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Abstract

Many insects harbor inherited bacterial endosymbionts. Although some of them are not strictly essential and are considered facul-

tative, they can be a key to host survival under specific environmental conditions, such as parasitoid attacks, climate changes, or

insecticidepressures.ThewhiteflyBemisia tabaci isat the topof the listoforganisms inflictingagriculturaldamageandoutbreaks,and

changes in its distribution may be associated to global warming. In this work, we have sequenced and analyzed the genome of

Cardinium cBtQ1, a facultative bacterial endosymbiont of B. tabaci and propose that it belongs to a new taxonomic family,which also

includes Candidatus Amoebophilus asiaticus and Cardinium cEper1, endosymbionts of amoeba and wasps, respectively.

Reconstruction of their last common ancestors’ gene contents revealed an initial massive gene loss from the free-living ancestor.

This was followed in Cardinium by smaller losses, associated with settlement in arthropods. Some of these losses, affecting cofactor

and amino acid biosynthetic encoding genes, took place in Cardinium cBtQ1 after its divergence from the Cardinium cEper1 lineage

and were related to its settlement in the whitefly and its endosymbionts. Furthermore, the Cardinium cBtQ1 genome displays a large

proportion of transposable elements, which have recently inactivated genes and produced chromosomal rearrangements. The

genome also contains a chromosomal duplication and a multicopy plasmid, which harbors several genes putatively associated

with gliding motility, as well as two other genes encoding proteins with potential insecticidal activity. As gene amplification is very

rare in endosymbionts, an important function of these genes cannot be ruled out.
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Introduction

The sweet potato whitefly Bemisia tabaci (Aleyrodidae) is an

important polyphagous agricultural pest (Byrne and Bellows

1991). It feeds on plant phloem, causing many economic

losses, affecting the plants directly and/or indirectly by trans-

mitting several viruses. Bemisia tabaci was originally described

as a complex species comprised by many biotypes (Brown

et al. 1995), but recently it has been suggested that it is ac-

tually a complex of at least 24 morphologically indistinguish-

able species (De Barro et al. 2011), although classification in

biotypes still persists. Among the most important biotypes are

B (Middle East-Asia Minor 1 species), which arose in the

GBE
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Middle East but now has a cosmopolitan distribution, and

Q (Mediterranean species), which originated in the

Mediterranean basin and is also widely distributed at present.

A phylogenetic analysis of mitochondrial biotype Q individuals

worldwide has revealed the existence of three subclades

(Q1–Q3) (Gueguen et al. 2010).

Similar to other phloem-feeding insects, which need essen-

tial amino acids and other nutrients due to their unbalanced

diet, whiteflies have established mutualistic relationships

with bacterial endosymbionts that provide essential com-

pounds (Baumann 2005; Moran et al. 2008; Moya et al.

2008). All whiteflies species harbor the obligate, or primary

endosymbiont, “Candidatus Portiera aleyrodidarum”

(Gammaproteobacteria; hereafter Portiera) (Thao and

Baumann 2004), which is restricted to specialized insect cells

called bacteriocytes. In B. tabaci, several other bacterial species

(secondary or facultative symbionts) may coexist with Portiera

(Gottlieb et al. 2008). The most frequently observed are

Arsenophonus sp. and “Candidatus Hamiltonella defensa”

(hereafter Hamiltonella) (both Gammaproteobacteria), which

share bacteriocytes with Portiera. Less frequently present are

Rickettsia sp., Wolbachia sp. (both Alphaproteobacteria)

and “Candidatus Cardinium sp.” (Bacteroidetes), detected in

bacteriocytes but also in other insect tissues.

Symbiosis between whiteflies and Portiera has been shaped

through a long-term relationship, mainly characterized by

Portiera providing essential nutrients (amino acids and carot-

enoids) to the host, thus compensating for its deficient diet, as

revealed by genome sequencing (Santos-Garcia et al. 2012;

Sloan and Moran 2012). However, the effects of facultative

endosymbionts need to be determined. So far, it has been

noted that secondary symbionts in other insects can have dif-

ferent effects, such as reproductive manipulation, nutritional

contribution, temperature tolerance, and defence against

pathogens and parasitoids (Feldhaar 2011; White et al. 2011).

“Ca. Cardinium hertigii” (hereafter C. hertigii) was first

characterized in Encarsia wasps, which are parasitoids of B.

tabaci, and it was proposed as the species type (Zchori-Fein

et al. 2004). However, in recent years, infections with bacteria

belonging to the genus Cardinium have been detected not

only in whiteflies but also in other insects (armored scale,

sharpshooters, and Culicoides spp.) and other arthropods

(mites, ticks, spiders, and copepods). Nowadays, the infection

rate in arthropods has been estimated as close to 7% (Zchori-

Fein and Perlman 2004; Gruwell et al. 2009; Nakamura et al.

2009). Based on molecular data (16S rRNA and gyrB genes)

and the presence of microtubule-like complexes, a morpho-

logical feature shared by all known Cardinium, the genus

has been divided into supergroups and strains, following a

nomenclature similar to Wolbachia endosymbionts, with

four described supergroups (A, B, C, and D) (Lo et al. 2002;

Nakamura et al. 2009; Edlund et al. 2012). Similarly, in several

arthropod taxa, C. hertigii has been described as a reproduc-

tive manipulator through diverse effects such as feminization,

cytoplasmic incompatibility, and induction of parthenogenesis

(White et al. 2011). However, these effects have not been

found in other species (e.g., B. tabaci), suggesting that

C. hertigii might also be a mutualistic endosymbiont. This

aforesaid claim has been supported by the recently released

genome of Cardinium cEper1 (endosymbiont of the wasp

Encarsia pergandiella), which encodes a complete biotin bio-

synthetic pathway, suggesting a potential role in wasp nutri-

tion (Penz et al. 2012). The 16S rRNA gene sequences from

several Cardinium endosymbionts of B. tabaci reported to date

are very similar (>99%) to those of the species type C. hertigii,

suggesting that they are strains of the same species. Several

analyses of secondary endosymbiont coinfections revealed

that B. tabaci individuals infected only with C. hertigii are

very unusual, especially for the C1 strain (supergroup A), the

most widespread Cardinium among whiteflies (Gueguen et al.

2010). Generally, the coexistence with Hamiltonella is the

most frequently observed, although combinations with

other secondary symbionts, such as Wolbachia sp. or

Rickettsia sp., are also possible (Gueguen et al. 2010; Skaljac

et al. 2010; Park et al. 2012).

The laboratory strain B. tabaci QHC-VLC, belonging to the

Q1 subclade, harbors Cardinium cBtQ1, which belongs to the

C1 strain according to its 16S rRNA gene. This strain coexists

within bacteriocytes harboring Portiera and Hamiltonella and

can also be found scattered in different tissues of the whitefly

(Gottlieb et al. 2008), similar to other hosts infected by

C. hertigii (Bigliardi et al. 2006; Kitajima et al. 2007;

Nakamura et al. 2009). In contrast, C. hertigii strains from

different Encarsia species have only been detected in the ova-

ries and accessory cells (Zchori-Fein et al. 2004; Penz et al.

2012).

In this work, the genome of Cardinium cBtQ1 endosymbi-

ont of B. tabaci QHC-VLC was sequenced and compared

with that of the cEper1 strain and with several other

Bacteroidetes, including the parasitic amoeba endosymbiont

“Candidatus Amoebophilus asiaticus” (hereafter referred to

as A. asiaticus) (Horn et al. 2001; Schmitz-Esser et al. 2010).

Overall, all the analysis indicated that the Cardinium cBtQ1

genome has undergone changes to facilitate its recent estab-

lishment in B. tabaci.

Materials and Methods

Genome Assembly and Annotation

Enriched bacterial samples (Harrison et al. 1989) were col-

lected from approximately 40,000 B. tabaci strain QHC-VLC

adult whiteflies. DNA was extracted with the JetFlex Genomic

DNA purification kit following the manufacturer’s instructions

(Genomed). DNA was pyrosequenced using Roche 454 GS

FLX Titanium single-end (shotgun) and paired-end (3 kb) librar-

ies, and an Illumina HiSeq2000 mate-pair library (5 kb). The

genome assembly was complex due to the high number of
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repetitive sequences, around 14% of the genome. This

includes the presence of long duplications, almost 100% iden-

tical, and a large number of IS (Insertion Sequence elements).

Duplicated regions were detected by abnormal coverage

peaks, the differential genomic context (different presence

of IS elements, genes, nonrepetitive intergenic regions), and

paired-ends/mate-paired connections. The ends of most con-

tigs were incomplete IS elements of different types. Because

the contigs ending in the same IS type usually did not overlap,

we expected a slight underestimation of the percentage of

repetitive elements of Cardinium cBtQ1 genome. See

supplementary materials and methods, Supplementary

Material online (supplementary file S1, Supplementary

Material online) for a detailed description of the assembling

and annotation procedure, as well as the software used.

