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As free living organisms, fungi are challenged with a variety of environmental insults

that threaten their cellular processes. In some cases, these challenges mimic conditions

present within mammals, resulting in the accidental selection of virulence factors over

evolutionary time. Be it within a host or the soil, fungi must contend with environmental

challenges through the production of stress effector proteins while maintaining factors

required for viability in any condition. Initiation and upkeep of this balancing act is mainly

under the control of kinases that affect the propensity and selectivity of protein translation.

This review will focus on kinases in pathogenic fungi that facilitate a virulence phenotype

through translational control.

Keywords: translation, kinase, fungi, translational regulation, stress response, oxidative stress, heat shock,

starvation adaptation

INTRODUCTION

Survival in a mammalian host ultimately requires the invading fungus to combat three main
physiological challenges; (1) It must be able to acquire nutrients in a restricted resource
environment; (2) withstand temperatures exceeding ambient, and (3) contend with immune
system-induced killing in the form of acidic and oxidative damage. These restrictions may be the
very reason that of the over 2 million predicted fungal species, only ∼300 have ever been found to
cause disease (O’brien et al., 2005). Therefore, possession and production of factors that allow an
organism to remain viable under these conditions are necessary for mammalian virulence. So what
do these organisms possess that allows them to overcome these challenges? Genomic sequencing
has failed to adequately address this question as species within the same genus vary in their
pathogenicity. For example, Cryptococcus amylolentus is not pathogenic despite having most of the
virulence factors possessed by its highly virulent relative Cryptococcus neoformans (Garcia-Solache
et al., 2013).

We speculate that an organism’s pathogenic potential can be defined by its “adaptive agility”
to host derived cellular stress, that is the extent and speed at which an organism can reshape
its proteome to one that is suited for a new environment. The extent, that is the maintenance
and longevity of a stress response, is partially controlled at the level of transcriptional expression
through the sustained production of responsive genes. However, the speed at which the response
is executed is determined by cellular factors already present at the time of the stress and are made
following it to amplify the transcriptional response. At first glance, one would not believe that the
speed of the stress response would be necessary for fungi to promote infection. However, many
of the host derived cellular insults have immediate deleterious effects that must be contented with
immediately before the organism sustains irreparable damage. Rapid expression of virulence factors
in response to quickly changing environmental conditions could alter the outcome of infection
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toward progression rather than containment and clearance.
Therefore, the interaction between the host and pathogen at
the molecular level can be viewed as a competition between
organisms’ “adaptive agilities,” where a host response is met with
a pathogenic response and vice versa.

The biological exchange can be played out over time
(chronic infection) or can be decided quickly if one of the
opponents is faster than the other (acute infection/death). An
example of this competitive dynamic can be seen between
the dimorphic fungi Candida albicans and the phagocytosing
macrophage (Vazquez-Torres and Balish, 1997; Klengel et al.,
2005; Brothers et al., 2011). In response to signals such as
increasing levels of CO2 and reactive oxygen species (ROS),
C. albicans responds by filamenting to prevent phagocytosis
or to escape the macrophage if already phagocytosed. As the
pathogen initiates the process of germination, the macrophage
itself upregulates genes involved in phagosome maturation
(Nicola et al., 2008). Genetic manipulations that slow down the
maturation process in the macrophage result in failed fungal
killing (Okai et al., 2015), whereas those that cause a defect in
filamentation result in macrophage induced killing (Ghosh et al.,
2009). A draw is met when both competitors reach homeostasis
and limit their responses (latency). Low transcriptional output
is a characteristic of fungal latency, with most activity involving
nutrient acquisition and autophagy instead of growth as seen
with an active infection (Alanio et al., 2015; Brunet et al., 2018).
An example of immune latency is best characterized in response
to Mycobacterium tuberculosis, where macrophages continually
fail to clear the pathogen and instead aggregate around the site
of infection forming a granuloma (Flynn and Chan, 2001; Pagan
and Ramakrishnan, 2014).

How an organism responds to an environmental insult
produced by the host is determined by the coordinated efforts
of multiple cellular processes. The disruption of a single signaling
pathway resulting in the loss of many virulence traits supports
this claim (Zhao et al., 2006; Hu et al., 2008b; Lee et al., 2016).
One of the most immediate and drastic effects that can occur
in response to cellular stress are changes in the translational
landscape of the organism, which in most cases precedes the
transcriptional response. Many of these changes that influence
the translational state are brought about by post-translational
modifications in the form of protein phosphorylation. Therefore,
kinases have the potential to manipulate the speed of a stress
response by modulating the association of individual mRNAs
with translation related factors in response to cellular stress.
Furthermore, translation can control the extent of the stress
response by limiting the number of active and available
ribosomes at the time of stress. Initiation is generally considered
the rate-limiting step in protein synthesis, making it a prime
regulatory point for controlling translation output.

This synopsis aims to discuss the role kinases play in
regulating translation in response to and during host derived
stress. In particular, we will focus on kinase-mediated regulation
of translation initiation brought about by exposure to ROS
(oxidative stress), higher temperatures, and the demand for
alternative carbon utilization for energy production. Kinase
mediated regulation of translation is critical for rapidly

promoting the expression of factors that allow for survival in the
host and therefore, virulence.

