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• ALNE automatically discriminates AIH and PBC
   from histology slides

Highlights: Impact and implications:
� ALNE is a transformer-based deep learning model that can
accurately distinguish autoimmune hepatitis and primary
biliary cholangitis.

� ALNE generates accurate predictions relying only on H&E
slides without the support of any human annotation.

� The ALNE model demonstrated robust performance even
with the diversity in scanning and digitizing techniques.

� In comparison with ALNE, general pathologists show poor
inter-observer agreement when challenged with the same
clinical task.
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This study demonstrates the significant potential of the auto-
immune liver neural estimator model, a transformer-based deep
learning system, in accurately distinguishing between autoim-
mune hepatitis and primary biliary cholangitis using digitized
liver biopsy slides without human annotation. The scientific
justification for this work lies in addressing the challenge of
differentiating these conditions, which often present with
overlapping features and can lead to therapeutic mistakes. In
addition, there is need for quantitative assessment of infor-
mation embedded in liver biopsies, which are currently evalu-
ated on qualitative or semi-quantitative methods. The results of
this study are crucial for pathologists, researchers, and clini-
cians, providing a reliable diagnostic tool that reduces inter-
observer variability and improves diagnostic accuracy of these
conditions. Potential methodological limitations, such as the
diversity in scanning techniques and slide colorations, were
considered, ensuring the robustness and generalizability of
the findings.
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Deep learning helps discriminate between autoimmune
hepatitis and primary biliary cholangitis
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Background & Aims: Biliary abnormalities in autoimmune hepatitis (AIH) and interface hepatitis in primary biliary cholangitis (PBC)
occur frequently, and misinterpretation may lead to therapeutic mistakes with a negative impact on patients. This study in-
vestigates the use of a deep learning (DL)-based pipeline for the diagnosis of AIH and PBC to aid differential diagnosis.

Methods:We conducted a multicenter study across six European referral centers, and built a library of digitized liver biopsy slides
dating from 1997 to 2023. A training set of 354 cases (266 AIH and 102 PBC) and an external validation set of 92 cases (62 AIH
and 30 PBC) were available for analysis. A novel DL model, the autoimmune liver neural estimator (ALNE), was trained on whole-
slide images (WSIs) with H&E staining, without human annotations. The ALNE model was evaluated against clinico-pathological
diagnoses and tested for interobserver variability among general pathologists.

Results: The ALNE model demonstrated high accuracy in differentiating AIH from PBC, achieving an area under the receiver
operating characteristic curve of 0.81 in external validation. Attention heatmaps showed that ALNE tends to focus more on areas
with increased inflammation, associating such patterns predominantly with AIH. A multivariate explainable ML model revealed that
PBC cases misclassified as AIH more often had ALP values between 1 × upper limit of normal (ULN) and 2 × ULN, coupled with
AST values above 1 × ULN. Inconsistency among general pathologists was noticed when evaluating a random sample of the same
cases (Fleiss’s kappa value 0.09).

Conclusions: The ALNE model is the first system generating a quantitative and accurate differential diagnosis between cases with
AIH or PBC.
© 2024 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
Autoimmune hepatitis (AIH) and primary biliary cholangitis (PBC)
are rare autoimmune liver diseases characterized by poorly
defined disease etiology and frequent overlapping inflammatory
features that challenge the diagnostic and treatment process.1

These diseases do not represent a single, uniform condition;
rather, they encompass a spectrum with diverse clinical pre-
sentations, underlying mechanisms, and outcomes.

Liver biopsy for histopathological assessment is essential in
differentiation between PBC and AIH. Liver biopsy is particularly
useful when serological tests yield negative or conflicting results,
or when there are overlapping features of both conditions. In
PBC patients, biopsy often reveals inflammatory changes like
* Corresponding authors. Addresses: Division of Gastroenterology and Center for Autoimm
Bicocca, Via Cadore 48, 20900 Monza (MB), Italy. Tel.: +39-039-233-2187 (P. Invernizzi); E
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interface hepatitis in up to 25% of cases; however, this finding
alone does not indicate the presence of AIH and can make it
difficult to determine the most appropriate treatment for indi-
vidual patients.1 Similarly, recent data reveal that up to 83% of
cases of AIH show biliary injury at diagnosis that can resolve
over time.2 Actual PBC–AIH overlap/variant syndrome is
considered much rarer though. Misclassification could poten-
tially lead to unnecessary, long-term immunosuppressive or
choleretic therapy.

