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Modularity and composite diversity affect the
collective gathering of information online
Niccolò Pescetelli 1,2✉, Alex Rutherford1,2 & Iyad Rahwan 1,2

Many modern interactions happen in a digital space, where automated recommendations and

homophily can shape the composition of groups interacting together and the knowledge that

groups are able to tap into when operating online. Digital interactions are also characterized

by different scales, from small interest groups to large online communities. Here, we

manipulate the composition of groups based on a large multi-trait profiling space (including

demographic, professional, psychological and relational variables) to explore the causal link

between group composition and performance as a function of group size. We asked volun-

teers to search news online under time pressure and measured individual and group per-

formance in forecasting real geo-political events. Our manipulation affected the correlation of

forecasts made by people after online searches. Group composition interacted with group

size so that composite diversity benefited individual and group performance proportionally to

group size. Aggregating opinions of modular crowds composed of small independent groups

achieved better forecasts than aggregating a similar number of forecasts from non-modular

ones. Finally, we show differences existing among groups in terms of disagreement, speed of

convergence to consensus forecasts and within-group variability in performance. The present

work sheds light on the mechanisms underlying effective online information gathering in

digital environments.
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Understanding how people collect information about world
events and discuss this knowledge with others online to
form shared opinions is a crucial and timely research

question. In the past decade, there have been widespread con-
cerns that search engines and news filtering algorithms may
contribute to the formation of clusters of individuals with highly
correlated information and poorly diversified news sources1–3.
Little is known about the exact mechanisms underlying algo-
rithmic personalization, but content is often provided by clus-
tering users on highly dimensional feature spaces, along shared
variables (demographics, geo-location, social network, tastes, and
past behavior)4–8. Furthermore, people sharing traits are more
likely to voluntarily cluster together in online communities, a
phenomenon known as homophily9,10. One question is whether
recommendation algorithms and homophily can impact the
ability of online groups to collectively search and use online
information to form accurate representations of future events,
especially under high time pressure and uncertainty—namely
when the opportunities for rational debates are scarce11,12.

In this paper, we manipulate the size/modularity of online
groups and their composition along a heterogeneous profiling
space (including demographic, professional, political, relational,
and psychological features, see Supplementary Information §1
and 2). Both factors are expected to affect the amount and
independence of information that a group can tap into13–15. We
tested people’s ability to collectively retrieve task-relevant infor-
mation online to form accurate representation of the world. We
measure individual and group performance as Brier errors in
forecasting real geo-political events (Supplementary Table 1).
This task has high ecological validity. Forecasting problems were
independently selected as part of a national forecasting tourna-
ment and were representative of challenges commonly facing
experts and professional intelligence analysts. These forecasting
problems are characterized by high degrees of uncertainty and
correlated information between respondents, dependence on
multiple indicators (e.g., economics, politics, social unrest, etc.),
and, importantly, time criticality (i.e.,there are huge costs asso-
ciated with making the correct prediction too late). Importantly,
the difficulty and specificity of the forecasting problems ensured
that individual and group forecasts in our study were driven by
the information participants could retrieve online in a short
amount of time, rather than domain-specific information already
possessed by the participant before the experiment. General
knowledge questions or more familiar forecasting problems
would have confounded participants’ prior knowledge and
information they retrieved online. For this reason, we expected
our composite measure of diversity to affect a group’s ability to
effectively search relevant information online.

Diversity is a highly heterogeneous construct touching several
disciplines16–19. From an informational standpoint, psychologists
have recognized the importance of group diversity for informa-
tion independence, group performance, resilience to group biases,
complex thinking, creativity, and exploration of large solution
spaces20–30. The approach used in psychology is aimed at
studying single dimensions of diversity (e.g., skill, age, and
race25,30,31). Contrary to this, we are here interested in the effects
that sorting people based on a large multi-trait space (Fig. 1A)
can have on the information diversity that a group can forage
online. During the pretest phase, we surveyed participants along
29 dimensions (see Supplementary Information for a full list of
features considered). Each participant represented a data point
along this profiling space based on their responses to the survey.
Questions included demographic indicators (such as age, sex and
education, and race), professional indicators (e.g., hours a day
spent working with things, ideas, people, or data), political pre-
ferences (left/right-wing), geographic indicators (e.g., countries