TBLASTX was used to compare the gene content between

plasmids of Cardinium cBtQ1 and cEper1, and BLAST hits and

gene order were plotted with the genoPlotR package (Guy

et al. 2010) from R software (R Development Core Team

2011).

Phylogenetic and Phylogenomic Analyses

High-quality sequenced 16S rRNAs (including fragments of

more than 900 bp) were downloaded from SILVA (Quast

et al. 2013) and National Center for Biotechnology

Information (NCBI) databases. ssu-aligner was employed for

the alignment, because it takes into account the secondary

structure (based on covariance models) of the 16S rRNA genes

(Nawrocki 2009). Predefined masking was selected to ensure

reproducibility in future alignments, and finally, the alignment

was refined with Gblocks (Castresana 2000) allowing 50% in

coverage gaps. General time reversible, with estimates of in-

variant sites and gamma-distribution among-site rate variation

(GTR+I+G), was selected as the best model using jModeltest2

(Darriba et al. 2012). Additionally, amino acid sequences for

the gyrB gene were downloaded from the NCBI database,

aligned with MAFFT using the L-INS-i algorithm (Katoh et al.

2002) and refined with Gblocks. ProtTest3 (Darriba et al.

2011) gave the improved general amino-acid replacement

matrix, with gamma distributed rates across sites (LG+G) as

the best evolutionary model. All accession numbers are sup-

plied in the supplementary table S1, Supplementary Material

online.

For phylogenomic reconstructions, 37 orthologous single

copy genes related to the translation/transduction machinery

and protein folding functions that were present in 61

Bacteroidetes genomes (with the exception of Candidatus

Sulcia mulleri CARI that lacked 9 of these genes) and a non-

Bacteroidetes species, used as outgroup, were selected using

the homology search tool from the Microbial Genome

Database (Uchiyama 2003) (supplementary table S1,

Supplementary Material online). Encoding proteins were

downloaded and aligned with MAFFT v6.717b (L-INS-i) and

concatenated. The selected best model was LG+G+F based

on ProtTest3 results.

The first 15 BLASTP hits using the encoded proteins of

Cardinium cBtQ1 cgl gene (CHV_c0068) and the Leishmania

major genes cgl (cystathionine gamma-lyase, LmjF35.3230),

cbl (cystathionine beta-lyase, LmjF32.2640), and cgs

(cystathionine gamma-synthase, LmjF14.0460) were selected,

and their amino acid sequences downloaded. In addition, the

first 15 BLASTP hits against Bacteroidetes for the cystathionine

beta-lyase protein (metC) from Escherichia coli str. K-12

(NP_417481.1) were also selected. Amino acid sequences

were aligned with MAFFT v6.717b (L-INS-i), and ProtTest3

was used to select the appropriate model for the alignment,

in this case, the LG+G model. For plasmid TraG protein, the

first 50 BLASTP best hits were downloaded (including

Cardinium cEper1 and A. asiaticus) and aligned with MAFFT

v6.717b (L-INS-i). For TraG, the best model selected with

ProtTest3 was LG+G+I.

RaxML (Stamatakis 2006) was used to calculate maximum

likelihood phylogenetic trees for all the alignments, using op-

timizations for branch lengths and model parameters, and

1,000 rapid bootstrap replicates. Models were adjusted for

each case. In addition, PhyloBayes3 (Lartillot et al. 2009) was

used to infer Bayesian posterior distributions for each phylo-

genetic tree. In each case, evolutionary model was adjusted to

the model selected (described above), and three independent

chains were run for each alignment. Following Lartillot et al

(2009) recommendations, all effective sizes were greater than

200 and maximum discrepancy between chains was less than

0.1. Finally, a majority rule consensus tree was calculated for

each alignment.

Genomic Redundancy and Mobile Elements

NUCmer from MUMmer 3 (Kurtz et al. 2004) was used to plot

repetitive regions of A. asiaticus (AmAs), Cardinium cBtQ1,

and Cardinium cEper1, using each genome as query and sub-

ject. Results were filtered and only sequences with at least

95% identity and 500 bp length were used. To estimate the

level of redundancy in the genomes, a BLASTN approach

using each genome (chromosome plus plasmid concatenated)

as query and subject was performed with e-value cutoff of

1e�20. The BLASTN results were transferred to a spreadsheet,

where any alignment with an identity smaller than 95% was

removed. Lines were sorted through several steps to identify

the single copy segments of the genome. The repetitive frac-

tion was estimated subtracting the summation of the single

copy segments from the total genome length. IS elements

were detected as described previously (Gil et al. 2008), refined

using the web server ISsaga (Varani et al. 2011) and deposited

in ISfinder database. Reference copies for each mobile ele-

ment were used to search with BLASTX against the nonredun-

dant NCBI database (1e�3 e-value cutoff). The 25 best hits for

each mobile element were used as the input for MEGAN4
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(Huson et al. 2011), and taxonomical assignments were done

with the default LCA parameters. The genomes of A. asiaticus,

Cardinium cEper1, and Cardinium cBtQ1 (with contigs conca-

tenated in decreasing order, excluding the plasmid) were used

to compute nucleotide synteny blocks with progressive Mauve

aligner (Darling et al. 2010). Cardinium cBtQ1 was set as the

reference for gene order and the alignment was plotted with

the genoPlotR package.

Orthologous Gene Identification

After phylogenomic reconstruction, all genomes belonging to

the order Cytophagales, including both Cardinium strains

(cBtQ1 and cEper1) and A. asiaticus (AmAs), were used for

orthologous gene identification. Flavobacterium johnsoniae

(Bacteroidetes: Flavobacteriales), whose gliding motility has

been broadly studied, was selected as the outgroup for the

order Cytophagales. All proteins, including those from plas-

mids, were used as the input for OrthoMCL (Li et al. 2003).

OrthoMCL and COG (Clusters of Orthologous Groups of pro-

teins) (Tatusov et al. 2000) profile assignment pipelines were

run as described previously (1.5 as inflation value, 70% of

match cutoff, and an e-value cutoff of 1e�5) (Manzano-

Marı́n et al. 2012). Gene clusters may contain zero, one,

two, or more genes in each genome. Some gene clusters

were manually refined because OrthoMCL failed to recognize

some orthologous genes in endosymbionts.

Orthologous genes for A. asiaticus and both Cardinium

strains were classified as core genome (genes shared by

the three genomes), genes shared by two of the three organ-

isms and strain-specific genes (supplementary table S2,

Supplementary Material online). Euler diagrams were ob-

tained with gplots package (Warnes et al. 2013) from R.

Last Common Ancestor Reconstruction

All genomes used in the OrthoMCL clustering method were

used to reconstruct the putative last common ancestor (LCA)

gene contents for each node in the phylogeny (fig. 1 and

supplementary table S3, Supplementary Material online).

The MPR (most parsimonious reconstruction) function in ape

package (Paradis et al. 2004) from R was used to infer the

ancestral state for each character (gene clusters) in each node

(LCA). Pseudogenes for all genomes were manually revised.

For orthologous cluster assignments of the pseudogenes,

TBLASTX was used (e value of 1e�5 and an overlap of 80%

query subject) against the proteins present in the orthologous

clusters. Pseudogenes that did not modify the LCA reconstruc-

tion (strain-specific genes) were not considered. Pseudogenes

that were mobile elements were also excluded. Parsimony

reconstruction for orthologous groups that included the pre-

viously selected pseudogenes were checked using parsimony

reconstruction of discrete characters in Mesquite (Maddison

WP and Maddison DR 2011).

For each reconstructed LCA and genome, COG categories

were assigned for each orthologous cluster based on the initial

OrthoMCL results and the COG assignment described above

(Manzano-Marı́n et al. 2012). For each orthologous cluster,

COG categories with less than a 10% of a cluster, as well as

the unassigned category, were removed. The LCA, indetermi-

nations (the presence/absence of the gene in the LCA node

could not be determined) were counted as half (0.5), instead

of presence (1) or absence (0). Relative percentages of each

COG type using LCA4 or LCA2 as reference were plotted

using the gplots heatmap2 function without dendograms

and reordering functions. Euler diagram was plotted using

gplots. COG profiles, stated as the absolute number of COG

categories divided by the total number of COG for each

genome or LCA, were plotted as a heatmap with gplots al-

lowing hierarchical clustering (dendograms are grouping the

most similar rows or columns together). Cyclobacteraceae

family habitats were obtained from GOLD database (supple-

mentary table S3, Supplementary Material online).

Analyses of B. tabaci and Encarsia spp. Samples

See supplementary materials and methods and tables S4–S6,

Supplementary Material online (supplementary file S1,

Supplementary Material online).

Fluorescent In Situ Hybridization

See supplementary materials and methods, Supplementary

Material online (supplementary file S1, Supplementary

Material online).