Nevertheless, the evaluation of liver biopsy remains a
qualitative and subjective process, making it susceptible to
misclassification and time-consuming. Current classification
scores rely on semi-quantitative, subjective metrics and are
une Liver Diseases, Department of Medicine and Surgery, University of Milano -
lse Kroener Fresenius Center for Digital Health, Technical University Dresden,

kfz.de (J.N. Kather).
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Deep learning to discriminate between AIH and PBC
further complicated by interobserver variability.3,4 A pivotal
study validating the latest PBC-specific grading and staging
system, the Nakanuma system, revealed very limited interob-
server agreement with a kappa value of 0.110 and a concor-
dance rate of 36.9% for cholangitis. Similarly, for hepatitis
activity, agreement was limited, with a kappa value of 0.197
and a concordance rate of 47%.3

Deep Learning (DL)-based image analysis can extract
quantitative information from complex image data and could
offer a solution to this problem. In general, DL has been pro-
posed for a range of questions in liver pathology and has
shown promising performance.5 Convolutional neural net-
works (CNNs), and more recently transformer neural networks,
have shown substantial capability to identify patterns in can-
cer histological images and can discern molecular classes of
tumors without manual annotation, enabling an ‘end-to-
end’ process.6

To date, there is increasing evidence supporting the use of
DL in liver disease, particularly for metabolic dysfunction-
associated steatotic liver disease and hepatocellular carci-
noma.7 Our group has shown that DL can help the classification
of hepatocellular-cholangiocarcinomas.7,8 Yet, there is a lack of
data on the application of DL on unannotated liver biopsy slides
in the field of autoimmune liver disease.

Our study aims to address this gap by developing and
validating a DL model for the automated pre-classification of
liver biopsies of AIH and PBC cases. To achieve this, we used
digital liver biopsies with pathologist-derived diagnoses as
ground truth, evaluating the potential of these models as an
assisted system for differentiating between AIH and PBC.
In this work, we introduce autoimmune liver neural
estimator (ALNE), a state-of-the-art DL approach for the
assessment of autoimmune liver diseases in H&E-stained
whole-slide images (WSIs), which we have systematically
evaluated and released under an open-source license, high-
lighting its potential as a significant auxiliary tool within the
field of hepatopathology.

Patients and methods

Study population

This multicenter study involved a database search for liver bi-
opsy samples from patients diagnosed with AIH and PBC
across several institutions. These included the Departments of
Pathology at Hannover Medical School, Fondazione IRCCS
San Gerardo dei Tintori Monza, Istituto Clinico Humanitas,
Ospedale Milano San Giuseppe, Ospedale di Novara, and
Policlinico di Palermo, with cases collected from 1997 to 2023.
All participating institutions are recognized as expert referral
centers for liver diseases and (in part) members of the European
Reference Network for rare liver diseases.

In our study, from a total of 368 cases that met the inclusion
criteria, 354 were ultimately included in the training cohort;
reasons for exclusion are reported in Table 1. The final cohort
consisted of 258 cases of AIH and 96 cases of PBC (Table 1
and Fig. S1). An external validation cohort meeting the same
inclusion and exclusion criteria of the training cohort was ob-
tained from Istituto Clinico Humanitas, including 92 cases (62
AIH and 30 PBC) (Table 1 and Fig. S2).

The study was conducted in accordance with the Decla-
ration of Helsinki. The institution responsible for the
JHEP Reports, --- 2
coordination of the study was the University of Milano-
Bicocca, coordinator of the Italian PBC National Registry
(ClinicalTrials.gov: NCT05151809) and the Italian AIH National
Registry (ClinicalTrials.gov: NCT06078098). The study was
approved by the University of Milan-Bicocca research ethics
committee (study names: PBC322 and AIH Database), the
steering committee of the PBC National Registry and the AIH
National Registry, and the Research and Development
Department of each collaborating hospital. The Ethics Board
at the Medical Faculty of Technical University Dresden (BO-
EK-444102022) approved the data analysis in this study.

Pathological samples

Glass slides holding formalin-fixed paraffin-embedded tissue
sections stained with H&E were prepared at their respective
institutions using diverse biopsy protocols and staining ap-
proaches, and either digitized in each center with different
scanner vendors or sent for scanning at the coordinating
center on an Aperio CS2 (Leica Biosystem, Nussloch, Ger-
many) generating .svs files. Slides from collaborating centers
were de-identified at their corresponding institutions and
received at University of Milano-Bicocca for an initial analysis.
Digitized slides were shared by the University of Milano-
Bicocca with the Clinical Artificial Intelligence Laboratory at
the University of Dresden for deep learning analysis. Our
dataset comprising 354 patients and 561 WSIs, with some
patients contributing multiple WSIs, was tessellated into im-
age tiles of 244 pixels with 256 microns per pixel. These im-
age tiles were utilized for training the deep learning model on
liver biopsy samples.

Ground truth

Liver biopsy samples were locally assigned to either a diag-
nosis of AIH or PBC based on a dedicated case review per-
formed in each center jointly by the clinical and the pathology
team. Only cases related to baseline conditions, before
starting immunosuppression or ursodeoxycholic acid (UDCA)
were included in the analysis. A definite diagnosis of AIH and
PBC was based on established guidelines;9,10 in addition, the
follow up of patients was essential for the clinical team to
support the diagnosis based on the response to immuno-
suppression in AIH cases and UDCA in PBC cases. The slides
were reviewed for their quality in each center, and the original
diagnosis was confirmed or excluded after revision. The
coordinating center has performed a downstream centralized
review of the viability of the slides from the pathological point
of view. Samples with other diagnoses were not included in
the analysis. Only H&E-stained slides that met high standards
of technical quality, histological adequacy, and scanning
quality, ensuring they were suitable for histological diagnosis
of either AIH or PBC. Slides that were too old, with faded
staining, or histologically inadequate (i.e. containing fewer
than 10 portal spaces) were centrally removed. In addition,
any slides that were damaged (such as broken slides) or
exhibited significant scanning artifacts were also excluded.
No discordant assessments as regards the diagnosis of PBC
or AIH were identified during this process. Because our study
exclusively considered cases stained with H&E, no quantita-
tive assessment of fibrosis was performed, being outside the
scope of the study.
025. vol. 7 j 101198 2



Table 1. Clinico-pathological features of all cohorts.