AN OVERVIEW OF TRANSLATION AND ITS
POINTS OF REGULATION

The process of translation in eukaryotic cells involves several
specific stepwise associations of factors with mRNAs, followed
by a cascade of events that lead to translation initiation. The
ribosome then synthesizes the polypeptide through the process
of translation elongation, eventually terminating upon reaching
a stop codon (Figure 1). This process was once believed to
be unregulated with most gene expression being controlled
solely at the transcriptional level. However, strong evidence now
suggests that multiple steps of mRNA decoding are heavily
modulated under select conditions, with imbalances having
drastic consequences to cellular functions (Le Quesne et al., 2010;
Spriggs et al., 2010; Genuth and Barna, 2018).Within this cycle of
protein synthesis, several regulatory checkpoints are targeted by
kinases to exert regulatory control of the process. Initiation is the
least evolutionarily conserved process of translation and is also
believed to be the rate-limiting step (Benelli et al., 2003).

Eukaryotic small ribosomal subunits cannot interact directly
with mRNAs, with a few rare exceptions. Instead, translation
initiation involves the recruitment of the 40S pre-initiation
complex to the 5′ methylated cap of the mRNA (Gross et al.,
2003). This is achieved through the cooperating efforts of the
cap binding complex with the direct cap binding protein 4E,
recruiting the scaffolding protein 4G, and the helicase 4A that
unwinds mRNA secondary structure between the cap and the
start codon during ribosomal scanning (Gross et al., 2003;
Schutz et al., 2008; Marintchev et al., 2009) (Figure 1). Most
translationally active mRNAs contain tracts of adenines at their
3′ end called a poly-A tail, which can be bound by the Poly-
A binding protein (Pab1) (Blobel, 1973). Pab1 is believed to
associate with 4G, circularizing the transcript forming what is
known as a “closed loop” where the 3′ tail is brought close to the
5′ cap (Sachs and Davis, 1989; Wells et al., 1998). It is important
to note, however, that this association is not strictly required for
mRNA translation but instead may enhance it (Thompson and
Gilbert, 2017). Joining of the 60S subunit with the 40S subunit
at the start codon so that that protein biogenesis can begin,
is accomplished through the recruitment of the initiator tRNA
bound to the ternary complex (Liemburg-Apers et al., 2015).
Following the recruitment of the 40S pre-initiation complex to
the 5′ cap of the mRNA and subsequent scanning along the 5′

UTR (Untranslated Region), protein biogenesis begins with the
joining of the 60S subunit with the ternary complex containing
the initiator tRNA. The ternary complex, which is composed of
3 subunits (eIF2α, β, γ), hydrolyzes bound GTP to GDP after
delivering the initiator tRNA to the peptidyl site (P-Site) of the
ribosome (Jackson et al., 2010). Recycling of this factor requires
the exchange of the now bound GDP with GTP.

The rate of initiation, and by extension, the rate of translation,
can be modulated by interfering with the cooperative binding
efforts between these factors. Furthermore, inhibition of proteins
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FIGURE 1 | Brief overview of translation: (1) Translation begins with the recruitment of the cap-binding complex to the 5′ end of the mRNA allowing interaction with

the Poly-A binding protein (Pab1)-associated 3′ poly-A tail. All Eukaryotic mRNAs are capped by a modified nucleotide at the 5′ end, which is typically a

N7-methylated guanosine. eIF4E recognizes the cap and recruits the scaffolding initiation factor eIF4G. eIF4G itself recruits a suite of initiation factors including Pab1,

which binds to the poly-a tail. The interaction between eIF4G and Pab1 bridges the 5′ and 3′ ends of the mRNA forming a “closed loop” structure that is thought to

stimulate translation. (2) At this point the 40S subunit is recruited to the 5′ end of the mRNA where it begins scanning the transcript until reaching a start codon. The

corresponding initiator tRNA is delivered to the 40S subunit at the start site by the eIF2 ternary complex, allowing for the joining of the 60S subunit (3). Following

ribosome assembly, translation elongation begins with the recruitment of tRNAs charged with their respective amino acids. (4) Elongation ends when the ribosome

recognizes a stop codon, where no corresponding tRNA exists, resulting in the release of the produced polypeptide and the dissociation of the 60S and 40S subunits

thereby allowing their use for further rounds of translation.

that recognize the 5′ cap or the 3′ poly-A tail will also limit
or prevent translation. The stress conditions mentioned in this
review modulate kinase activity to directly or indirectly affect
these dynamic interactions, which result in a change in the
efficiency and specificity of mRNA translation. Each fungal stress
response can be characterized by the combinatory action of
kinases that distinctly change the post-translational make-up
and overall concentration of translation related factors. We will
discuss results that suggest that these stress induced changes
made by kinases on the translational machinery act to improve
the “adaptive agility” of the pathogen.