visited in the past 6 months), as well as relational variables (e.g.,
political orientation of your average friend), and cognitive indi-
cators (e.g., cognitive reflective test32). Many of the features used
in this study—such as demographics, political orientation, and
personality traits—can be easily inferred from digital traces, and
used to customize searches and recommend content33–36.
Although some of these features (like demographics) are known
to psychologists not to affect information diversity per se in an
offline setting37,38, they may do so in an online environment that
maps interindividual differences into information access. Argu-
ably, the more distant two people are on an arbitrarily large
profiling space, the less likely it is they belong to the same
online information bubble. Given the difficulty of disentangling
the causal contributions of group composition on performance,
we here employ an experimental design23,25,26,30 to create groups
of people who were close or distant to each other along our multi-
trait profiling space. To manipulate our composite measure of
diversity, we used a data-driven clustering algorithm (DBSCAN)
that segmented participants based on their Euclidean distance on
the profiling space. Half of the participants (core segment) cor-
responding to the center of the distribution was randomly
assigned to interact with the rest 25% most similar (inner seg-
ment) or 25% most dissimilar (outer segment) individuals in the
sample (Fig. 1B, C). Euclidean distance was strongly correlated
with standard deviance, another popular measure of diversity
with multidimensional input (r:0.92, p < 0.001; Supplementary
Fig. 13), suggesting robustness across alternative measures.

As the scale of online collaboration widely varies (from small
interest groups to large online communities), we wanted to
characterize the effects of group composition as a function of
group size. Orthogonally to diversity, we randomized the size and
modularity of the online collective. Manipulating group size or
the number of groups interrogated can have positive effects on
group performance, by reducing error cascades14,15,39–42. Smaller
groups are more likely to maximize accuracy in environments
characterized by inter-judgment correlations thanks to their
inherent noise and greater exploratory behavior41,43–47. Fur-
thermore, aggregating information from multiple smaller inter-
acting groups performs better than traditional wisdom-of-crowd
because it insulates the aggregate from correlated errors14. In
other words, rather than interrogating one single large crowd
(M= 1), greater accuracy is obtained by dividing the large crowd
into smaller, but independent (i.e., noncommunicating) groups
(M > 1). We call this feature modularity. Modularity maintains
information diversity (across groups) in spite of herding (within
groups). However, prior studies14 were performed on estimation
tasks, where crowds are known to perform well48. Whether the
same results generalize to more complex real-world problems are
unknown.

After sorting people into groups of different sizes and com-
position, participants were asked to give for each forecasting
problem an initial guess (initial forecast). Then they were asked to
revise it after privately browsing online (revised forecast), and
after debating with others online (private final forecast and group
consensus forecast). A preregistration of our hypotheses is
available via OSF. At the individual level, we expected alignment
of opinions and improved accuracy due to online browsing and
social influence. At the aggregate level, we expected group
diversity and modularity to positively affect aggregate perfor-
mance. No predictions were made regarding the direction of their
interaction. Exact analyses were not preregistered. Aggregation
followed the same procedure described in ref. 14. Small groups
(~5 people) were approximately the square root of large groups
(~25 people; cf. ref. 15).

Our findings show that the closer (more similar) individuals
were on the profiling space the more correlated their forecasts
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became after online searches. Group diversity benefited individual
and aggregated performance and interacted with group size so
that large groups benefited from it more than smaller ones.
Analysis of forecasts distributions and exploratory linguistic
analysis of chat data showed slower consensus building, greater
disagreement, and greater variance in group members’ perfor-
mance impacting large groups with higher composite diversity
score less negatively than small ones. We also find that forcing
individuals to reach a consensus as opposed to simply being
exposed to social information benefits their ability to forecast
future events. These findings inform how social interaction online
can affect real-life problem solving in complex information
environments. We discuss these results in light of the recent lit-
erature on collective behavior in ecology and social science.

Results
Multidimensional profiling. Exploratory analyses were ran to
characterize our composite diversity measure. Trait diversity
correlated with information diversity only after (but not prior)
online browsing. After browsing, larger Euclidean distance along
the profiling space Θ between pairs of individuals was inversely
related to the correlation coefficient of the forecasts made by the
same two individuals (initial: r= 0.12 p= 0.38; revised: r=
−0.39, p= 0.006; final: −0.056, p < 0.001). This indicates that
online browsing produced greater alignment of beliefs pro-
portionally to individual similarity.