Results

General Features of Cardinium cBtQ1 Genome

Cardinium cBtQ1 has a relatively small genome (1.065 Mb)

composed of a chromosome (1.013 Mb) and a circular plas-

mid (52 kb) named pcBtQ1 (table 1). The chromosomal se-

quence is composed of 11 contigs (612, 80.4, 77.6, 73.8,

66.9, 41.4, 30.3, 13.5, 7.4, 5.1, and 4.1 kb, respectively)

with average coverages of 90� and 547� for 454 and

Illumina platforms, respectively, whereas the plasmid is in a

single contig with coverages of 595� (454) and 4,046�

(Illumina). Paired-end and mate-pair information confirmed

that the plasmid was a single closed circular contig. Also,

the higher coverage of the plasmid compared with the chro-

mosomal contigs is indicative of a multicopy plasmid, probably

between six and seven copies relative to the chromosome.

We found 709 and 30 coding genes on the chromosome

and plasmid, respectively. Many of them were annotated as

encoding conserved or hypothetical proteins. We also anno-

tated 156 pseudogenes in the chromosome, 132 derived from

transposases and 24 from nontransposase genes (supplemen-

tary table S7, Supplementary Material online), and 4 in the

plasmid (3 transposases and 1 resolvase). The genome
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FIG. 1.—Phylogenomic maximum likelihood tree of 61 Bacteroidetes. Phylogenomic reconstruction was done under the LG+G+F model on a con-

catenated alignment of 37 proteins. Cardinium genomes fall in the Cytophagales clade, with Marivirga tractuosa and Cy. marinum as the closest free-living

relatives. Cardinium cBtQ1 is displayed in bold. Family names are displayed on the right delimited by a horizontal red line. The genomes used for the LCA

reconstruction are shown in blue. Numbers inside gray dots show the LCAs reconstructed in each node. Only maximum likelihood bootstrap values below

95% are displayed. Bayesian posterior probabilities for each node were above 0.95 and are also not displayed. Chlorobaculum tepidum was used as

outgroup.
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contains one set of rRNA genes distributed in two segments,

one including the 16S rRNA and the other the 23S and the 5S

rRNA genes. It also contains a set of 35 tRNA genes, which are

able to completely decode the mRNA sequences, and two

other noncoding RNA genes (rnpB and tmRNA) (table 1).

Taxonomic Status of Cardinium cBtQ1 Endosymbiont of
B. tabaci Biotype Q

We performed a phylogenomic reconstruction of a

Bacteroidetes phylogeny (see supplementary table S1,

Supplementary Material online, for locus tags in each

genome), which showed that both Cardinium and A. asiaticus

formed a well-differentiated clade, related to the families

Cyclobacteriaceae and Flammeovirgaceae, with the family

Cytophagaceae slightly more distant (fig. 1). This reconstruc-

tion was used to select the genomes for subsequent analyses.

Because this phylogenomic reconstruction is consistent

with other reported studies (Gupta and Lorenzini 2007;

Karlsson et al. 2011), and due to the high bootstrap values

obtained, we propose that the Cardinium/Amoebophilus

clade should be assigned to the order Cytophagales, instead

of remaining in the nonclassified Bacteroidetes. Furthermore,

the analysis suggests that within the Cytophagales,

Cardinium forms a new family phylogenetically allied with

the Cyclobacteriaceae and Flammeovirgaceae, to which we

propose the name Amoebophilaceae (fig. 1).

To establish the relationship of Cardinium cBtQ1 to other

Cardinium endosymbionts based on 16S rRNA sequences, a

covariance model aligner was employed. The 16S rRNA align-

ment was used to infer a phylogeny, showing that almost all

Cardinium endosymbionts of B. tabaci (including cBtQ1) were

present in a clade with other Cardinium endosymbionts of

several Encarsia species (99.14% identity with the whole

16SrRNA of Cardinium from E. pergandiella) (fig. 2, left).

A phylogeny with gyrB was also performed, which corrobo-

rated the close phylogenetic relation with Cardinium from

Encarsia spp. and also showed that Cardinium cBtQ1 was em-

bedded in the Cardinium–Encarsia clade (fig. 2, right). Because

16S rRNA sequences of Cardinium cBtQ1 and the species type

C. hertigii (symbiont of E. hispida) show only 1.2% of differ-

ences, we propose that Cardinium cBtQ1 is a strain of the

latter, in agreement with previous reports (Zchori-Fein and

Perlman 2004). The Bemisia/Encarsia clade belongs to the

Cardinium group A, which is well differentiated from the

other two groups included in the analysis: Group C, which is

specific to the genus Culicoides (Nakamura et al. 2009) and

group D, which is present in some Copepoda spp. (Edlund

et al. 2012) (fig. 2).

Genome Comparison of Cardinium Strains and
A. asiaticus

Compared with A. asiaticus (Schmitz-Esser et al. 2010), the

genomes of Cardinium cEper1 (Penz et al. 2012) and

Cardinium cBtQ1 (this work) contain a smaller number of

coding genes (table 1). However, Cardinium cEper1 has

almost no annotated pseudogenes, a difference that might

reflect gene annotation criteria because open reading frames

that belong to transposase fragments are annotated as coding

sequences (CDSs). The average gene identity between

Cardinium cEper1 and cBtQ1 was 92.9%, whereas the aver-

age protein identity was 91.8%. The genome fraction as-

signed to coding genes (labeled as coding density in table 1)

was approximately 6% smaller in Cardinium cBtQ1 than in

Cardinium cEper1.

Table 1

General Genomic Features of Cardinium Strains and Amoebophilus asiaticus

Bacterial Genome Cardinium cBtQ1a Cardinium cEper1b A. asiaticus 5a2

Host Bemisia tabaci Encarsia pergandiella Acanthamoeba spp.

Chromosome Plasmid Chromosome Plasmid Chromosome

Contigs 11 1 1 1 1

Size (kb) 1,013 52 887 58 1,884

GC (%) 35 32 36 31 35

CDS 709 30 841 65 1,557

Average CDS length (bp) 1,033 1,389 911 733 990

Coding density (%) 79.7 80.1 85.5 82.1 81.8

rRNAs 3 — 3 — 3

tRNAs 35 — 37 — 35

Other RNA genes 2 — — — —

Pseudogenes (total) 156 4 3 — 222

Pseudogenes (transposase) 132 3 3 — —

Pseudogene (other CDS) 24 1 — — —

Reference This study Penz et al. (2012) Schmitz-Esser et al. (2010)

aThe chromosome of Cardinium cBtQ1 is not closed, but it is considered a high-quality draft genome.
bThe chromosome of Cardinium cEper1 contains a single gap not closed due to repetitive elements.
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Cardinium cEper1 also contains a plasmid (pCher) of similar

size to pcBtQ1. However, the gene content of both plasmids is

different, with only a few shared genes in a syntenic segment

showing a high level of nucleotide identity (fig. 3). For exam-

ple, CHV_p004 (virE, virulence-associated E family protein),

CHV_p006 (pre, plasmid recombination enzyme), and

CHV_p011 (traG, putative conjugal transfer protein TraG) all

show nucleotide identities that range from 76% to 83% be-

tween both plasmids. Phylogenetic reconstructions for each of

these genes support the close relation between both plasmids

(see TraG phylogeny in supplementary file S1: supplementary

fig. S1, Supplementary Material online). Nucleotide, gene

order conservation, and phylogeny suggest that both plasmids

derive from a common ancestral plasmid present before the

split of both Cardinium lineages. A putative traG gene

(Aasi_0886), closely related to Cardinium traG phylogeneti-

cally (supplementary fig. S1, Supplementary Material online),

is harbored in the A. asiaticus chromosome, suggesting that

the origin of the plasmid can be traced to the family

Amoebophilaceae, with its subsequent chromosomal inser-

tion in A. asiaticus.

All three genomes share a core of 468 gene clusters (sup-

plementary table S2, Supplementary Material online, and

fig. 4), of which six encode putative host interacting proteins

(Penz et al. 2012). There are 140 unique gene clusters that

were present in both Cardinium but not in A. asiaticus, 46 of

which encode hypothetical proteins, 15 are membrane trans-

port related proteins, and 13 are putative host interacting

proteins. Among the remaining Cardinium shared genes,

there are six coding for transposases, two for phage-derived

proteins (or afp-like proteins), and five for vitamin biosynthetic

proteins (supplementary table S2, Supplementary Material

online).

Cardinium cEper1 has 202 strain-specific gene clusters,

which include, among others, those encoding hypothetical

proteins (145), transposases (30), host-interacting proteins

(6), and biotin (2) and pyridoxal (1) biosynthetic enzymes.