KINASES CONTROLLING TRANSLATION
IN RESPONSE TO OXIDATIVE STRESS

Fungal pathogens that can penetrate a host’s skin or mucosal
layer are first met with innate immune cells. Cryptococcus
neoformans and Pneumocystis spp. are cleared primarily by
macrophages, whereas neutrophils are more critical in clearing
Candida albicans and Aspergillus fumigatus, depending upon
their morphotypic state (Vazquez-Torres and Balish, 1997;
Dunyak et al., 2002; Nicola et al., 2008; Bhagwat et al.,
2018). Macrophages internalize yeast through the process of
phagocytosis followed by the intracellular production of reactive
oxygen species (ROS) and reactive nitrogen species (RNS), which
are potent fungicidal effector molecules (Nicola et al., 2008).
Filamentous fungi, however, are exposed to extracellular forms of

ROS produced via neutrophils (Bonnett et al., 2006). Regardless
of its form or location, ROS will produce fungicidal effects unless
the organism can quickly reduce its cellular components and
repair the damage caused by oxidization (Morano et al., 2012).
Transcriptome analysis of C. albicans exposed to macrophages
suggests that phagocytosis elicits a transcriptional response in
which mRNAs encoding proteins related to translation are
repressed, while those related to countering oxidative stress
and alternative carbon utilization pathways are upregulated
(Lorenz et al., 2004). C. neoformans and A. fumigatus have a
similar pattern of expression when exposed to macrophages and
neutrophils, respectively (Sugui et al., 2008; Derengowski Lda
et al., 2013). Together, these results suggest that fungi respond
to oxidative damage by downregulating biological processes
involved in growth and ribosome biogenesis and instead place
higher importance on the production of factors related to ROS
reduction and cellular damage repair. How fungi can initiate
such a drastic shift in phenotypic expression may involve intense
regulation of active ribosomes (Mills and Green, 2017).

eIF2α Phosphorylation Mediated
Translational Regulation
Technical limitations remain in studying translational responses
to dynamic interactions such as those found between host
and pathogen. Manipulation of culture media, however, can
mimic a stress environment that a fungus encounters in the
host. One such method is the utilization of ROS generating
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compounds such as hydrogen peroxide (H2O2). Experiments
such as these have revealed dramatic changes to the translational
landscape in yeast, with translation initiation receiving the
strongest regulatory pressure (Shenton et al., 2006). However, it
is important to note that elongation may also be affected as well
(Grant, 2011; Wu et al., 2019). The best example of translational
control in response to oxidative stress are found in S. cerevisiae.
Exponentially growing cultures exposed to hydrogen peroxide
undergo global translational repression (Holmes et al., 2004).
Translational repression was alleviated in the absence of the
kinase Gcn2 (general control non-derepressible 2), which is the
sole kinase of the eIF2α subunit in the ternary complex (Wek
et al., 1995). Phosphorylation of this subunit at a single conserved
serine by this serine/threonine protein kinase prevents the
ternary complex from recycling new initiator tRNAs (Wek et al.,
1995; Zaborske et al., 2009) (Figure 2). As a result, new rounds of
canonical translation cannot continue due to the lack of available
active ternary complex required for 80S subunit formation
at the start codon. It is interesting to find Gcn2 possessing
catalytic activity in response to H2O2, as the only known
activation pathway for the kinase involves binding of uncharged
tRNA to a functionally essential domain (Ramirez et al., 1992).
Therefore, H2O2 and other non-nitrogen starving conditions
known to induce Gcn2-dependent eIF2α phosphorylation must
somehow affect the availability of amino-acylated tRNA to
initiate translational inhibition (Anda et al., 2017). Rapid and
tight control over the abundance of charged tRNAs may provide

a level of gene regulation that occurs before other forms of
translational remodeling (Hanson and Coller, 2018).

Preventing translational suppression in response to oxidative
stress results in a severe growth sensitivity in S. cerevisiae
(Shenton et al., 2006). How translational suppression facilitates
the observed increase in fitness remains obscure. It is known,
however, that specific mRNAs can escape translational repression
and instead experience translational upregulation (Lu et al.,
2004; Vattem and Wek, 2004). Regulating translation in this
way can be a strategy to quickly deploy a stress response by
establishing new conditions under which the rate of initiation
for specific transcripts is favored over others. A classic example
in support for this hypothesis is seen in the translational de-
repression of the transcription factor Gcn4p, where high levels
of active ternary complex favoring ribosomes to associate at
start codons upstream of the annotated start codon (uORF)
preventing the coding ORF from being translated (Lu et al.,
2004). Gcn2 activation reduces active ternary complex, thereby,
lowering the recognition of weaker start codons and instead
favors those in proper Kozak context. Higher eukaryotes can
possess up to 3 other distinct eIF2α kinases (except for some
fish that can have 5), in addition to Gcn2, that are activated
in a tRNA-independent process (Baird and Wek, 2012). Many
fungal pathogens possess far fewer, with C. albicans and
C. neoformans containing only one Gcn2 homolog (Tournu
et al., 2005). A. fumigatus seems to possess an additional
eIF2α kinase, possibly Heme-Regulated Inhibitor (HRI), as

FIGURE 2 | Translational regulation in response to oxidative stress: ROS will lead to the activation of eIF2α kinases, such as Gcn2, to inhibit the recycling of the

ternary complex. This results in the overall reduction of protein synthesis, with certain mRNAs either translationally favored or resistant to the suppression. Translation

can also be inhibited through the de-activation or Tor1 in response to oxidative stress. Tor1 phosphorylates 4E-BP (Eap1 or Caf20 in yeast) to prevent it from inhibiting

the eIF4E and eIF4G interaction, which acts to increase the rate of ribosome recruitment.