A principal component analysis was ran to characterize post
hoc the participants’ response distribution during the pretest
phase. Trait variation in our population was highly structured,
about five components explained ~90% of the variance
(Supplementary Fig. 13), suggesting most trait dimensions were
redundant or showed little variation. Principal components
correlated with ethnic-cultural and socio-political variability in
our sample (Supplementary Figs. 14–16). A parallel analysis
(Supplementary Fig. 17) showed eight principal components,
reported in Supplementary Information. Participants segmenta-
tion into core, inner, and outer segments was already visible on a
low-dimensional principal component projection (Supplementary
Fig. 18), confirming that core participants were more similar
(along the principal components) to participants belonging to the
inner segment than to participants belonging to the outer
segment. Finally, we checked that no principal component was
trivially related with opinion diversity or performance (Supple-
mentary Figs. 22 and 23).

Individual-level performance. For each forecast, a Brier error
score (range [0, 2]) was computed according to Eq. (1) in the
“Methods” section. Distributions of individual and aggregated
errors are reported in Supplementary Fig. 2. Errors were larger
(worse performance) for initial (β= 0.62, SE= 0.09, t= 6.88, p <
5.81e− 12), revised (β= 0.69, SE= 0.08, t= 7.77, p < 7.73e− 15),
and final (β= 0.23, SE= 0.09, t= 2.39, p= 0.01) forecasts

:

Fig. 1 Experimental design. A One-dimensional representation of the partitioning of the Θ space by the DBSCAN algorithm. In reality, Θ 2 RD, where D is
the number of dimensions considered (D= 29). B 2 × 2 design with factors: diversity (low vs. high) ×modularity (low vs. high). Low vs. high diversity
manipulation was achieved by matching the core participants to either the inner segment participants (low diversity condition) or the outer segment (high
diversity condition). C Experimental procedure. At pretest time (upper row), participants were administered a battery of surveys that were used to cluster
them into a core, inner, and outer segments (DBSCAN). Core participants were then randomized to a diversity and modularity condition. At test time, they
answered eight forecasting problems first alone (stages 1 and 2) and then within their groups (stage 3).
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compared to consensus forecasts (Fig. 2A), indicating an overall
forecast improvement over repeated judgments (Table 1A and
Supplementary Table 4). Against our preregistered hypotheses,
initial forecasts were numerically, but nonsignificantly better than
revised forecasts. Both initial and revised forecasts however were
worse than following forecasts (βs <−0.38, SEs < 0.09, ts <−5.12,
ps < 2.94e− 07), confirming our preregistered hypothesis of an
accuracy improvement due to social interaction49. Final and
consensus forecasts contained the same socially acquired infor-
mation and were made in random order. Surprisingly, errors were
smaller for the consensus than the final forecast, suggesting that
forcing consensus (rather than simple social exposure) improved
individual forecasting accuracy.

We conducted an exploratory analysis on the effects that our
composite measure of diversity (reference: lower composite
diversity score) and group size (reference: large groups) assign-
ment had on individual forecasting accuracy (Table 1B and
Supplementary Table 5). Initial and revised forecasts were not
affected by our manipulation and were thus excluded from this
analysis. Notice that at the individual level, we can only test
whether interacting in small or larger groups has an effect on
forecasting error, given that modularity is a group-level feature
(see Supplementary Information §2). A model with an interaction
term was superior to one without, notwithstanding the added
complexity (d.f.= 8, χ2= 7.63, χ2d.f.= 1, p= 0.005). Working in
groups with higher composite diversity score marginally
predicted better individual performance (β=−0.37, SE= 0.20,
t=−1.83, p= 0.06). Participants in homogeneous small groups
performed nonsignificantly worse their counterparts in homo-
geneous larger groups (β=−0.20, SE= 0.20, t=−0.99, p=
0.31). The beneficial effect of composite diversity on individual
performance was positively affected by group size, suggesting that
individual interaction with diverse peers was more beneficial in
large than small groups (β= 0.82, SE= 0.29, t= 2.85, p= 0.004;
Fig. 2B). The same interaction was found when using average
profiling distance (continuous) rather than diversity treatment
(categorical) as a measure of diversity (Supplementary Table 6
and Supplementary Fig. 3). Similar conclusions were reached
when limiting our analysis to final forecasts only, but not to
consensus forecasts only (Supplementary Tables 7–8), suggesting
that these results were likely driven by final individual beliefs
rather than collective ones.