Disease

Training Validation

PBC AIH PBC AIH

n 96 258 31 65
Center n (%)
HAN 7 (7.3) 126 (48.8) MIL HUM 31 (100.0) 63 (100.0)
HSG 45 (46.9) 92 (35.7)
MIL SG 12 (12.5) 40 (15.5)
NOVARA 19 (19.8) 0 (0.0)
PALERMO 13 (13.5) 0 (0.0)

Female sex n (%) 88 (91.7) 177 (68.6) 27 (87.1) 43 (68.3)
Age at diagnosis (years)* 52 (45–58) 55 (45–65) 52 (43–58) 60 (51–68)
AST × ULN at diagnosis* 1.28 (0.96–2.21) 4.68 (3.70–24.19) 1.31 (0.94–1.85) 7.69 (3.33–15.85)
ALT × ULN at diagnosis* 1.61 (0.93–2.45) 5.90 (5.90–23.42) 1.46 (1.03–2.22) 8.09 (3.60–22.61)
Total bilirubin × ULN at diagnosis* 0.65 (0.46–0.91) 1.70 (0.81–7.86) 0.80 (0.64–0.96) 1.10 (0.83–2.32)
ALP × ULN at diagnosis* 1.63 (0.97–2.91) 0.97 (0.50–1.60) 1.32 (1.02–2.09) 0.89 (0.64–1.22)
GGT × ULN at diagnosis* 4.68 (2.53–7.45) 2.25 (2.25–4.66) 5.41 (3.74–11.73) 2.92 (1.67–5.76)
Albumin at diagnosis (g/dl)* 4.00 (4.00–4.05) 3.45 (3.00–4.00) 4.00 (4.00–4.50) 3.50 (3.00–4.00)
Sodium at diagnosis (mmol/L)* 140 (138–141) 139 (136–140) 140 (139–142) 139 (138–141)
Creatinine at diagnosis (mg/dl)* 0.70 (0.60–0.80) 0.75 (0.65–0.88) 1.00 (1.00–1.00) 1.00 (1.00–1.00)
INR at diagnosis* 1.06 (1.00–1.10) 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.00 (1.00–1.00)
PLT at diagnosis (×103/ll)* 240 (207–294) 203 (146–256) 246 (222–293) 189 (155–254)
IgG × ULN at diagnosis* 0.81 (0.68–1.01) 1.24 (0.95–1.66) 0.81 (0.71–0.93) 1.04 (0.91–1.26)
ANA (%)
NA 7 (7.3) 0 (0.0) 5 (16.1) 1 (1.6)
NEG 22 (22.9) 4 (1.6) 8 (25.8) 1 (1.6)
POS 67 (69.8) 254 (98.4) 18 (58.1) 61 (96.8)

AMA (%)
NA 5 (5.2) 16 (6.2) 1 (3.2) 13 (20.6)
NEG 19 (19.8) 236 (91.5) 6 (19.4) 46 (73.0)
POS 72 (75.0) 6 (2.3) 24 (77.4) 4 (6.3)

gp210 (%)
NA 28 (29.2) 123 (47.7) 27 (87.1) 62 (98.4)
NEG 51 (53.1) 135 (52.3) 2 (6.5) 1 (1.6)
POS 17 (17.7) 0 (0.0) 2 (6.5) 0 (0.0)

sp100 (%)
NA 27 (28.1) 122 (47.3) 24 (77.4) 62 (98.4)
NEG 54 (56.2) 136 (52.7) 3 (9.7) 1 (1.6)
POS 15 (15.6) 0 (0.0) 4 (12.9) 0 (0.0)

SMA (%)
NA 27 (28.1) 13 (5.0) 13 (41.9) 12 (19.0)
NEG 65 (67.7) 127 (49.2) 18 (58.1) 35 (55.6)
POS 4 (4.2) 118 (45.7) 0 (0.0) 16 (25.4)

LKM (%)
NA 23 (29.1) 3 (1.2) 11 (35.5) 21 (33.3)
NEG 54 (68.4) 234 (94.7) 20 (64.5) 42 (66.7)
POS 2 (2.5) 10 (4.0) 0 (0.0) 0 (0.0)

SLA/LP (%)
NA 45 (46.9) 79 (30.6) 28 (90.3) 60 (95.2)
NEG 50 (52.1) 174 (67.4) 3 (9.7) 2 (3.2)
POS 1 (1.0) 5 (1.9) 0 (0.0) 1 (1.6)