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4 September 2019 | Volume 9 | Article 318

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Leipheimer et al. Kinases, Translation, and Virulence

strains lacking the Gcn2 homolog CpcC (Cross-Pathway Control
C) have equivalent levels of phosphorylated eIf2α as wild
type strain in response to nitrogen starvation (Sasse et al.,
2008). Growth in culture media alone is uninhibited for S.
cerevisiae lacking Gcn2, which is in stark contrast to A.
fumigatus and C. albicans in which the absence of Gcn2
results in severe growth and morphogenetic defects (Tournu
et al., 2005; Sasse et al., 2008). The differing outcomes of
gene deletion observed suggest that these fungi have adopted
additional roles for Gcn2 outside the scope of the environmental
stress response.

Tor Mediated Translational Regulation
Oxidative stress can also lead to translational suppression
by manipulating the formation of the cap-binding complex.
Saccharomyces cerevisiae strains lacking the mammalian
homolog of 4E-BP (4E binding protein), Eap1 (eIF4E-associated
protein 1), display a reduced sensitivity to certain forms of
oxidative stress mediated translational suppression (Figure 2).
The binding of eIF4G to a specific domain on eIF4E is
crucial for the canonical process of translation to begin.
Un-phosphorylated Eap1 and Caf20 compete with eIF4G for
the corresponding domain found on eIF4E, preventing the
recruitment of 4G, which then prevents the recruitment of the
40S subunit (Altmann et al., 1997). Typically this inhibitory
action is thought to be repressed through the constitutive
catalytic activity of Tor1 (Target of Rapamycin 1), as protein
synthesis in eap11 strains is unaffected by rapamycin treatment
(Matsuo et al., 2005).

Tor1 is a phosphoinositide kinase-related protein kinase
(PIKK) family of atypical Ser/Thr-specific kinases that control
cell growth through targeting of multiple factors related to
ribosome biogenesis and translation (Keith and Schreiber, 1995;
Huber et al., 2009). Long term effects of Tor1 activity regulate
multiple aspects of ribosome biogenesis, mainly at the level
of transcription (Huber et al., 2009). However, its deactivation
in response to stress has been found to reduce not only
translation but also increase mRNA turn-over (Albig and Decker,
2001). Tor signaling has traditionally been viewed as a nutrient
response pathway, but evidence now shows it to be much more
versatile. As stated earlier, de-repression of Eap1 in response
to specific oxidative stresses was found to be important in
proper translational inhibition in S. cerevisiae (Mascarenhas
et al., 2008). Furthermore, Tor inactivation in response to
hypoxia (an inducer of ROS stress) reduces the translational
efficiency of mRNA bearing a 5′ terminal oligopyrimidine
(TOP) tract in their 5′ UTR (Spriggs et al., 2010). Most
mRNAs containing these motifs are associated with ribosome
biogenesis and translation. Tor inactivation instead creates
a translational system that favors mRNAs predicted to have
large structures in their 5′ UTRs. These transcripts tend to be
those associated with stress responses, membrane transport, and
acute signaling processes. In C. albicans, Tor1 was found to
promote filamentous growth while negatively regulating many
cell wall and adhesion genes (Bastidas et al., 2009). Changes in
translational efficiency of mRNAs under rapamycin treatment
have yet to be performed in any fungal pathogens, to the best

of our knowledge. Ribosome Profiling, a technique that can
measure the relative levels of ribosome bound mRNA over the
total mRNA, may now allow researchers to address this question
more easily (Ingolia et al., 2011).

KINASE MEDIATED TRANSLATIONAL
ADAPTATION TO GLUCOSE STARVATION

Fungi is a diverse kingdom made of single and multicellular
saprophytes. Survival in the environment and the host requires
the use of flexible carbon acquisition strategies that can
respond to fluctuation in availability (Passalacqua et al.,
2016). The preferred carbon source for pathogenic fungi
may be limited within the host requiring the expression
of a versatile repertoire of nutrient acquisition strategies
for successful infection (Oliver et al., 2002). Different
niches, for example, glucose-rich central nervous system
vs. poor nutrient tissue, require the promotion of different
carbohydrate utilization pathways (Cooney and Klein,
2008). Evidence for the demand for alternative energy
acquisition is seen in both C. neoformans and C. albicans
where pathways that generate energy in the absence of
free glucose are required for long term survival in the host
(Lorenz and Fink, 2001; Price et al., 2011). Macrophage
phagocytosis also restricts invading pathogen’s access to
glucose. Transcriptional profiling of fungi that are taken up by
macrophages shows substantial upregulation in genes related to
alternative carbon source utilization and carbon transportation
(Lorenz et al., 2004; Derengowski Lda et al., 2013).