Cardinium cEper1 and A. asiaticus share 13 gene clusters

with most of them defined as hypothetical proteins (6),

mobile elements (3), a cell-wall-related protein, a membrane

protein, and a host-manipulation protein (supplementary

table S2, Supplementary Material online).

Cardinium cBtQ1 contains 71 gene clusters, 65 strain–

specific, and 6 shared with A. asiaticus, which are not present

in Cardinium cEper1. These gene clusters include ankyrin-

domain-containing proteins (14), hypothetical proteins (35),

transposases, and other mobile elements (4). A set of very

interesting genes is located in the multicopy plasmid of

Cardinium cBtQ1. They include four gliding genes (gldK,

gldL, gldM, and gldN, see fig. 3) that are related to motility

in members of the phylum Bacteroidetes (shared with A. asia-

ticus). The fact that the chromosome of Cardinium cBtQ1

contains four duplicated genes rtxBDE (A. asiaticus contained

a single copy of the paralogous genes rtxBE) and tolC related

to type I secretion system (T1SS) is also remarkable because

only a few sequenced Bacteroidetes harbor secretion system

types I, III, IV, or VI (McBride and Zhu 2013). The rtxBDE genes,

related to the hemolysin secretion proteins (Hly), seem to be

FIG. 3.—Comparison of Cardinium plasmids. TBLASTX comparison of the plasmids from Cardinium cBtQ1 (pcBtQ1) and cEper1 (pCher). Gray arrows are

genes included in the syntenic block, blue arrows nontransposase genes, red arrows transposase genes, and the green arrow is a resolvase pseudogene. Red

lines show genes in the same orientation and blue lines in reverse orientation. Some gene names are shown in the plot.

FIG. 4.—Euler diagram of orthologous clusters. Euler diagram repre-

senting the core genome, the strain-specific orthologous clusters, and the

orthologous clusters shared by only two organisms. Numbers inside each

subspace represent the number of orthologous gene clusters assigned to

the subspace. Core genome set is displayed in orange. cBtQ1, Cardinium

cBtQ1; cEper1, Cardinium cEper1; AmAs, Amoebophilus asiaticus.
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an event of horizontal gene transfer (HGT), with RTX toxin

transport system of Vibrio as best BLAST hits. The chromo-

somal segment involving these genes is duplicated in

Cardinium cBtQ1 (fig. 5A).

Other interesting Cardinium cBtQ1-specific genes, also lo-

cated in the plasmid, are the putative toxin-related genes

CHV_p018 and CHV_p021. The latter encodes a long (4,603

amino acids) RHS-repeat-associated core-domain protein with

A

B

C

FIG. 5.—Redundancy and synteny between Cardinium and Amoebophilus asiaticus genomes. (A) Putative linear representation of the ancestral genomic

region before duplication (on top) and the present state of the two duplications, which are distributed in five contigs (on bottom). Note that lpxH, mreB, tolC,

rtxBDE, and yitW conserve two intact copies, whereas the other duplicated genes only maintain one intact copy. Red arrows are mobile elements, blue

arrows genes in the duplicated region, green arrows pseudogenized genes, and gray arrows adjacent genes outside the duplication. Orange bars connect the

two duplicated copies of each gene. Contig names are plotted at the beginning or the end of the contig (CHV_), and only regions that contain the

duplications are shown. The right ends of contigs CHV_g and CHV_e are connected through paired-end information with the right ends of either contig

CHV_j or CHV_i. In both cases, a complete ISCca1 copy, whose fragments are detected at the end of the contigs, is required for joining. (B) Mummer plot

showing direct (red) and inverted (blue) genomic repeats with at least 500 bp lengths and 95% similarity. For A. asiaticus (AmAs) and Cardinium cEper1

(cEper1), inner plot lines denote the division of the chromosome in base pairs sections. Black arrows point contig ends for the largest contigs in Cardinium

cBtQ1. These contigs were placed in order of decreasing length. Because plots are not scaled to genome size due to limitations of the software, it is

noteworthy that the A. asiaticus genome is less repetitive than Cardinium cBtQ1 although the more compact plot in the former may alter that impression. (C)

Common pairwise syntenic blocks of more than 1kb for A. asiaticus (AmAs), Cardinium cBtQ1 (cBtQ1), and cEper1 (cEper1). The chromosome of cBtQ1 was

taken as reference. Contigs in cBtQ1 are ordered in order of decreasing length and denoted by double backslashes. For plotting reasons, only the seven

longest cBtQ1contigs are shown. Red and blue lines show blocks in direct and inverted orientation. The stronger the line, the more nucleotide identity

between synteny blocks.
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C-terminus ankyrin repeats. Large proteins with RHS domains

have been related with bacterial insecticidal toxins and inter-

cellular signaling proteins (TIGR03696). Although no clear

signal peptide was detected in CHV_p021, the presence of

ankyrins in the C-terminus domain in combination with a

signal peptide has been attributed to protein secretion by

T1SS (Kaur et al. 2012). Because the best BLASTX hits, with

63% query coverage and 36% identity (on average), belong

to Daphnia, Wolbachia (HGT event), and mosquitoes, it sug-

gests that the target of this protein can be a conserved protein

in arthropods.

The level of redundancy in the genome of Cardinium cBtQ1

(~14%) was twice as high as the level found in Cardinium

cEper1 and A. asiaticus (~7% in both cases), most of which

is associated with mobile elements (fig. 5B). The mobile ele-

ments of Cardinium cBtQ1, and their inactive derivatives, ac-

count for approximately 166 kb of the chromosome (196

copies) and 12.5 kb of the plasmid (12 copies) (supplementary

table S8, Supplementary Material online). From this number of

mobile element copies, only 48 contained a functional trans-

posase gene, whereas 135 were transposase pseudogenes.

These transposase proteins were classified in 20 different IS

families, with only eight being complete IS elements (contain-

ing intact transposase genes and inverted repeats at their

ends) and could be named according to the ISfinder recom-

mendations and deposited under the names ISCca1-8 (sup-

plementary table S8, Supplementary Material online). Only

three mobile element types were specific of the Cardinium

cBtQ1 (ISCca6, nv_IS3, and the Retron type one), whereas

the rest of transposases were shared with A. asiaticus,

Cardinium cEper1 or both.

It would appear that at least some IS in Cardinium are still

active, in contrast with A. asiaticus (Schmitz-Esser et al. 2011),

given we can observe very recent gene duplication events

(based on> 99.9% nucleotide identity), with one of the

copies interrupted by the insertion of an IS (e.g., pseudogenes

recG or ftsK) (fig. 5A). Another important feature is the pres-

ence of a repetitive element composed of a copy of ISCca4 and

a copy of nv_IS2, resulting in an IS that is apparently active. The

inactivation of ftsK was produced by the insertion of this chi-

meric IS. Recombination associated to IS may be the cause of

the high number of rearrangements in the Cardinium cBtQ1,

with only some microsyntenic blocks maintained (fig. 5C).

Finally, Cardinium cBtQ1 contains a recent chromosome

segmental duplication (almost 100% identical) involving at

least 11 genes and around 17 kb, distributed in five contigs

(fig. 5A). The duplicated region contains the genes cpsA

(a protease), recG (recombination and DNA repair), glyS

(aminoacyl-tRNA-ligase), lpxH (lipid A biosynthesis), mreB

(actin-like bacterial cytoskeleton), tolC (T1SS transmembrane

transporter), rtxB, rtxD, and rtxE (T1SS ABC transporters HlyB

and HlyD), ftsK (cell cycle and chromosome partitioning), and

yitW (putative chromosome partitioning related function).

Although one of the two copies of cpsA, recG, glyS, and

ftsK is pseudogenized by IS insertions, the rest of the genes

conserve the two functional copies (fig. 5A), indicating that

their retention could be advantageous for the organism fit-

ness. However, the fact that the two copies are still active due

to their recent duplication cannot be ruled out.

Evolution of Gene Repertoires in Lineages of
Amoebophilus and Cardinium

Gene clusters obtained with OrthoMCL were classified

according to COG categories and used to reconstruct by max-

imum parsimony the gene cluster content in the nine LCA

corresponding to each node denoted with gray circles

(fig. 1). Several analyses were performed to compare the

gene content of the present and reconstructed ancestral

genomes.

First, hierarchical clustering based on the relative abun-

dance (percentage) of each COG category in each genome

was performed (fig. 6). Three main clusters were observed:

One that contained the endosymbiotic genomes and the

LCA1 and 2; a second that grouped Marivirgia tractuosa

and Cyclobacterium marinum with the LCA3, 4, 8, and 9;

and a third that contained the rest of the genomes and

LCAs. The second cluster (fig. 6, blue) showed a clear reduc-

tion in some COG groups as G and K but an enrichment in the

H and J groups when it was compared with the third cluster

(fig. 6, yellow). Also, hierarchical clustering grouped both

Cardinium strains with A. asiaticus and LCA1 and LCA2.