Group-level performance. In forecasting like in democratic
decisions, aggregated individual judgments are more informative
than individual ones. At the aggregate level, we can now ask
whether modularity and hierarchical aggregation can improve
forecasting accuracy in our online information gathering task14,15.
For each group, we computed an aggregate forecast by taking the
median forecast in the group for each forecast type. By definition,
we have only one group per diversity treatment in the non-
modular condition (M= 1), but multiple subgroups in the mod-
ular condition (M > 1). Thus, aggregating judgments in the high
modularity condition proceeded by aggregating forecasts in each
group first, and then aggregating aggregates14. An exploratory
analysis on aggregate forecasts, showed that consensus forecasting
errors were lower than both initial (β= 0.68, SE= 0.22, t= 2.97,
p= 0.002) and revised (β= 0.59, SE= 0.23, t= 2.60, p= 0.009)
errors, suggesting a benefit of social interaction (Table 1C and
Supplementary Table 9). The advantage of consensus over final
forecasts disappeared at the aggregate level (β=−0.12, SE= 0.29,
t=−0.43, p= 0.66; Fig. 3A).

Our main hypotheses consisted in analyzing the effect of group
assignment on aggregated forecasting errors during the social
exchange. A model with fixed effects for composite diversity,

modularity and an interaction between the two provided better fit
than one without interaction (d.f.= 7, χ2= 6.10, p= 0.01). As
predicted, aggregate forecasts from groups higher on composite
diversity were better than aggregate forecasts from homogeneous
groups (β=−0.56, SE= 0.23, t=−2.39, p= 0.01; baseline: large,
Table 1D and Supplementary Table 10). Also as predicted,
aggregated forecasts obtained from smaller/modular groups were
better than from larger/non-modular groups (β=−0.82, SE=
0.26, t=−3.10, p= 0.001; baseline: homogeneous). Finally, we
found an interaction between composite diversity and modularity
whose direction we did not predict (β= 0.93, SE= 0.38, t= 2.43,
p= 0.01), indicating that the beneficial effect of composite
diversity on aggregate forecasting accuracy was significantly
greater in large groups over smaller groups (Fig. 3B).

Disagreement, consensus reaching, and performance varia-
bility. To understand why diversity interacted with group size, we
performed three main exploratory analyses. First, we analyzed the
distribution of forecasts produced by each group in different
questions (Supplementary Fig. 2). In particular, we were inter-
ested in the disagreement between participants’ estimates
(diversity of opinions in ref. 50), namely the dispersion (standard
deviation) of the forecast distribution within a group. A greater
standard deviation suggests more conflicting views and thus more
conflicting evidence for the group to resolve, when trying to reach
a consensus under time pressure. Compared to initial forecasts,
disagreement was lower in final forecasts (β=−4.41, SE= 1.18,
t=−3.72, p < 0.001) and higher in revised forecasts (β= 5.06,
SE= 1.18, t= 4.27, p < 0.001), suggesting (surprisingly) an
increase in the spread of opinions after online information search
and (unsurprisingly) opinion alignment after social interaction
(Supplementary Table 15). We found no main effects of diversity
(β=−0.48, SE= 2.36, t=−0.20, p > 0.8) or group size (β=
−3.51, SE= 1.80, t=−1.94, p > 0.05). However, diversity inter-
acted with group size suggesting that it had a smaller effect on
disagreement in large groups compared to small ones (β= 7.11,
SE= 2.60, t= 2.73, p= 0.006). Residual disagreement remained
even after people had the chance to come to a consensus, as
observed in final forecasts (Fig. 4A).

Our second analysis suggests that online information
gathering affected within-group variability in performance.
Larger performance variability indicates that a group contains
members who are very accurate (on average across the eight
individual forecasting problems (IFPs)) and members who are
quite poor. Performance variability is typically associated with
reduced collective intelligence51,52. In the initial stage people’s
accuracy was similar to each other (~0.1–0.2 standard devia-
tions of Brier scores), but variability increased in small diverse
groups after online information gathering. This effect was not
as nearly as pronounced for small homogeneous groups and
large groups (Fig. 4B), suggesting that browsing selectively
negatively impacted small groups scoring higher on our
composite diversity measure.