Removing glucose from culturing media results in dramatic
changes at both the transcriptional and translational level in
yeast. Original studies using polysome profiling and radioactive
methionine incorporation readouts found that translation is
largely inhibited within minutes in S. cerevisiae following
a shift to glucose-depleted conditions (Ashe et al., 2000).
Furthermore, the observed repression was found to be necessary
for an appropriate starvation response to be formed at the
transcriptional level (Ashe et al., 2000; Arribere et al., 2011).
How this repression comes about and why it has an effect
on transcriptional induction is still mostly unknown. Polysome
profiling performed in S. cerevisiae using; (1) strains lacking
certain regulators of the kinase Snf1 (Sucrose NonFermenting 1);
(2) particular subunits of Protein Kinase A (PKA) complex,
and (3) enzymes responsible for mRNA 5′ de-capping all
show a resistance to translational inhibition in response to
glucose withdraw (Ashe et al., 2000; Holmes et al., 2004)
(Figure 3).

Snf1 Mediated Regulation of Translation
The transient activation of heterotrimeric protein-
serine/threonine kinase Snf1 correlates with 80S ribosome
disassembly following the removal of glucose (Hedbacker
and Carlson, 2008). Carbon starvation induces robust
phosphorylation of Snf1 in the cell, with levels slowly returning
to basal over time following carbon starvation (Hedbacker
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FIGURE 3 | Translational regulation in response to glucose availability: The presence of glucose results in the activation of PKA promoting high levels of protein

biogenesis. At the translational level, this may be achieved through the phosphorylation of Dcp1/2 or Pat1. Phosphorylation of the decapping enzymes may weaken

interactions with the 5′ cap, instead allowing the translational machinery to associate with the mRNA. PKA may also act to stimulate translation through

post-translational modifications of Pab1. Snf1 kinase is known to promote the transcription of the alternative carbon utilization pathway. Long term effects of its

deletion may promote a proteome that is already preadapted to glucose mediated translational suppression.

and Carlson, 2008). Although commendable effort has been

made to determine the mechanism through which the observed
rapid reduction in translation is brought about, the exact
causative means is still unknown. What seems clear is that
the mechanisms of translational inhibition in response to

glucose starvation are starkly different from that of other forms

previously identified. For example, the phosphorylation of eIF2α

or 4E-BP, which reduces active ternary complex or disrupts
the cap binding complex respectfully, do not play a role in this

glucose mediated suppression.

Research relating to the role of Snf1 in promoting alternative

forms of carbon utilization mainly focuses on its stimulatory

effect on transcription (Tu and Carlson, 1995). How it can
affect translational repression is far less understood. Strains

lacking Reg1 and Hxt2, which inhibit the Snf1 catalytic activity,

are resistant to translational repression in response to glucose
removal (Ashe et al., 2000). Ablating Snf1 in these strains restores
translational repression. Given this information, uninhibited
Snf1 catalytic activity in the presence of glucose may promote
the formation of translational machinery that is unresponsive to
carbon starvation despite not having experienced this condition.
The proposed pre-adapted translational machinery could arise
from either the transcriptional promotion of alternative carbon
source response genes or modifications of existing translational
components. Translational output in response to carbon
starvation does increase several hours following the initial shut-
down, although never to original levels (Vaidyanathan et al.,

2014). Why translation is allowed to proceed at this time point
but not earlier is unknown. However, Snf1 catalytic activity might
be responsible for promoting this new translational phenotype
during the initial starvation period through the modification
of existing ribosome machinery and the production of new
components. Accepting this hypothesis would require one to
assume that the ribosome composition is dynamic, not static,
with its make-up defining mRNA preference and translational
potential (Genuth and Barna, 2018). Recent work quantitatively
comparing ribosome associated protein during starved and fed
conditions in S. cerevisiae lends support to this hypothesis (Wang
et al., 2018).

PKA and De-capping Mediated Regulation
of Translation
Protein kinase A (PKA) is a serine/threonine kinase composed
of two regulatory subunits that bind and inactivate two catalytic
subunits forming a tetrameric structure that is conserved from
yeast to humans (Taylor et al., 1990; Knighton et al., 1991;
Johnson et al., 2001). The binding of Cyclic adenosine 3′,5′

monophosphate (cAMP) to the regulatory subunits of the
complex derepresses PKA (Broach, 2012). Therefore, increasing
cellular levels of cAMP results in an increase in PKA directed
phosphorylation. cAMP levels in the cell are at their highest in
the presence of glucose via the combined efforts of adenylate
cyclase and phosphodiesterase, which are themselves regulated
by signaling proteins that either directly or indirectly respond to
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glucose levels (Broach, 2012). Activation of PKA in S. cerevisiae
has been linked to around 90% of glucose induced changes at
the transcriptional level (Zaman et al., 2009). Furthermore, the
deletion of multiple subunits of the complex results in a strain
that is resistant to glucose withdraw induced translational shut-
down (Ashe et al., 2000). Interestingly, PKA in exponentially
growing cells has been found to physically associate with
translation factors, such as Pab1, suggesting that it may promote
or inhibit the recognition of bound mRNAs by ribosome
initiation factors directly (Gao et al., 2008; Tudisca et al., 2012).
Furthermore, PKA may also regulate the abundance of the
scaffolding initiation factor 4G, further supporting its role in
regulating translational flux (Tudisca et al., 2012).