AST × ULN at 12 months* 0.81 (0.56–1.00) 0.84 (0.66–1.12) 0.82 (0.63–0.86) 0.80 (0.70–1.05)
ALT × ULN at 12 months* 0.76 (0.51–1.20) 0.74 (0.52–1.30) 0.83 (0.63–1.09) 0.67 (0.50–0.86)
Total bilirubin × ULN at 12 months* 0.58 (0.47–0.70) 0.60 (0.38–0.89) 0.76 (0.50–1.11) 0.70 (0.50–0.90)
ALP × ULN at 12 months* 1.10 (0.80–1.80) 0.62 (0.49–0.82) 1.00 (0.71–1.55) 0.41 (0.37–0.50)
GGT × ULN at 12 months* 1.81 (0.96–3.26) 0.80 (0.39–1.63) 2.29 (1.09–3.69) 0.68 (0.37–1.07)
IgG × ULN at 12 months* 0.77 (0.62–0.88) 0.70 (0.58–0.87) 0.70 (0.61–0.85) 0.72 (0.63–0.91)

AIH, autoimmune hepatitis; ALT, alanine aminotransferase; ANA, antinuclear antibodies; AMA, anti-mitochondrial antibodies; AST, aspartate transferase; GGT, gamma-glutamyl
transferase; GP210, glycoprotein 210 antibodies; LKM, liver/kidney microsomal antibodies; INR, international normalized ratio; NA, not available; NEG, negative; PBC, primary
biliary cholangitis; PLT, platelets; POS, positive; SLA/LP, soluble liver antigen/liver pancreas antibodies; SMA, smooth muscle antibodies; SP100, nuclear antigen antibodies; ULN,
upper limit of normal.
*Median values and interquartile ratio (IQR).

Research article
Experimental setup

ALNE model

The ALNE model was trained on hundreds of gigapixel WSIs
using patient-level labels, promoting scalability to larger
JHEP Reports, --- 2
datasets while avoiding the need for manual annotation (im-
ages did not include local annotations and were categorized
using image-level classification labels).11–13 The model’s ar-
chitecture combines a CTransPath-based self-supervised
learning (SSL) framework for feature extraction with an
025. vol. 7 j 101198 3
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Fig. 1. Schematic of the workflow and results for the ALNE model. (A) Graphical representation of the workflow for classification of PBC and AIH on histopathology
WSI data. The process involves transformer-based feature extraction and MIL techniques for effective classification and visualization. (B) Three-fold cross-validated
AUROC scores for classifying PBC and AIH on the internal validation cohort utilizing the ALNE model. (C) AUROC scores, based on 10 repetitions, for the classification
of PBC and AIH in the external validation cohort using the ALNE model. AIH, autoimmune hepatitis; ALNE, autoimmune liver neural estimator; AUROC, area under the
receiver operating characteristic curve; MIL, multiple instance learning; PBC, primary biliary cholangitis; WSI, whole-slide image.

Deep learning to discriminate between AIH and PBC
attention-based multiple instance learning (attMIL) aggregation
method (Fig. 1A). We used the hybrid CNN-transformer model
CTransPath14 as the backbone architecture of an end-to-end
image analysis pipeline. CTransPath is pre-trained with SSL
on a dataset of weakly labeled histopathological images or
clinical data, and functions as an effective joint local and global
feature extractor. The CTransPath model was not fine-tuned for
our application. Extracted features are then used to train an
attMIL model to predict outcomes at the tile level. Following
this, it executes patient-wise aggregation and utilizes an
attention mechanism to assess the significance of various in-
stances within a bag for weighing their contributions. This
process involves merging predictions from multiple tiles that
JHEP Reports, --- 2
belong to the same patient, resulting in a comprehensive pre-
diction for that patient. If any patient has more than one WSI
then all the WSIs of a single patient are considered as a single
datapoint. The attMIL has a multilayer perceptron (classifier
network) (512 × 256), (256 × 2) with an attention mechanism.
This is followed by a hyperbolic tangent (tanh) layer to obtain
the tile-wise prediction score, which is aggregated patient-wise
for the WSI data. For internal validation, we used a three-fold
cross-validation approach, dividing the dataset into three
equal parts or ‘folds’. In this process, the model was trained on
two folds and validated on the remaining one, with this pro-
cedure being repeated three times using different folds as the
validation set. The cohort was divided at the patient level,
025. vol. 7 j 101198 4
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ensuring a balanced representation of each diagnosis across all
groups. For external validation, the model was trained on the
entire internal cohort and was tested on the external validation
cohort. The ALNE model was trained to classify cases as AIH or
PBC. To enhance model interpretability and introspection, we
utilized high-resolution heatmaps to visualize the model’s pre-
dictions, highlighting regions of morphological diagnostic sig-
nificance within the liver biopsies.