They showed a stronger conservation of genes in some

COG categories such as J and O, when they were com-

pared with the free-living Bacteroidetes, a signal also ob-

served in other symbiotic reduced genomes. LCA4, the

ancestor of the Cardinium/A. asiaticus lineage and

family Cyclobacteriaceae, was close to the free-living

Cyclobacteriaceae (see habitats in supplementary table S3,

Supplementary Material online), suggesting a similar free-

living style. Parsimony reconstruction assigned 1,301 gene

clusters to LCA4 and the equally parsimonious presence/

absence of other 684 gene clusters.

Second, the transition from LCA4 to LCA2 was examined

comparing the percentages of gene clusters in each COG cat-

egory regarding LCA4 (100%) (fig. 7A). It had a strong impact

in the number of gene clusters with more than half of them

being lost (LCA2, 655 gene clusters plus 36 present/absent)

(supplementary table S3, Supplementary Material online).

Relatively to LCA4 (100%), there was a high reduction in all

categories except for some housekeeping categories such as J,

L, and D with more than 80% of gene clusters conserved.

Biosynthetic capabilities of LCA2 were clearly reduced (e.g.,

COG categories C, E, F, and H).

Third, the transition from LCA2 to LCA1 and to both

Cardinium and A. asiaticus was examined comparing the per-

centages of gene clusters in each COG category regarding

LCA2 (100%) (fig. 7B). The transition to LCA1 (649 gene
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clusters) produced the loss of 160 gene clusters, although 118

new gene clusters were acquired. Comparing the number of

gene clusters of LCA2 to LCA1, and to both Cardinium and A.

asiaticus, we observed several differences among COG cate-

gories (fig. 7B, supplementary table S3, Supplementary

Material online). First, A. asiaticus showed 331 strain-specific

gene clusters, distributed in several categories, not present in

LCA2. Second, the reductive evolution of the Cardinium line-

age was more clearly observed in several COG categories,

such as E, G, H, S, T, and V. The absence of gene clusters in

Cardinium for the N category was probably due to the fact

that some genes related with motility have not been yet an-

notated in the COG database, especially those involved in

gliding motility (see later) that are, in fact, present in

Cardinium cBtQ1, A. asiaticus, LCA1, LCA2, and LCA4.

Biosynthetic Capabilities in Cardinium cBtQ1

Cardinium cBtQ1, according to KEGG classification pathways,

presents low biosynthetic capabilities, similar to those

FIG. 6.—Relative abundance of gene clusters in Bacteroidetes and LCAs. Hierarchical clustering heatmap representing the relative abundance (per-

centage) of each COG category in relation to the total number of gene clusters in each genome. Three main COG clusters (left) are observed: Highly retained

categories (J, L, and R), medium retained categories (I, H, G, T, O, E, P, C, S, K, and M), and low retained categories (V, F, Q, U, D, N, and Z). Three main

species/LCA cluster (up) are cEper1, AmAs, cBtQ1, LCA1, and LCA2 (only symbionts, left cluster); MaTr, CyHu, LCA3, LCA4, LCA8, and LCA9 (middle

cluster), and FlJh, SpLi, DyFe, LeBy, CyMa, RuSl, LCA5, LCA6, and LCA7. Species clustering together by COG categories could have similar metabolic features

and consequently, a similar ecological niche. Cardinium cEper1 (cEper1), Ca. Amoebophilus (AmAs), Cardinium cBtQ1 (cBtQ1), Marivirga tractuosa (MaTr),

Cytophaga hutchinsonii (CyHu), Flavobacterium johnsoniae (FlJh), Spirosoma linguale (SpLi), Dyadobacter fermentans (DyFe), Leadbetterella byssophila (LeBy),

Cyclobacterium marinum (CyMa), and Runella slithyformis (RuSl).
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observed in Cardinium cEper1 and A. asiaticus (Karlsson et al.

2011; Penz et al. 2012).The main differences between the

biosynthetic capabilities of both Cardinium strains are in the

biosynthesis of vitamins and cofactors. Both bacteria are able

to produce lipoate, a key cofactor for intermediate metabo-

lism and an important antioxidant molecule (Spalding and

Prigge 2010). Cardinium cEper1 has the genes pdxS and

pdxT and can synthesize pyridoxal 5-phosphate (precursor of

vitamin B6). However, pdxT was pseudogenized by an IS

transposition in cBtQ1. This event seems to have happened

recently, because the pdxT pseudogene is 93.5% identical to

the cEper1 gene, a percentage higher than the average gene

identity between these two strains.

In addition, it is noteworthy that in Cardinium cEper1,

the presence of a complete biotin operon, a coenzyme be-

longing to vitamin B class, is an event of HGT from

Alphaproteobacteria to the genus Cardinium (Penz et al.

2012). The loss of the ability to synthesize biotin in

Cardinium cBtQ1 seems to have taken place by the combined

effect of the insertion of an IS and a later deletion event,

removing the complete bioB gene and almost the complete

sequence of the adjacent bioF gene (92.5% identical to

cEper1 in the remnant segment). Another recent signal

of the loss of a nutritional contribution is the pyridoxal-

dependent enzyme cystathionine gamma-lyase (involved in

the synthesis of cysteine) whose CDS contains an internal

stop codon mutation that produces the pseudogene

CHV_c0068 in cBtQ1 (94.9% identical to cEper1 gene).

A phylogenetic analysis showed that the functional gene, pre-

sent in this state in cEper1, was acquired by an ancestor

through HGT from a eukaryote, perhaps an amoeba (supple-

mentary file S1: supplementary fig. S2, Supplementary

Material online). The phylogenetic analysis, including the

three in silico identified cystathionine metabolizing enzymes

of L. major (Williams et al. 2009), showed its closer relation

with L. major cystathionine gamma-lyase rather than with

L. major cystathionine beta-lyase, as previously annotated in

Cardinium cEper1 (Penz et al. 2012).

In Cardinium cBtQ1, the inability to synthesize pyridoxal

and biotin may be complemented by other facultative endo-

symbionts of the host. In the case of B. tabaci strain QHC-VLC,

such enzyme synthesis could be achieved by Hamiltonella,

A

B

FIG. 7.—Last free-living common ancestor comparison. (A) Heatmap showing the percentage of genes in each COG category, compared with the

number of the same category in LC4 (100%). In left, reduced phylogenomic reconstruction with the name of each LCA reconstructed. (B) The same heatmap

type comparing to LCA2 (100%). L category in Cardinium cEper1 is an artifact produced by an incorrect annotation of inactivated transposases as CDS

instead of pseudogenes. COG definitions are below. cBtQ1, Cardinium cBtQ1; cEper1, Cardinium cEper1; AmAs, Amoebophilus asiaticus.
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which is located inside the bacteriocytes (supplementary

fig. S3, Supplementary Material online). The complete sets

of genes required for the synthesis of both cofactors was de-

scribed for the Hamiltonella secondary endosymbiont of the

aphid Acyrthosiphon pisum (Degnan et al. 2009), and all of

them were also found by BLAST similarity in the draft genome

of Hamiltonella from B. tabaci strain QHC-VLC (unpublished

data).

Gliding Genes in Cardinium

As stated earlier, the genome of Cardinium cBtQ1 harbors

four gliding genes organized in an operon (gldK, gldL,

gldM, and gldN) in the pcBtQ1 plasmid (fig. 3). To state

that the differential tissue locations of Cardinium endosym-

bionts of B. tabaci (scattered) and Encarsia spp. (restricted

to ovaries) were correlated with the presence of the four

gliding genes, two populations of E. pergandiella (USA and

Brazil), one of E. hispida (Italy) and one from E. inaron

(USA) were screened for their presence. None of these

species gave a positive result for any of the gliding

genes, whereas the presence of Cardinium was stated in

all of them through the amplification of the control gene

gyrB (supplementary file S1: supplementary materials and

methods and tables S4 and S6, Supplementary Material

online).

For B. tabaci, adult whiteflies were sampled in 12 points

from four localities of the province of Valencia (Spain) (sup-

plementary file S1: supplementary materials and methods

and tables S5 and S6, Supplementary Material online).

Polymerase chain reaction (PCR) amplification revealed the

presence of the four gliding genes (as well as of the large

plasmid gene CHV_p021) in all the samples (except one

that failed in all the PCR amplifications). To determine

insect biotypes, a mitochondrial cytochrome oxidase I

(COI) fragment was sequenced in four females per sam-

pling point. Nine of the samples belonged to the biotype Q

(Mediterranean species), whereas two were from the bio-

type S (Sub-Saharan Africa species), an uncommon biotype

in Spain (Moya et al. 2001) (supplementary file S1: supple-

mentary fig. S4, Supplementary Material online). All the

samples, including those of biotype S, harbored

Cardinium, which was determined by PCR amplification

of a fragment of the 16S rRNA gene. PCR products

from biotype S (sample F) and biotype Q (sample B)

(1,100 bp) were sequenced and resulted 100% identical

to Cardinium cBtQ1.