As it stands with regard to glucose withdraw, removal of the
5′ mRNA cap precedes polysomal collapse with de-adenylation
seeming to play a less essential role in S. cerevisiae (Ashe
et al., 2000). In contrast, the de-adenylating enzyme Ccr4 in C.
neoformans partly facilitates translational repression in response
to carbon starvation (Banerjee et al., 2016). Initiation factors that
recognize the 5′ cap or the 3′ poly-A tail to promote translation of
the associated mRNA also protect it from the RNA degradation
machinery. Therefore, post-translational modifications must
exist that either increase the affinity of the decapping enzymes
Dcp1/2 or de-adenylating complexes for its substrate, or decrease
the affinity of the initiation scaffolding complex affinity for
the mRNA. Post-translational modifications made by PKA on
these critical factors can favor translation and therefore protect
the mRNA from the de-capping machinery during glucose-rich
conditions (Figure 3). In Glucose-rich media, an environment
that is known to stimulate robust protein biogenesis, PKA is
kept in an active state. The removal of glucose rapidly inactivates
it, while at the same time, translation is inhibited (Tudisca
et al., 2012). Furthering its role in keeping the genetic system
in a high translational state, PKA directly phosphorylates Pat1,
a crucial component of stress granules (Ramachandran et al.,
2011). Stress granules are large mRNA-protein complexes that
are believed to be both a site of storage and decay of transcripts.
Their formation is tightly correlated with the disassociation
of ribosomes from mRNA (Teixeira et al., 2005). In glucose
rich conditions, the C terminus of Pat1 is kept phosphorylated,
preventing it from forming P bodies. A more recent study found
that this C terminus is responsible for observed interaction with
Dcp2 and the 5′-3′ exonuclease Xrn1 (Charenton et al., 2017).
Is it possible that phosphorylation of this site by PKA prevents
the recruitment of the de-capping machinery to the translating
mRNAs? It is an attractive hypothesis given that strains lacking
Pat1 are also resistant to glucose withdraw induced translational
repression (Holmes et al., 2004). Altogether, glucose withdraw
seems to initiate a process that promotes a translational system
that dis-favors the 5′ mRNA cap. Interestingly, the cap-binding
initiation factor 4E in S. cerevisiae was found to be dispensable
in yeast growing at the glucose poor stationary phase for an
extended period (Paz and Choder, 2001). It is possible, then,
that these kinases promote a situation where non-canonical
forms of translation are favored. It follows that the translation
of transcripts that can engage with the translational machinery in
a cap-independent manner may be favored.

Kinase-Regulated Translational
Remodeling in Response to Glucose
Availability in Pathogenic Fungi
Do these kinases possess a similar function in pathogenic

fungi, and are they essential for virulence? As it is for most

biological questions, the answer is complicated. In addition
to the expected defects in carbon utilization observed in

S. cerevisiae, the absence of Snf1 in C. neoformans also

results in an increased sensitivity to nitrosative stress and

decreased melanin production at higher temperatures (Hu et al.,
2008a). Mice that were challenged intranasally with snf11

strains survived throughout the experimental condition long

after mice challenged with the wild type strain succumbed

to infection. In C. albicans, Snf1 is believed to be essential

for growth as attempts at making homozygous mutants have
failed (Petter et al., 1997). Therefore, C. albicans seems to

have evolved a more substantial dependence on Snf1 than

other fungi, and is in contrast to the filamentous fungal

pathogen, Aspergillus nidulans, where the absence of the Snf1
homolog is not essential for viability. Instead, it regulates the
production of hydrolytic enzymes when cellulose is the sole
carbon source (Brown et al., 2013). Further microarray-derived
data demonstrates that many genes involved in metabolism
are dysregulated in the absence of Snf1, mainly in response to
glucose removal.

The deletion of both PKA subunits, TPK1 and TPK2, in a
single C. albicans strain results in severe growth sensitivity (Cao
et al., 2017). However, the deletion of only one isoform resulted
in a growth sensitivity when in the presence of specific cellular
stresses. Unlike S. cerevisiae, none of the major components
of the Ras/cAMP/PKA pathway by themselves are essential
for viability (Jung et al., 2005; Biswas et al., 2007; Zhu et al.,
2009). However, C. albicans strains lacking PKA activity do
not adequately engage in yeast to a hyphal morphological
switch and are therefore avirulent (Lo et al., 1997). PKA
activity is essential for growth and conidiation in Aspergillus
fumigatus, resulting in a drastic reduction in virulence in mice
(Oliver et al., 2002; Liebmann et al., 2004; Zhao et al., 2006).
Virulence is also reduced in C. neoformans, where the PKA
pathway is required for capsule and melanin production, thereby
facilitating mammalian infection. Additional transcriptional
analysis of PKA function in C. neoformans has been performed
demonstrating roles in the induction of cell wall, metabolism,
and ribosomal subunit genes (Hu et al., 2007; Banerjee et al.,
2016). More recent proteomic data utilizing a PKA inducible and
repressible system further corroborates these findings showing
302 proteins whose abundance is regulated by this kinase
(Geddes et al., 2016). One of the largest groups found to
be regulated were components of the translational machinery,
suggesting that PKA signaling influences ribosome composition
and availability.