A third factor we investigated was whether our manipulation
affected the process of consensus reaching through online
deliberation (see Supplementary Information §5 and 6). We
manually labeled forecast estimates mentioned by participants
during the deliberation phase and fitted a model representing
convergence of these estimates to the consensus forecast. Group
composite diversity decreased consensus reaching times (β=−0.31,
SE= 0.12, t=−2.55, p= 0.01, baseline: large). Also small groups
showed quicker consensus reaching than large ones (β=−0.46,
SE= 0.10, t=−4.68, p < 0.001, baseline: homogeneous; Supple-
mentary Table 16). A positive interaction between the two factors
indicated that speed in consensus reaching observed in diverse
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groups decreased as a function of smaller group size (β= 0.69,
SE= 0.17, t= 4.004, p < 0.001; Supplementary Figs. 6 and 7).

Discussion
In this study, we experimentally manipulated the size and group
composition of groups collaboratively gathering information
online. We found that sorting groups based on a composite
measure of diversity—including demographic, relational, and
cognitive indicators—affected the correlation of beliefs of people
only after they were asked to gather information online. Both
social interaction and the need to reach an internal consensus via

deliberation improved people’s forecasting accuracy. Collaborat-
ing in groups with higher composite diversity was beneficial for
people’s individual ability to forecast the future, proportionally to
group size (Fig. 2). When aggregating judgments together using a
simple median, this translated into an advantage of modular
groups and groups with higher composite diversity, and an
interaction between composite diversity and modularity (Fig. 3).
We explored the mechanisms underlying this interaction with a
range of exploratory analyses (Fig. 4).

The widespread use of automated content recommendation
paired with people’s tendency to interact with others who share

Table 1 Generalized mixed-effects models on individual and aggregated errors.

Effect Estimate Fitted Brier score SE t p

(A) Individual forecasting error as a function of forecast type
Intercept −2.14224 0.1173915 0.24230 −8.841 <2e− 16
Initial 0.62237 0.2187395 0.09040 6.884 5.81e− 12
Revised 0.69532 0.2352946 0.08947 7.772 7.73e− 15
Final 0.23849 0.1490093 0.09979 2.390 0.0169
(B) Individual forecasting error as a function of diversity and group size
Intercept −1.96631 0.139972 0.30877 −6.368 1.91e− 10
Final 0.20997 0.1726759 0.07814 2.687 0.00720
Diverse −0.37285 0.1189339 0.20278 −1.839 0.06595
Small −0.20011 0.1413602 0.20094 −0.996 0.31932
Diverse:small 0.82956 0.2231896 0.29025 2.858 0.00426
(C) Aggregated forecasting error as a function of forecast type
Intercept −1.8387 0.1590198 0.2508 −7.331 2.29e− 13
Initial 0.6815 0.3143683 0.2293 2.972 0.00296
Revised 0.5999 0.2897372 0.2301 2.607 0.00913
Final −0.1281 0.1398955 0.2964 −0.432 0.66557
(D) Aggregated forecasting error as a function of Diversity and Modularity
Intercept −1.76627 0.1709691 0.33428 −5.284 1.27e− 07
Final −0.06877 0.15960632 0.15360 −0.448 0.65434
Diverse −0.56382 0.09082084 0.23514 −2.398 0.01649
Modular −0.82268 0.07010727 0.26515 −3.103 0.00192
Diverse:modular 0.93267 0.10137943 0.38254 2.438 0.01477

Table of analysis on forecasting errors (in Brier scores) for individual (A–B) and aggregated measures (C–D), and as a function of forecast type (A–C) and condition (B–D). Baselines for each factor:
consensus, homogeneous, large/non-modular. The effect of final forecasts on individual errors (A) and the effects of composite diversity and the interaction between composite diversity and modularity
(D) did not survive a Bonferroni correction. Boldface: p < 0.05; italics: p < 0.10. Tables B–C represent exploratory analyses. Hypotheses in tables A and D were preregistered. All analyses were also
repeated with binarized accuracy (Supplementary Tables 11–14) and logit link function (Supplementary Table 15). For convenience, all tests refer to two-sided hypotheses and were calculated with the
lmerTest package in R63.