Analysis for interobserver variability

To compare the performance of the ALNE model with human
readers, five general pathologists were recruited; their scoring
was evaluated in terms of interobserver variability and the
variability between the ALNE model and individual experts.
Nineteen liver biopsies from the validation cohort were
selected: five best predicted AIH, five best predicted PBC, four
worst predicted AIH, and five worst predicted PBC. All pa-
thologists were blinded to pathology reports and previous as-
sessments made on these biopsies. The cases were presented
to the pathologists in random order through a digital web-
based platform. A week before the challenge the Department
of Pathology of the coordinating center organized an online
webinar led by the liver pathologist aimed at reviewing the main
pathological features of AIH and PBC. To have a fair compar-
ison with the training of the ALNE model, only H&E slides were
provided. No timing constraints were imposed on
the pathologists.

We assessed the interobserver agreement among patholo-
gists by calculating Cohen’s kappa for each pair. Subse-
quently, we calculated the agreement between each individual
expert pathologist and the ALNE model.15 Lastly, we also
calculated the interobserver agreement among pathologists
with the Fleiss kappa for multiple categorical variables.16

Further details about these analyses are provided in the Sta-
tistics section.

Model explainability

To interpret and visualize the predictions made by our model,
we used attention heatmaps on the external validation dataset.
These heatmaps highlight areas interpreted as diagnostically
significant for distinguishing the two diseases, thereby also
demonstrating the model’s generalizability. In each WSI,
normalized attention scores were allocated to their respective
spatial locations, signifying the model’s assessment of the
diagnostic importance of different biopsy regions. Regions with
higher attention scores are indicative of morphological features
with greater diagnostic relevance. It is important to emphasize
that these attention heatmaps do not specifically delineate
areas of AIH or PBC. Instead, they provide insight into the
relative significance each liver biopsy region holds in contrib-
uting to the model’s predictions.

To improve explainability, the score obtained from the ALNE
model was imported into the Rulex software (Rulex Inc., Genoa,
Italy) for integration with clinical data. The Rulex Platform (www.
rulex.ai) allows the handling of input data from diverse sources,
and it can be seamlessly integrated with other tools or custom
code.17 Together with standard classification and regression
techniques, the platform provides emphasis on interpretability,
while also incorporating logic learning machine (LLM). LLM is
an algorithm designed to model problems through intelligible,
JHEP Reports, --- 2
and possibly overlapping, if-then rules. This algorithm has been
pivotal in the development of various applications, both in in-
dustrial settings18 and in research.19

Statistics

The primary endpoint for evaluating the performance of the
model was the area under the receiver operating characteristic
curve (AUROC). To ensure robustness, the experiments were
iterated 10 times using different random seeds. Confidence
intervals (CIs) were calculated to indicate the plausible range of
the true value of our measurements. Wider intervals suggest
heightened uncertainty, whereas narrower ones imply greater
precision. These intervals are typically set at a predetermined
confidence level, such as 95%. Key metrics in the evaluation of
diagnostics tests or models include sensitivity, specificity,
positive predictive value (PPV), and negative predictive value
(NPV). Sensitivity refers to the ability of the test to accurately
identify true positive cases, whereas specificity measures the
ability to accurately identify true negatives. PPV evaluates the
probability that a positive test result is indeed a true positive,
and NPV assesses the probability that a negative result
is accurate.

Cohen’s kappa index was utilized as a statistical measure to
evaluate the level of agreement or concordance between two
subgroups, either between two pathologists or between AI and
pathologists. A kappa value of 1 signifies perfect agreement. In
contrast, a value of 0 indicates no agreement beyond chance,
whereas negative values imply agreement among raters is less
than what would be expected by chance, signifying systematic
disagreement. Values falling between these extremes represent
varying degrees of agreement.

Contrasting with Cohen’s kappa, which measures agree-
ment between two raters, Fleiss’s kappa extends this concept
to accommodate any fixed number of raters. This makes it
particularly suitable for studies involving multiple raters, such
as in our case with several pathologists. Fleiss’s kappa was
utilized to provide a more comprehensive understanding of the
agreement among pathologists. Similar to Cohen’s kappa, the
range of Fleiss’s kappa spans from -1, indicating complete
disagreement, to 1, signifying complete agreement. A value of
0 in Fleiss’s kappa, like in Cohen’s, suggests that the agree-
ment is no better than what would be expected by chance.

Results

Assessment of DL-based ALNE model for differentiating
PBC and AIH in liver pathology

We evaluated the ability of our DL-based ALNE model to
distinguish PBC from AIH in liver pathology via comprehensive
experiments encompassing different validation approaches.

Upon training our model with our internal validation cohort,
we proceeded to evaluate it by conducting three-fold cross-
validation. Our ALNE model demonstrated a remarkable per-
formance, achieving an AUROC of 0.97 (CI: ±0.07) (Fig. 1B).
This result robustly validates the model’s proficiency in accu-
rately classifying PBC and AIH cases. The ALNE model gen-
erates for each prediction a classification score; the closer to 1,
the more likely AIH, and the closer to 0, the more likely PBC.
The distribution of the score from the ALNE model is shown in
Fig. S3 for AIH and PBC classes, respectively.
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To assess real-world applicability, we transitioned to
external validation experiments. The model maintained strong
performance, by achieving an AUROC result at 0.81 (CI: ±0.02),
demonstrating minimal variance across ten separate validation
runs (Fig. 1C). This consistency emphasizes the reliability of our
model in clinical settings. Furthermore, aggregating patient-
wise probabilities across ten repetitions provided the
following diagnostic accuracy metrics: true positives (TP) = 58,
false positives (FP) = 17, true negatives (TN) = 13, and false
negatives (FN) = 4. These metrics give rise to a sensitivity of
0.94, specificity of 0.43, PPV of 0.77, and NPV of 0.76. This
comprehensive evaluation further supports the ALNE model’s
effectiveness in discerning PBC from AIH.