To the best of our knowledge, little work has been done to
investigate changes to the translational landscape in response
to carbon starvation in any pathogenic fungal system. The
gap in research is not surprising as translational regulation
(independent of mRNA copy number) has only recently been
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appreciated as a significant influencer of protein expression
(Schwanhausser et al., 2011). Given that the 5′ cap seems to be
the main target in glucose withdraw mediated repression in S.
cerevisiae, it is interesting to find that C. albicans can survive
(albeit poorly) without enzymes that facilitate mRNA capping
(Dunyak et al., 2002). Therefore, translation in these strains
must be initiated in a cap-independent manner. Alternative
initiation pathways that are irrespective of the methylated cap
may aid in the pathogen’s ability to facilitate disease by allowing
a more robust translational profile when disseminating into
poor nutrient tissues (Nicola et al., 2008). Additionally, C.
albicans may have evolved unique biology in the initiation of
translation that has yet to be extensively explored. The most
glaring question this finding asks is how a eukaryotic organism
can remain viable if the canonical form of translation initiation
is inhibited.

TEMPERATURE DEPENDENT
TRANSLATIONAL REGULATION

Drastic increases in temperature cause disruptions in cellular
functions stemming from altered membrane dynamics and
large scale misfolding of proteins (Verghese et al., 2012).
The ability to adjust the proteome accordingly and grow
at temperatures exceeding ambient is essential for virulence
and restricts many fungi from being pathogenic (Bergman,
1966; Robert and Casadevall, 2009). Several kinases have

been identified to play a role in thermotolerance in fungi.
However, a vast majority of these studies focused more on the
transcriptomic consequences of their activity rather than their
impact on translation. As previously mentioned, translation is
often drastically suppressed in response to stress at the level
of translation initiation. Several studies have examined mild
heat shocks of temperature (between 37◦ and 42◦C), more
relevant to host temperature adaptation, as well as more robust
heat shock up to 50◦C. The fission yeast Schizosaccharomyces
pombe possess three kinases that can phosphorylate eIF2α,
Hri1, Hri2, and Gcn2, which target the same conserved serine
(Zhan et al., 2004). Although phosphorylation of eIF2α has
yet to be examined at mammalian body temperature, robust
heat shock (46◦C) has been found to induce Hri2 mediated
eIF2α phosphorylation (Zhan et al., 2004) (Figure 4). Gcn2
also contributed to this response but was not active until 20–
30min following the heat shock. The importance of eIF2α
phosphorylation as it pertains to translational adaptation during
heat stress is currently unknown. Similar to the carbon
starvation response, Wen et al. demonstrated that stress
granules form following heat stress in S. pombe, suggesting
that ribosome dissociation may be occurring. However, the
double knock-out strain lacking both Hri1 and Gcn2 still
form stress granules signifying an eIF2α phosphorylation
independent form of translational suppression may exist
(Martin et al., 2013).

While eIF2α phosphorylation has been documented following
both mild and robust heat stress in S. cerevisiae (Meier

FIGURE 4 | Temperature induced translational regulation: Heat shock results in the transient activation of certain eIF2α kinases, which limits the availability of active

ternary complexes. Heat induced changes in cell membrane fluidity may also signal the activation of Ypk1/2 through sphingolipid sensing and activation of Pkh1/2.

Activated Ypk1/2 may increase survival during heat stress by increasing the availability of eIF4G.
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et al., 2006; Grousl et al., 2009), this phosphorylation
and its effect on translation are transient. Meier et al.
revealed that protein production is reduced ∼50% 15min
following mild heat shock, but increases by 150% by 1 h.
In agreement with this, polysome profiles show reduced
polysomes and increased monosomes indicative of translation
initiation arrest at 15min, and profiles return to normal
by 60min. Furthermore, as demonstrated in S. pombe,
stress granule formation, and translation arrest following
robust heat shock in S. cerevisiae are independent of Gcn2p
(Grousl et al., 2009).