Fig. 2 Individual-level analysis. A Partial residuals plot showing the effect of forecasting type on individual forecasting error (measured in Brier scores).
Lower numbers represent higher accuracy. Solid lines represent model fit. B Partial residuals plot showing the effect of diversity and group size on
individual forecasting error (expressed in Brier scores). Solid lines represent model fit. Notice that, for visualization purposes, the graphs have been plotted
onto the original error scale rather than log scale as in the fitted GLMM. Thus, large residuals should not cause concern64. See Supplementary Fig. 10 when
using a logit link. Source data are provided as a Source data file.
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similar characteristics is thought to create insulated online
information bubbles. There is growing concern that this tendency
might have negative long-term consequences on political and
democratic institutions, as citizens form partial or inaccurate
representations of the world. Although we cannot answer these
important questions with our study, we tried to characterize the
effect that interacting with peers who differ along an arbitrary
large profiling space has on the forecasting accuracy achieved by
in-expectation-identical people (core segment participants) as a
function of group size. We provided preliminary evidence that the
ability of an online collective to rapidly gather information to
predict difficult geo-political events may be coupled with their
digital ecosystem. People’s shared traits did not predict a priori
how correlated their beliefs about world events were. Instead,
belief coupling happened only after they interacted with their
unique information silos via their web browsers. Forecasts
became correlated only after online browsing, and proportionally
to people’s similarity on our multi-trait profiling space. In other
words, our operationalization of trait similarity had measurable
effects on the online information a group could tap into. This is in
contrast with offline settings, where trait diversity does not
directly impact information diversity23,25,26,29,37,38. The use of an
experimental methodology bypasses the limitations of observa-
tional approaches, strengthening causal inference25,26,30,53. Trait
similarity in our experiment largely captured participants’ varia-
bility along interpretable ethnic-cultural and socio-political vari-
ables (Supplementary Figs. 13–18). Arguably, these features affect
political judgments and the type of content that a person is likely
to retrieve online. Our findings raise worries that these features
may be used by search engines to skew information retrieval
during online searches, with measurable effects on collective
performance. This effect was not among our preregistered
hypotheses so we warn caution in overinterpreting this finding.
Future studies should attempt a replication.

Our findings also suggest the importance of diversity in online
settings characterized by large collectives. Given the difficulty and
domain specificity of the questions in our experiment, increasing
diversity may have increased the chance that at least one of the
participants in a group could, for example, recall what a Loya
Jirga is and make an informed guess. This effect would be more
pronounced in a large group than a small group. To illustrate this,

imagine asking a group of scientists this question: “Is Variola
major likely to become a more life-threatening virus than Cor-
onavirus before 2030?”. If we select a discipline at random, and
then make large or small groups they would be unlikely to know
what Variola major is and would guess Yes with some probability
greater than zero. If we randomly choose scientists across dis-
ciplines to create groups, small groups do not do much better
than groups from a single discipline because the likelihood of
containing a virologist is small. However, the chances of finding a
virologist increase with group size and a finite number of aca-
demic disciplines. If there happens to be a virologist, they can
trivially identify the answer to this question as No (this virus
causes small pox, a disease that the World Health Organization
declared eradicated in 1980). Similarly for political questions,
imagine we have a set of questions from across a large range of
countries or cultures, all of which are obviously unlikely to any-
one with domain knowledge. Diversity would improve forecasting
in large, but not small groups, because large groups have an
increased chance of containing an expert. Critically, because the
base rate probability of the events is low (Supplementary Table 1),
Brier error will be high in anyone without domain knowledge that
assumes the events have closer to equal probability of occurring.
Although this logic nicely explains the beneficial effect of diversity
observed in large groups, it lacks explanatory power in other
respects. First, it does not explain why we observed a symmetrical
effect in small groups instead of no effect at all (Figs. 2B and 3B).
Second, it does not explain why differences among groups largely
emerged after the revision and social stages rather than during
initial guesses. Finally, it is unclear why performance variability
remained similar between large diverse and homogeneous groups,
notwithstanding a supposedly different concentration of domain
experts (Fig. 4). Thus, although these statistical considerations are
certainly relevant, technological (individuals interacting with their
search engines), and social (individuals interacting with each
other) aspects are also an important part of the story. Impor-
tantly, alternative measures of diversity and more theory-driven
profiling should be considered in the future to address these
concerns. For the scope of our paper, however, the specific
implementation of composite group diversity was not as impor-
tant as its functional value in influencing information foraging
and error distributions in online groups. Characterizing measures

