fibrotic, immune dysregulated environment indicates that
they may be a target of interest for therapies aiming to mitigate
the development and progression of IPF and, as such, should be
studied further in human IPF cohorts (Figure 2).

Innate Lymphoid Cells are recently identified lymphoid cell
populations distinguished by their lack of recombination
activating gene (RAG) and classical T or B cell receptors
(Bando and Colonna, 2016). The lack of RAG and classical
receptors implies that their immunomodulatory functions arise
from their response to intrinsic innate immune stimuli rather
than the specific epitope driven activation that characterizes most
other lymphocytes. ILCs contain at least three subgroups: ILC1,
including IFN-γ-producing natural killer cells (Kiessling et al.,
1975); ILC2, including a population of cells producing the Th2
cytokines IL-5 and IL-13; and ILC3s, including cells that produce
IL-17 and IL-22 (Sonnenberg and Artis, 2015). ILCs in the lung
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form an immune system network in the lung by interacting with
epithelial cells, natural killer T cells and myeloid (Lai et al., 2016).
In the context of fibrosis, ILC2 respond to antigens and pathogens
by releasing large quantities of IL-13 which makes them attractive
targets in pulmonary fibrosis (Peebles, 2015). While ILCs have
been identified in lungs of patients with IPF (Monticelli et al.,
2011), their disease contribution is at best nascent and would
benefit from additional investigation. The potential role of ILCs
in fibrosis is shown in Figure 2.

SYNTHESIS AND SUMMARY

The connection between innate immunity and IPF continues to
evolve and now encompasses a contribution from numerous
processes and cell populations enacting competing and
overlapping functions. The presence of these processes in
fibrotic conditions affecting numerous organs frames innate
immune dysfunction as a convergent molecular feature of
divergent clinical states. The detection of these mediators in
both diseased organs and the systemic circulation could
represent a more significant hematologic contribution than
previously believed. Conversely, it could represent the
nonspecific and intrinsic nature of the response. When
compared with epithelial cells and fibroblasts, whose proposed
role in fibrosis is relatively well defined, the more heterogeneous
contribution of innate immunity is nuanced and unlikely to
respond to a single intervention which may make it
challenging to target. Additional challenges include critical
aspects of host defense and tissue homeostasis both in the

lung and in distant organs. Because some of these limitations
may be overcome by the relative ease of isolating immune cells and
mediators from bronchoalveolar lavage and blood, innate
immunity is an attractive area for the development of
personalized therapies based on easily accessible biomarkers.
Areas of particular interest and important questions in this
context that would benefit from concerted efforts performed in
large scale multicenter recruitment efforts, leveraging of existing
datasets and registries, and the generation of improved modeling
systems that more faithfully recapitulate the complex
microenvironment of the fibrotic human lung and improve the
understanding and treatment of IPF on a global scale are shown in
Box 1. Better understanding of innate immunity will continue to
shape our view of this disease and provide the potential for
paradigm shifts in treatment and management.
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