The presence of additional secondary endosymbionts was

also checked finding that biotype Q individuals also contained

Hamiltonella, whereas biotype S contained Arsenophonus and

Wolbachia (supplementary file S1: supplementary materials

and methods and tables S5 and S6, Supplementary Material

online).

Discussion

Although the cost of maintaining an obligate mutualistic en-

dosymbiont may be compensated in many cases by its sup-

plementation of the host diet, the maintenance of stable

associations with facultative symbionts may require either re-

productive manipulation or compensatory benefits from the

endosymbiont (Oliver et al. 2010; White et al. 2011;

Wernegreen 2012). Both facultative and obligate endosymbi-

onts are transmitted vertically, but facultative symbionts may

retain the ability to be horizontally transmitted as revealed by

the incongruence of host and symbiont phylogenetic recon-

structions (Russell et al. 2003).

Symbionts belonging to the genus Cardinium are present in

many types of arthropods including arachnids (Nakamura

et al. 2009), crustaceans (Edlund et al. 2012), and insects

(Zchori-Fein et al. 2004; Zchori-Fein and Perlman 2004;

Gruwell et al. 2009; Nakamura et al. 2009), indicating that

members of this genus can colonize new niches. Phylogenies

and nucleotide conservation of two genes (16S rRNA and

gyrB) show that Cardinium from B. tabaci QHC-VLC was clo-

sely related to Cardinium from armored scale insects and par-

asitoid wasps, including the species type C. hertigii from the

wasp E. hispida (Zchori-Fein et al. 2004). Researchers have also

proposed that Cardinium cBtQ1 was a strain of C. hertigii,

closely related to Cardinium cEper1 (symbiont of E. pergan-

diella) whose genome has recently been reported (Penz et al.

2012). In this work, we have sequenced the genome of

Cardinium cBtQ1, and all the analyses carried out confirm

that this strain is closely related to Cardinium cEper1, despite

being endosymbionts of whiteflies and parasitoids, respec-

tively. There are, however, some differences that could be

related to the massive presence of IS in Cardinium cBtQ1, as

well as to the adaptation to the specific hosts of each strain

(see later).

The high number of available Bacteroidetes genomes pro-

vided a robust phylogeny (fig. 1), which showed that both

Cardinium (cEper1and cBtQ1) and A. asiaticus formed a

well-defined clade, distant from other family members of

Cyclobacteriaceae, Cytophagaceae, and Flammeovirgaceae

in the order Cytophagales. Thus, we propose that they form

a new family, to be named Amoebophilaceae. This name is

proposed because A. asiaticus has a larger genome than

Cardinium spp. and shares more genes with LCA2 than

either Cardinium strain. Also on the basis of this phylogeny,

we were able to infer the coding gene contents (clusters of

genes) of the most recent common ancestor in the Cardinium/

Amoebophilus clade (LCA4, LCA2, and LCA1) and to analyze

the evolution of the gene repertoires (figs. 6 and 7).

Despite it is not the objective of this work, we can extract

general ideas from the cluster analysis (fig. 6). The distribution

of genes in COG categories is a well predictor of the way of

life of the organisms. Hierarchical clustering indicates that

LCA3 to 9 were, similar to free-living Bacteroidetes, able to
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occupy different niches (fig. 6). For example, the differences

between the abundance of G category in the middle and right

clusters could be related to a more restricted source of carbo-

hydrates (niche specialization). It also seems that the increase

of the coenzyme metabolism (H) in the middle cluster could be

advantageous for the establishment of symbiotic relationships

(Cyclobacterium was found in the celomic fluid of a sand

dollar, supplementary table S3, Supplementary Material

online).

The number of gene clusters estimated in LCA4 was be-

tween 1,301 and 1,985, showing a COG profile similar to

those of M. tractuosa (Flammeovirgaceae) and Cy. marinum

(Cyclobacteriaceae) (fig. 6), and differing from the COG pro-

files of LCA2 and LCA1, which clustered with those of the

symbiotic bacteria A. asiaticus and Cardinium (fig. 6). Because

species of the family Cyclobacteriaceae are mostly marine

free-living bacteria, and associations with animal hosts have

been described (supplementary table S3, Supplementary

Material online), we propose that LCA4 was probably a

marine free-living bacterium, with a wide range of functional

capabilities and the ability to establish symbiotic relationships.

Also, it is likely that LCA4 was able to glide because it con-

tained the whole set of gliding genes essential for gliding,

including the sprATE genes (McBride and Zhu 2013).

The transition from LCA4 to LCA2 was clearly a reductive

process that affected almost all COG categories (fig. 7A)

producing an ancestral endosymbiont with few biosynthetic

capabilities. Considering that the species derived from LCA2

were endosymbionts of amoebas (Horn et al. 2001; Schmitz-

Esser et al. 2010) or insects (Zchori-Fein and Perlman 2004;

Penz et al. 2012), the most probable reason for this reduction

was the transition from a free living to intracellular life style, to

start a symbiotic (either mutualistic or parasitic) relationship

with a eukaryotic host. During this transition, the number of

gene clusters and associated functions was reduced, although

LCA2 maintained the ability to acquire new genes by HGT.

The higher number of gene clusters in A. asiaticus versus LCA2

(298) could be due to this fact, although other reasons, such

as the possibility of a biased sample of genomes, or different

annotation problems, would also explain its high number of

specific gene clusters.

Genome reduction was an ongoing process in the LCA1/

Cardinium clade, and it was notorious for some categories

such as E and G (fig. 7B). Moreover, the comparative analysis

of the gene contents of the two Cardinium strains revealed

that, despite being very similar at nucleotide level (92.9% nu-

cleotide identity), revealing a recent evolutionary divergence,

there are some relevant differences between the genomes

of both strains, indicating differences in the evolution of en-

dosymbiosis in Encarsia spp. and B. tabaci.

First, both Cardinium contain a plasmid of 50–60 kb with

many differences in gene content (fig. 3). However, both plas-

mids contain a short syntenic block of genes, whose nucleo-

tide content and gene order conservation, as well as the gene

phylogenies carried out, suggests that both derived from

an ancestral plasmid present in their LCA (LCA1), and the

differences must have been accumulated after the split of

both lineages. These differences are due to the insertion of

mobile elements, sometimes carrying accessory genes, and to

the transfer of genes from the chromosome.

Second, there are also differences in the chromosome of

both Cardinium strains. The Cardinium cBtQ1 chromosome is

126 kb larger (probably a bit larger because, as a draft

genome, gaps are not taken into account for this calculation)

than that of Cardinium cEper1; nevertheless, this difference is

not associated with a greater number of genes but to the

presence of a large number of pseudogenes, most of them

due to defective transposase encoding genes (table 1).The

number of repeated sequences in the genome of Cardinium

cBtQ1 is twice that of Cardinium cEper1, and most of these

differences are due to a large number of IS in the former

genome (fig. 5B). Moreover, some IS types seem to have

their origins in Alphaproteobacteria, probably related to the

genera Rickettsia or Wolbachia, supporting the idea of HGT

events between secondary endosymbionts harbored by the

same host (Toft and Andersson 2010; Schmitz-Esser et al.

2011; Duron 2013). A large number of mobile elements is a

typical feature of endosymbionts that have established a

recent relationship with their hosts, such as Candidatus

Sodalis pierantonius str. SOPE (Gil et al. 2008, Oakeson et

al. 2014) or Sodalis glossinidius (Belda et al. 2010). Also, en-

richment in mobile elements seems to be linked to genome

plasticity in some facultative symbionts (Gillespie et al. 2012).

Several lines of evidence indicate that IS elements (supplemen-

tary table S8, Supplementary Material online) are already

active in Cardinium cBtQ1. This activity combined with both

the high number of copies throughout the genome, and a

complete replication and repair machinery that can produce

recombination, probably underlies the massive number of

rearrangements in the genome of Cardinium cBtQ1, com-

pared with Cardinium cEper1 and A. asiaticus (fig. 5C).

Finally, among the genes with an annotated function and

differential presence in the two Cardinium strains, we consider

some may give clues about the relationship between

Cardinium cBtQ1 and B. tabaci. First, the presence of pseudo-

genes for pdxT (pyridoxal biosynthesis) and cgl (cystathionine

gamma-lyase) and the loss of two genes of the biotin operon

indicate that these genes were present in LCA1. This also in-

dicates that the loss of these functions in Cardinium cBtQ1 is

associated with settlement in a new environment composed

by B. tabaci and its facultative symbiont Hamiltonella defensa.