To assess the performance of individual cohorts and
examine how performance varies with cohort size and data
diversity, we conducted a series of experiments, each
repeated five times. Specifically, we evaluated the local per-
formance of the ALNE model across different cohorts. For the
Hannover Medical School cohort with n = 141, the AUROC
was 0.6305 (±0.1172). When training solely on the Fondazione
IRCCS San Gerardo dei Tintori Monza cohort with n = 138,
the AUROC improved to 0.7505 (±0.1108). Additionally,
combining three smaller cohorts – Ospedale Milano San
Giuseppe, Ospedale di Novara, and Policlinico di Palermo –

with n = 89 yielded an AUROC of 0.7086 (±0.0447). These
experiments provide insights into the impact of cohort size
and data diversity on model performance. The above results
and experiments show the individual cohort experiments
provide insights into the impact of cohort size and data di-
versity on the model performance.

To summarize, our exploration of the ALNE model’s pre-
dictive capabilities in diagnosing PBC and AIH has yielded
highly promising outcomes. Both internal and external valida-
tions have consistently demonstrated the model’s remarkable
accuracy in distinguishing between these two liver diseases.
Attention heatmap analysis in AIH and PBC diagnosis using
the ALNE model

To better understand how the model achieves its predictions,
we generated attention heatmaps, focusing in particular on
outliers, that is those cases showing the highest and
lowest scores.

In WSIs which were correctly classified as PBC and AIH, we
identified highly predictive regions that the model associated
with each disease. For instance, Fig. 2A illustrates a portal tract
from a case with AIH, characterized by moderate chronic
inflammation and interface activity. Similarly, Fig. 2A shows a
case with PBC correctly predicted by the model, marked by the
absence of lobular inflammation and the presence of a terminal
hepatic vein and mild sinusoidal dilatation. These examples
highlight that the model tends to focus more on areas with
increased inflammation, associating such patterns predomi-
nantly with AIH.

The top misclassified cases are reported in Fig. 2B, where
two main patterns were identified. First, the ALNE model at
times misinterprets marked inflammation in cases with PBC as
indicative of AIH. In the validation set, only four cases with AIH
with only mild inflammation were misclassified as PBC. While
the model accurately detects inflammation, this alone does
not always lead to correct disease classification. The attention
JHEP Reports, --- 2
scores indicate that the model assessed these inflamed areas
as diagnostically relevant, yet they may not always provide
enough discriminatory power for accurate diagnosis. None-
theless, these attention scores are valuable for pathologists,
as they highlight critical regions within biopsies, potentially
reducing both interobserver and intra-observer variability.

In summary, the ALNE model, without reliance on manual
annotation, has effectively learned to distinguish between AIH
and PBC in liver tissue.

AI and pathologist concordance in distinguishing AIH
from PBC

In evaluating the effectiveness of our AI model against general
pathologists, the AI predictions demonstrated equivalence or
potential superiority to the interpretations made by human
readers. Specifically, the average agreement among patholo-
gist pairs was measured with Cohen’s kappa as -0.02462,
indicating no agreement. Fleiss’s kappa value for overall
agreement among pathologists was 0.09, reflecting only slight
agreement. This is compared to the average agreement be-
tween individual pathologists and the ALNE model, which
yielded a Cohen’s kappa of 0.28, signifying fair agree-
ment (Fig. 3).

These results lead to an important conclusion: generalist
pathologists can find themselves at odds when making differ-
ential diagnoses between PBC and AIH. This inconsistency
reiterates the potential of the ALNE model as a more supportive
tool in such diagnostic scenarios.

Clinical characterization of misclassified cases of PBC and
AIH in AI diagnosis

To enhance our understanding of the model’s predictions and
limitations, we conducted a thorough analysis of the mis-
classified cases, focusing on their clinical characteristics to
improve interpretability. Given that only five out of 62 cases
with AIH (8%) were misclassified compared to 16 out of 30 PBC
cases (53%), our attention was primarily directed toward the
latter group.

Initially, we examined whether clinical variables differed
between correctly classified and misclassified groups.
Although no statistically significant differences were found
(Table S1), we observed suggestive trends of higher age at
diagnosis and higher aspartate aminotransferase (AST) values
in the misclassified PBC group. Multivariate analysis was then
conducted using the Rulex LLM, which generated ten
explainable if-then rules (Table S2). The Rulex method does
not evaluate AST levels solely in correlation with the target
variable; it considers interactions between AST and other
input variables. Consequently, while the p value for AST alone
may not appear significant in univariate analysis, its contri-
bution can become significant when combined with other
variables in the model.