Though Gcn2 does not appear to play a vital role in
translational regulation during heat stress in S. cerevisiae, Meier
et al. revealed that signaling via sphingoid bases play an essential
role in this translational response. The absence of sphingoid
bases reduces the immediate translation of heat shock proteins
(HSPs) following heat shock in conjunction with prolonged
arrest of translation initiation. Ypk1/2 are downstream of
Pkh1/2 which are activated by sphingoid bases (Friant et al.,
2001; Liu et al., 2005) (Figure 4). While Pkh1 plays a role
in the translational induction of HSPs, both Pkh1 and Ypk1
appear to play a role in translation reinitiation following heat
shock (Meier et al., 2006). Furthermore, similar to a ypkts

strain shifted to the non-permissive temperature, the lcb1-
100 strain (impaired in sphingolipid biosynthesis) displays a
reduction in eIF4G following heat shock, further suggesting
that sphingoid base signaling via PDK-YPK is a crucial player
in translational regulation during heat shock (Gelperin et al.,
2002; Meier et al., 2006). Prolonged translational suppression
in the lcb-100 strain in response to heat shock was alleviated
by the deletion of Eap1, suggesting that the binding interaction
between eIF4E and eIF4G may be targets of the stress response.
How PDK-YPK signaling may promote virulence in fungi
that infect hosts with high body temperatures has yet to be
explored in great detail. Deletion of the orthologous PDK1
gene in C. neoformans ablates thermotolerance, suggesting that
it may be essential for establishing infection in mammals
(Chabrier-Rosello et al., 2013). The observed fitness loss
in the pdk11 strains may stem from a defect in mRNA
metabolism, as the accelerated decay of the abundant ribosomal
protein (RP) transcripts was lost following a shift to host
temperature (Bloom and Panepinto, 2014). Given the observed
correlation between translation initiation and decay, the absence
of mRNA turnover may be the symptom of a defect in
translational suppression in response to temperature stress
(Chan et al., 2018).

Barraza et al. demonstrated that two of the three partially
redundant catalytic subunits of PKA, Tpk2 and Tpk3,
are involved in the formation of cytoplasmic granules in
response to mild and severe heat shock and are differentially
involved in translational regulation (Barraza et al., 2017).
While Tpk3 shuttles from the nucleus to cytoplasmic foci
following mild (37◦C) and severe heat shock (46◦C), Tpk2
only forms foci following severe heat shock. In all cases, the
formation of these granules is dependent upon translational
repression as elongation inhibitor cycloheximide prevents
their genesis. Interestingly, while the catalytic activity of

Tpk2 was required for its aggregation, Tpk3 aggregation
was independent of its catalytic activity. Polysome profiles
obtained from individual knockout strains revealed that
Tpk2 might promote translation during severe heat stress
while Tpk3 promotes translational arrest. The authors
suggest that PKA isoforms, therefore, play opposing roles
in heat stress.

The topic of ribosome heterogeneity and specialized
ribosomes has recently become an attractive avenue of
exploration. Though it has yet to be explored in detail, it is
conceivable that post-translational modification of ribosomes
may permit the translation of specific target mRNAs during
stress. Tomioka et al. recently reported that phosphorylation of
uS7/Rps5 via Ypk1 regulates small ribosomal subunit biogenesis
and translation (Tomioka et al., 2018). The critical residue for
this phosphorylation event is S223, and although an S223A
uS7 mutant displays a severe growth defect under normal
growth conditions coinciding with its defect in translation, it
has increased resistance to heat stress compared to the wild
type. Authors contributed this thermotolerance to increased
production of HSPs and suggested that the S223A mutation may
promote selective translation of specific mRNAs. Furthermore,
it was proposed that enhanced HSP production and reduced
translation in the S223A strain may be protective against ER
stress, which is triggered during heat shock. The study suggests
then that dephosphorylation of uS7 may be a mechanism
to help cope with heat stress, but dephosphorylation of
S223 has not been explored. It is tempting to imagine how
post-translational modification of ribosomal subunits may
differ between thermotolerant fungi and close nonpathogenic
relatives. If modifications were found, are they conserved
across pathogenic fungi and do they promote translation
under higher temperatures? Technology to begin addressing
these sort of questions are now becoming available, though in
their infancy.

SUMMARY/CONCLUSION

It is becoming evident that the once believed passively acting
polypeptide machine may be the localization point of multiple
cellular stress inputs. All the above mentioned host derived
stresses affect the extent and of the translational output of the
fungus in diverse ways. Translation suppression in response
to glucose withdraw is severe and sustained for an extended
period. H2O2 derived oxidative stress also results in robust
translational repression, though this reduction in comparison is
gradual over time. Temperature adaptation is unique in that the
translational reduction is mild and transient. It is interesting to
see that in all three examples, translation is inhibited by different
mechanisms, suggesting an underlying fitness benefit. Possibly,
stress specific translation inhibition may establish conditions
were mRNAs are translationally favored over others based on
the path of translational suppression used. We speculate that
activation or deactivation of certain kinases stimulates change
in the ribosome composition, availability, and post-translational
modifications to promote the production of certain mRNAs
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over others according to the stress input. Therefore, the initial
modulation of different kinases can facilitate an organism’s
“adaptive agility.” Even weakening this response could allow
the host immune system time to contend with the infection.
The ability to address these questions has only become possible
within the past decade with the advent of techniques such
as ribosome profiling. Application of these tools to the study
fungal gene regulation in response to host derived stresses
may reveal the crucial role of translation in establishing a
virulent phenotype.
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