This symbiont seems to have become established in the pop-

ulations of B. tabaci Q1 from Western Mediterranean based

on the detection of frequencies of 100% (or almost 100%) in

populations from North Africa and south-western Europe

(Gueguen et al. 2010). Second, among 71 gene clusters of

Cardinium cBtQ1, which are absent in Cardinium cEper1,

there are up to 14 specific genes encoding ankyrin-domain
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proteins, which can interact with the host’s machinery, but

further studies are needed to understand their functions.

Finally, the most interesting genes are those whose expression

has been amplified by either gene duplication (mreB, lpxH,

yitW, and rtxBDE/tolC) or by their presence in a multicopy

plasmid (e.g., CHV_p018, a putative toxin-related gene,

CHV_p021, a RHS-domain protein, and the gliding genes

gldKLMN) (supplementary table S2, Supplementary Material

online).

On the basis of the ancestor reconstruction analysis, we can

predict that the four gliding genes were present in LCA4,

LCA2, and LCA1 and were lost in Cardinium cEper1.

Although LCA4 conserved full gliding machinery, sprATE was

lost in LCA2 possibly due to its accommodation to an intracel-

lular environment. Because LCA1 conserved the gldKLMN

operon, this suggests that gldKLMN was lost in the

Cardinium cEper1 lineage. Also, as in the closest

Bacteroidetes genomes, such as A. asiaticus, M. tractuosa, or

Cy. marinum, these genes are located in the chromosome, and

we can postulate that in Cardinium cBtQ1, they have been

translocated to a multicopy plasmid conserving the operon

order. This supports the importance of these genes for

Cardinium cBtQ1 and suggests that they may explain why

the strain is not confined to a single tissue in B. tabaci

(Gottlieb et al. 2008) (supplementary fig. S3, Supplementary

Material online), in opposition to Cardinium cEper1 that is re-

stricted to the ovaries of Encarsia (Zchori-Fein et al. 2004; Penz

et al. 2012). Moreover, the gene amplification in Cardinium

cBtQ1 not only of the four gliding genes but also of mreB and

of the cluster rtxBDE/tolC suggests that they may play an im-

portant role in this organism, as genome reduction is an on-

going process in this strain. There are two possible hypotheses:

1) those genes are involved in gliding as in other genomes; 2)

they are involved in the novel type 9 secretion system (PorSS),

which is also associated with the secretion of proteins involved

in motility and toxins (Sato et al. 2010; McBride and Zhu 2013).

Different Bacteroidetes possess the ability to move by a

gliding mechanism, which is related to the ability to degrade

some components present in the environment such as chitin

and cellulose (Spormann 1999; McBride 2004; Braun et al.

2005). Several examples of gliding have been reported in spe-

cies of the class Cytophagia where C. hertigii was included (Xie

et al. 2007; McBride and Zhu 2013), and the scattered pattern

detected for the tissue distribution of Cardinium cBtQ1 in

B. tabaci might be caused by a similar mechanism.

The motor model (or focal adhesion) proposed for gliding in

myxobacteria (Spormann 1999; Mignot et al. 2007; Jarrell and

McBride 2008; Nakane et al. 2013; Nan et al. 2013) could be

extended to Bacteroidetes, including Cardinium cBTQ1, al-

though in a more simplified manner. This model considers

molecular motors that are associated with cytoskeletal fila-

ments and use proton motive force to transmit force through

the cell wall to attached dynamic focal adhesion complexes

(adhesins) to the substrate, causing the cell to move forward

(Mignot et al. 2007; Sun et al. 2011; Nan et al. 2013). MreB,

the homolog of the eukaryotic actin, has been proposed as

the cytoskeletal part of the gliding machinery (Kearns 2007;

Mauriello et al. 2010). Also, there may be an association with

FtsZ, a protein that is part of the bacterium cytoskeleton and

can produce force by itself (Erickson et al. 2010). Linkage be-

tween the cytoskeleton and gliding is supported by experi-

mental data with the use of compound A22, which is able

to affect the MreB structure and inhibits the gliding motility in

Myxobacteria (Nan et al. 2011). Eleven genes, detected in

most Bacteroidetes, have been defined as the core of the

gliding machinery. Four of these genes (gldB, gldD, gldH,

and gldJ) have unknown function, whereas the remaining

seven genes (gldK, gldL, gldM, gldN, sprA, sprE, and sprT)

also encode the PorSS system (McBride and Zhu 2013).

Cardinium cBtQ1 does not show the complete gliding ma-

chinery as it only contains four gliding core genes (gldKLMN).

Neither homologous nor potential analogous genes of

gldBDHJ have been detected. The sprAET genes are also

absent, but their function would potentially be substituted

by the cluster rtxBDE/tolC, which is also duplicated. RTX secre-

tion system belongs to the T1SS and is able to transport pro-

teins from the cytosol to the extracellular space in a SecYEG

independent manner. Also, T1SS is able to secrete many dif-

ferent RTX family proteins and proteins without the C-terminal

RTX nonapeptide (Linhartová et al. 2010; Kaur et al. 2012).

The RTX system would secrete the adhesins (or other proteins

that could interact with the host) across the bacterial mem-

brane. However, we did not detect any orthologs to known

adhesin proteins, but proteins with eukaryotic domains, such

as ankyrins, TPR or WH2 (found in this strain), may function as

adhesins in a multicellular eukaryotic organism. Moreover,

Cardinium may be able to manipulate the host cytoskeleton

to form a scaffold, which could be used by the gliding ma-

chinery (Haglund et al. 2010). Gliding seems to be a wide-

spread direct invasion mechanism for different kinds of cells

(Sibley et al. 1998; Furusawa et al. 2003; Sibley et al. 2004),

thus Cardinium cBtQ1and other Bacteroidetes might use this

motor model system to invade new hosts or host tissues. In

fact, Cardinium endosymbiont of Ixodes scapularis has been

cultivated on insect cell lines and is capable of infecting new

cells, even cell lines from different insect species, when they

are added to the culture (Morimoto et al. 2006).

The second hypothesis would consider that the gldKLMN

operon is not involved in gliding, but it is just required for se-

cretion forming the PorSS system, which was initially described

for Porphyromonas gingivalis as a novel secretion system with

eight proteins involved (PorK, PorL, PorM, PorN, PorT, PorW,

Sov, and PorP) (Sato et al. 2010). Putatively orthologous genes

in the gliding system for the first seven are gldK, gldL, gldM,

gldN, sprT, sprE, and sprA. The proposed orthologous gene for

porP in F. johnsoniae was Fjoh_3477. A similar gene was not

detected in either A. asiaticus or Cardinium. Proteins secreted

by the PorSS systems are adhesins, as well as some enzymes
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such as chitinases, and gingipains in F. johnsoniae and P. gin-

givalis, respectively. Also, proteins secreted by the PorSS secre-

tion system may contain a conserved C-terminal domain

(TIGR4131 and 4183) (Sato et al. 2010; McBride and

Zhu 2013). However, there were not proteins of Cardinium

cBtQ1 with this domain. In the PorSS system, the presence

of the protein complex GldKLMN is associated with the gen-

eration of the energy required for protein secretion by SprTEA.

However, these proteins are not encoded in the genome of

Cardinium cBtQ1 (they are also absent in A. asiaticus), and their

substitution by the T1SS (RTX system) seems unlikely because

T1SS has its own ATP-binding cassette, making the energy

production function of the gldKLM unnecessary. This suggests

that the PorSS system does not work in Cardinium cBtQ1.

Thus, we hypothesized that the retention of the necessary

genes for the gliding movement (gldKLMN) and further ampli-

fication by the translocation to a multicopy plasmid, together

with the acquisition of the RTX TISS is associated to the scat-

tered phenotype of this strain and the ability to glide.

The frequent presence of Cardinium cBtQ1 in B. tabaci bio-

types Q and S may be due to its ability to benefit its host (Oliver

et al. 2008; Feldhaar 2011; Ferrari and Vavre 2011), possibly

related to its motility feature, and/or to the presence of some

putative toxin-related genes such as CHV_p018 (low e-value

BLAST hit against RTX toxins of H. defensa from A. pisum) and

CHV_p021, which could play a role in intercellular competi-

tion, intercellular signaling, and insecticidal activity based on

the presence of the RHS domain (Koskiniemi et al. 2013). As a

mobile endosymbiont, Cardinium cBtQ1 may contact a para-

sitoid directly and secrete insecticidal toxins near it, could

invade the parasitoid tissue, and kill it by secreting unknown

toxins or by the cytotoxic effect of lipid A in a nonacclimated

host (Furusawa et al. 2003; Caspi-Fluger et al. 2011; Rader

et al. 2012). Furthermore, other effects increasing host fitness

cannot be excluded, like heat-stress resistance or maybe some

advantages conferred by the lipoate supplementation (Moran

et al. 2008; Moya et al. 2008). However, fitness may only be

improved in some environments or climate conditions.