The most prominent rule for misclassifying PBC patients
identified those with alkaline phosphatase (ALP) levels between
1 × ULN and 2 × ULN, combined with AST levels above 1
× ULN, as more likely to be misclassified as having AIH. The
second key rule indicated that PBC patients with gamma-
glutamyl transferase (GGT) values higher 5 × ULN and AST
levels above 1 × ULN were also prone to misclassification
as AIH.
025. vol. 7 j 101198 6



A Correctly predicted PBC and AIH

B Wrongly predicted PBC and AIH

PBC

AIH

PBC

AIHH

C

PBC

IH

Fig. 2. Visualization of the attention heatmaps for the validation cohort. (A) Correctly predicted instances. Above: terminal hepatic vein with adjacent mild sinu-
soidal dilatation and no inflammation, indicating PBC. Below: portal tract exhibiting moderate chronic inflammation and interface activity, correctly classified as AIH. (B)
Incorrectly predicted instances. Above: parenchymal area without necroinflammatory foci or confluent necrosis, misclassified as PBC. Below: moderate chronic
inflammation in an enlarged portal tract with lymphocytic cholangitis and degenerative changes of the bile duct, misclassified as AIH. AIH, autoimmune hepatitis; PBC,
primary biliary cholangitis.
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Further analysis of clinical records focusing on patients with
abnormal AST values (outliers) revealed three interesting cases
(Fig. S4). The first case showed pruritus and systemic sclerosis,
fluctuating AST and alanine aminotransferase (ALT) levels,
positive antinuclear antibodies (ANAs) with a centromeric
pattern, and normalized liver enzymes after UDCA therapy. The
second case exhibited pruritus, positive ANA with a nuclear rim
JHEP Reports, --- 2
pattern, elevated immunoglobulin M (IgM), normal immuno-
globulin G (IgG), and partial response to UDCA and bezafibrate.
The third case, also AMA-negative and gp210 (nucleoporin 210)
positive, showed an incomplete response to UDCA, improving
after adding obeticholic acid.

In conclusion, the use of Rulex ML software revealed that
PBC patients misclassified as AIH by the ALNE model, which
025. vol. 7 j 101198 7
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Fig. 3. Evaluating pathologist interobserver variability and AI conformity. The paired agreement among couples of pathologists (at the top) and between each
pathologist and the AI model (at the bottom) in classifying AIH and PBC is represented by a variation of the Cohen’s kappa index. The Cohen’s kappa index is a metric
which runs between -1 and 1 and takes into account agreement by chance. The subplot at the top shows the agreement between each pair of pathologists, whereas
the agreement between the AI model and each pathologist is shown in the subplot at the bottom. The analysis was performed on a random subset of 19 cases from the
validation cohort. For evaluation purposes, the pathologists assessed each case using the H&E slides only. AI, artificial intelligence; AIH, autoimmune hepatitis; PBC,
primary biliary cholangitis.

Deep learning to discriminate between AIH and PBC
relied only on image data, exhibited specific biochemical pat-
terns in liver enzyme levels.
Discussion
Our study presents the ALNE model, a DL-based tool able to
discriminate between AIH and PBC only on the grounds of
digital pathology images derived from H&E-stained liver biopsy
slides without annotations. Our work used attention heatmaps
and the use of explainable AI software to characterize model
predictions and open the black box. Our ALNE model
demonstrated robust performance even with the diversity in
scanning and digitizing techniques, as well as slide staining
used across different centers. This adaptability supports the
model’s applicability in real-world settings, where such vari-
ability is common. The ALNE model achieved good
JHEP Reports, --- 2
performance in external validation cohorts, recognizing areas of
inflammation within the biopsy in a self-supervised manner.

The ALNE model achieved excellent performance in
discriminating AIH from PBC without the need for manual
annotation, which is error-prone and time-consuming. Although
studies using AI on manually annotated slides have been
published, we should stress that the field of digital and
computational pathology is moving toward unsupervised or
semi-supervised techniques like the one in our experimental
approach.8,20–23 One of the most pressing reasons behind this
change is the progressive shortage of pathologists worldwide
in contrast with the rapid accumulation of WSI data and the
increasing daily workload of pathologists.24 The ALNE model,
with its visualization techniques, offers a valuable tool in this
regard. The rapid scanning and model inference capabilities,
combined with attention heatmaps and predictive tiles, could
025. vol. 7 j 101198 8
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significantly aid in the diagnostic process even in rare, com-
plex, and heterogeneous diseases. Tools such as ALNE could
potentially complement the capabilities of pathologists, by
viewing and assessing images and also automating
tedious tasks.

At the core of the ALNE model resides a cutting-edge
technique: transformers. Most studies published between
2018 and 2020 used CNNs as their DL backbone.25 More
recently, transformers have started to replace CNNs.26 This
newer class of neural networks yields a higher accuracy for
image classification,27 and is more robust and explainable.28

We should also underscore that the model has reached these
goals after training with hundreds of cases, whereas other
published models in other fields used samples in the order of
thousands and even more.6 Overall, these arguments reinforce
the idea that the ALNE model represents an extremely novel
and robust AI tool in the field of digital pathology, bringing
unprecedented innovation in the area of rare liver diseases.

In addition, our work did not focus only on accuracy, but
several approaches were used to understand the process
behind prediction and features associated with right and wrong
classifications, in line with the call for explainability of AI tools in
medicine.29 Model explainability is crucial to apply DL methods
in clinical medicine.29,30 Some algorithms, such as those using
neural networks, are particularly well suited for the analysis of
unstructured complex data, for example images or text.31,32

Yet, being inherently black-box models, they are often diffi-
cult to understand even for domain experts. The use of tech-
niques that enhance the interpretability of the model is one
strategy to build trust among end-users.33

For models using images, the generation of attention heat-
maps is one example; they are used to understand how these
models focus on different parts of input data (the image) when
making predictions or generating outputs.34 Attention heat-
maps were generated and showed relevant areas associated
with predictions of AIH or PBC. Heatmaps identify whether the
features employed by neural networks are consistent with
medical insight of domain experts, both qualitatively and
quantitatively. The methodology of our pipeline, based on an
end-to-end approach, did not permit us to explicitly quantify
inflammation or other pathological elements. Instead, they
indicated most indicative regions of AIH or PBC, avoiding the
biases introduced by human annotation.

In addition, the use of rule-based models, such as
Rulex,19,35,36 is also gaining traction in medicine thanks to their
interpretability. There is increasing interest for blended ap-
proaches that utilize black-box models with high levels of ac-
curacy together with other MLmodels such as Rulex to generate
a downstream characterization of the features highlighted by the
black-box model.19 The use of Rulex software did complement
the ALNEmodel in our experimental approach and allowed us to
integrate the prediction score generated by the model with
clinical variables.. It is important to note that theALNEmodelwas
fully unaware of any clinical variables and achieved its prediction
only on the grounds of the information embeddedwithin images.
This reinforces the concept that we achieved a fully unbiased
classification approach. Our novel approach has allowed us to
further understand which clinical scenarios were more chal-
lenging for the model, and to plan for future improvements.

The ALNE model has the potential to support general pa-
thologists in cases of PBC and AIH by highlighting areas of
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inflammation that need further attention. AI-based tools are
capable of bringing quantitative assessment of elementary le-
sions, improving the accuracy of differential diagnosis, and
promoting precision medicine principles.32 Liver biopsy is
increasingly less used for the diagnosis of PBC;9 this trend will
reduce the number of cases that are seen by liver pathologists,
with potential de-skilling. Instead, AI tools can be trained with a
large number of historical slides from digital archives, repre-
senting a powerful assistant for future pathologists.37 In the
field of metabolic-dysfunction associated liver disease, there is
initial evidence that AI-based models can provide reproducible
evaluation of hepatocyte ballooning and lobular inflammation,
assisting liver pathologists and standardizing slide scoring in
clinical trials.38 Our work is the first to show the feasibility and
accuracy of such approaches in rare liver diseases.

Limitations of the study included the lack of a centralized
histological review of digital slides and the absence of control
groups reflecting our focus on longitudinal diagnoses rather
than purely pathological interpretation. Furthermore, other
drawbacks are the unbalanced number of cases between AIH
and PBC, the limited sample size of the validation cohort, the
presence of some missing data within some clinical tables, and
the absence of PBC–AIH mixed phenotypes. It is important to
acknowledge that because autoimmune liver diseases are
relatively rare compared to more prevalent conditions like
cancer, achieving the large sample sizes typical in cancer
research remains difficult. This limitation underscores the
unique challenges in studying rare diseases.39 The predomi-
nant geographical origin from Western Europe also presents a
limitation. Misclassification occurred more frequently for PBC
cases with raised AST levels;these cases highlight the need for
a dedicated multicenter effort to address this issue in future
studies. For broader clinical implementation, we aim to
generate a multi-disease liver pathology atlas requiring public/
private partnerships. The scarcity of large datasets in autoim-
mune liver diseases is a challenge for the field, necessitating
collaborative efforts for development. We acknowledge that a
multimodal approach, which integrates imaging with clinical
data such as age, gender, laboratory parameters, and auto-
antibodies, is likely to enhance diagnostic accuracy. Howev-
er, incorporating these varied data types into a cohesive model
presents significant technical challenges, particularly in terms
of model architecture and data integration techniques.40 These
challenges are not unique to our study but are widely
acknowledged in the field of medical AI as areas requiring
further research and development. Currently, the field lacks a
standardized methodology for effectively combining these
disparate types of data. Our future work intends to address this
gap by developing and testing multimodal models that can
leverage both image data and clinical information.

In conclusion, we have presented ALNE, the first
transformer-based DL model able to accurately distinguish two
rare diseases of the liver, AIH and PBC, relying only on H&E
slides without the support of any human annotation. Our ALNE
model demonstrated robust performance even with the di-
versity in scanning and digitizing techniques, as well as slide
colorations used across different centers, and in an external
validation cohort. Our work presents significant advancements
in the field of liver pathology, leveraging the potential of newer,
cutting-edge AI technologies also in the differential diagnosis of
rare liver diseases.
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