In conclusion, we have reported the genome of Cardinium

cBtQ1 endosymbiont of B. tabaci. Comparative genomics and

ancestors’ reconstruction of gene content have shed light on

the drastic reduction in many functional categories that have

taken place since its free-living ancestor up to the present. The

loss of several cofactors and amino acid biosynthetic capabil-

ities, retained in its close relative Cardinium cEper1, rules out

an important role in host nutrition and suggests a relationship

with its establishment in B. tabaci and its endosymbionts. The

genome is still very dynamic, with many active transposable

elements and rearrangements. On the basis of genomic data,

we propose that Cardinium cBtQ1 has retained the minimal

gliding core machinery present in its ancestors, which in com-

bination with the acquired RTX secretion system might be

used to move inside its host or invade new hosts.

Supplementary Material

Supplementary file S1 is available at Genome Biology and

Evolution online (http://www.gbe.oxfordjournals.org/).
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from the Universitat de València for sequencing and micros-

copy support. Part of this work was performed by F.J.S. during

a sabbatical stay at the Uppsala Universitet.

Literature Cited
Baumann P. 2005. Biology bacteriocyte-associated endosymbionts of

plant sap-sucking insects. Annu Rev Microbiol. 59:155–189.

Belda E, Moya A, Bentley S, Silva FJ. 2010. Mobile genetic element prolif-

eration and gene inactivation impact over the genome structure and

metabolic capabilities of Sodalis glossinidius, the secondary endosym-

biont of tsetse flies. BMC Genomics 11:449.

Bigliardi E, et al. 2006. Ultrastructure of a novel Cardinium sp. symbiont in

Scaphoideus titanus (Hemiptera: Cicadellidae). Tissue Cell. 38:

257–261.

Braun TF, Khubbar MK, Saffarini DA, McBride MJ. 2005. Flavobacterium

johnsoniae gliding motility genes identified by mariner mutagenesis.

J Bacteriol. 187:6943–6952.

Brown JK, Frohlich DR, Rosell RC. 1995. The sweetpotato or silverleaf

whiteflies: biotypes of Bemisia tabaci or a species complex? Annu

Rev Entomol. 40:511–534.

Byrne DN, Bellows TS. 1991. Whitefly biology. Annu Rev Entomol. 36:

431–457.

Caspi-Fluger A, et al. 2011. Rickettsia “in” and “out”: two different lo-

calization patterns of a bacterial symbiont in the same insect species.

PLoS One 6:e21096.

Castresana J. 2000. Selection of conserved blocks from multiple align-

ments for their use in phylogenetic analysis. Mol Biol Evol. 17:

540–552.

Santos-Garcia et al. GBE

1028 Genome Biol. Evol. 6(4):1013–1030. doi:10.1093/gbe/evu077 Advance Access publication April 10, 2014

like
like 
amiltonella
,
-
,
Based on 
FILES
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu077/-/DC1
http://www.gbe.oxfordjournals.org/


Darling AE, Mau B, Perna NT. 2010. progressiveMauve: multiple genome

alignment with gene gain, loss and rearrangement. PLoS One 5:

e11147.

Darriba D, Taboada GL, Doallo R, Posada D. 2011. ProtTest 3: fast selection

of best-fit models of protein evolution. Bioinformatics 27:1164–1165.

Darriba D, Taboada GL, Doallo R, Posada D. 2012. jModelTest 2: more

models, new heuristics and parallel computing. Nat Methods. 9:772.

De Barro PJ, Liu S-S, Boykin LM, Dinsdale AB. 2011. Bemisia tabaci: a

statement of species status. Annu Rev Entomol. 56:1–19.

Degnan PH, Yu Y, Sisneros N, Wing RA, Moran NA. 2009. Hamiltonella

defensa, genome evolution of protective bacterial endosymbiont from

pathogenic ancestors. Proc Natl Acad Sci U S A. 106:9063–9068.

Duron O. 2013. Lateral transfers of insertion sequences between

Wolbachia, Cardinium and Rickettsia bacterial endosymbionts.

Heredity (Edinb) 2:1–8.

Edlund A, Ek K, Breitholtz M, Gorokhova E. 2012. Antibiotic-induced

change of bacterial communities associated with the copepod

Nitocra spinipes. PLoS One 7:e33107.

Erickson HP, Anderson DE, Osawa M. 2010. FtsZ in bacterial cytokinesis:

cytoskeleton and force generator all in one. Microbiol Mol Biol Rev. 74:

504–528.

Feldhaar H. 2011. Bacterial symbionts as mediators of ecologically impor-

tant traits of insect hosts. Ecol Entomol. 36:533–543.

Ferrari J, Vavre F. 2011. Bacterial symbionts in insects or the story of com-

munities affecting communities. Philos Trans R Soc Lond B Biol Sci.

366:1389–1400.

Furusawa G, Yoshikawa T, Yasuda A, Sakata T. 2003. Algicidal activity and

gliding motility of Saprospira sp. SS98-5. Can J Microbiol. 49:92–100.

Gil R, et al. 2008. Massive presence of insertion sequences in the genome

of SOPE, the primary endosymbiont of the rice weevil Sitophilus

oryzae. Int Microbiol. 11:41–48.

Gillespie JJ, et al. 2012. A Rickettsia genome overrun by mobile genetic

elements provides insight into the acquisition of genes characteristic of

an obligate intracellular lifestyle. J Bacteriol. 194:376–394.

Gottlieb Y, et al. 2008. Inherited intracellular ecosystem: symbiotic bacteria

share bacteriocytes in whiteflies. FASEB J. 22:2591–2599.

Gruwell ME, Wu J, Normark BB. 2009. Diversity and phylogeny of

Cardinium (Bacteroidetes) in armored scale insects (Hemiptera:

Diaspididae). Ann Entomol Soc Am. 102:1050–1061.

Gueguen G, et al. 2010. Endosymbiont metacommunities, mtDNA diver-

sity and the evolution of the Bemisia tabaci (Hemiptera: Aleyrodidae)

species complex. Mol Ecol. 19:4365–4378.

Gupta RS, Lorenzini E. 2007. Phylogeny and molecular signatures (con-

served proteins and indels) that are specific for the Bacteroidetes and

Chlorobi species. BMC Evol Biol. 7:71.

Guy L, Kultima JR, Andersson SGE. 2010. genoPlotR: comparative gene

and genome visualization in R. Bioinformatics 26:2334–2335.

Haglund CM, Choe JE, Skau CT, Kovar DR, Welch MD. 2010. Rickettsia

Sca2 is a bacterial formin-like mediator of actin-based motility. Nat Cell

Biol. 12:1057–1063.

Harrison CP, Douglas AE, Dixon AFG. 1989. A rapid method to isolate

symbiotic bacteria from aphids. J Invertebr Pathol. 53:427–428.

Horn M, et al. 2001. Members of the Cytophaga-Flavobacterium-

Bacteroides phylum as intracellular bacteria of acanthamoebae: pro-

posal of “Candidatus Amoebophilus asiaticus.”. Environ Microbiol. 3:

440–449.

Huson DH, Mitra S, Ruscheweyh H-J, Weber N, Schuster SC. 2011.

Integrative analysis of environmental sequences using MEGAN4.

Genome Res. 21:1552–1560.

Jarrell KF, McBride MJ. 2008. The surprisingly diverse ways that prokary-

otes move. Nat Rev Microbiol. 6:466–476.

Karlsson FH, Ussery DW, Nielsen J, Nookaew I. 2011. A closer look at

bacteroides: phylogenetic relationship and genomic implications of a

life in the human gut. Microb Ecol. 61:473–485.

Katoh K, Misawa K, Kuma K, Miyata T. 2002. MAFFT: a novel method for

rapid multiple sequence alignment based on fast Fourier transform.

Nucleic Acids Res. 30:3059–3066.

Kaur SJ, et al. 2012. TolC-Dependent secretion of an Ankyrin repeat-

containing protein of Rickettsia typhi. J Bacteriol. 194:4920–4932.

Kearns DB. 2007. Bright insight into bacterial gliding. Science 315:

773–774.

Kitajima EW, et al. 2007. In situ observation of the Cardinium symbionts of

Brevipalpus (Acari: Tenuipalpidae) by electron microscopy. Exp Appl

Acarol 42:263–271.

Koskiniemi S, et al. 2013. Rhs proteins from diverse bacteria mediate

intercellular competition. Proc Natl Acad Sci U S A. 110:7032–7037.

Kurtz S, et al. 2004. Versatile and open software for comparing large

genomes. Genome Biol. 5. R12.

Lartillot N, Lepage T, Blanquart S. 2009. PhyloBayes 3: a Bayesian software

package for phylogenetic reconstruction and molecular dating.

Bioinformatics 25:2286–2288.

Li L, Stoeckert CJ, Roos DS. 2003. OrthoMCL: identification of ortholog

groups for eukaryotic genomes. Genome Res. 13:2178–2189.
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