Fig. 3 Group-level analysis. Individual forecasts were aggregated for each forecast type, first within each group and then across groups in each treatment.
A Partial residuals plot showing the effect of forecast type on aggregated forecasting error (measured in Brier scores). Lower numbers represent higher
accuracy. Solid lines represent model fit. B Partial residuals plot showing the effect of diversity and modularity on aggregated forecasting error. Solid lines
represent model fit. Notice that the graphs have been plotted onto the original error scale. See Supplementary Fig. 11 when using a logit link. Source data are
provided as a Source data file.
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of group diversity is a research field in its own right. We recognize
that our method is not perfect and caution should be used when
trying to generalize our results.

Investigating collective decisions under extreme conditions is
highly informative. Many decisions faced by intelligence analysts,
as well as normal people everyday are characterized by weak
signal, uncertainty, time pressure, or short collective attention,
namely all conditions under which rational deliberation is least
effective11,12,54. The specific forecasting problems asked in the
task were a random subsample of forecasting problems that were
selected by a national forecasting tournament (Hybrid Forecast-
ing Competition) to be a representative sample of professional
geo-political forecasting. They required domain knowledge that
participants were unlikely to possess prior to online browsing.
This feature served a precise design purpose. The specificity of the
forecasting problems ensured that group discussions were driven
by the content that was collectively retrieved online rather than
biased by what participants knew in advance. Group members
had only a short amount of time to forage for relevant online

content. The ability of a group to collectively search relevant
information in parallel was thus, arguably, more important than
the ability of each individual to search any piece of information
thoroughly. Finally, another thing to notice is that most events
did not occur (Supplementary Table 1). This is not uncommon in
forecasting. Rare events are often the most consequential and
difficult to predict, as the covid-19 pandemic shows. Being able to
predict rare events resides at the heart of accurate forecasting49,55.
In these circumstances, an unspecific bias toward deeming events
unlikely to occur would generally pay off (in the short term), and
generate few highly consequential mistakes. To rule out the
confound of an unspecific bias, we ran a signal detection analysis
that indicated that people did not show any bias toward uncri-
tically deeming events as rare during their initial forecasts (Sup-
plementary Fig. 9). In later forecast stages, it is unclear why an
unspecific tendency toward answer low probability (confidently
believing the events were unlikely) would emerge from online
browsing or social interaction. Social interaction is known to
extremize initially held individual opinions, a phenomenon

Fig. 4 Disagreement and variability in performance. A Distributions of opinion disagreement as a function of forecasting stage, group trait diversity and
group size. Opinion disagreement is calculated as the standard deviation over group members' forecasts. B Performance variability as a function of
forecasting stage, group trait diversity, and group size. Performance variability is the standard deviation over average individual performance in a group.
Larger values indicate that a group contains members who are very good and members who are quite poor (on average across the eight IFPs). Notice that a
single value of performance variability exists for large groups, but not for small groups (m= 6 and m= 4 for small low and high diversity groups,
respectively). Notice also that for both panels consensus forecasts were removed because, by definition, they did not produce meaningful variation in these
measures. Box areas correspond to distribution ideal tail areas of 0.50, 0.25, 0.125, 0.0625 (ref. 65). Source data are provided as a Source data file.
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known in psychology as risky-shift56. Thus, if anything one would
expect social interaction in our experiment to pull initial pre-
dictions toward 0 and 100% symmetrically. Instead, group dis-
cussions seemed to adjust initial predictions intentionally toward
the correct response. Furthermore, the unspecific bias explanation
does not account for the interaction between group diversity and
group size observed. Manual labeling of chat conversations
revealed that about half of people in each group had at least some
knowledge about each topic, and conversations mainly revolved
around evidence in favor or against each option. Although it is
difficult to disentangle whether domain-specific knowledge was
due to prior beliefs or online browsing, the former explanation is
unlikely given that initial forecasts were distributed around
chance level (Supplementary Fig. 9). We thus conclude that the
observed accuracy improvement was more likely due to online
browsing and group deliberation, rather than an unspecific bias
toward reducing probability.

In line with recent work in collective behavior, we find that
when decision makers are not independent (as in this task) group
accuracy can benefit from a reduced group size and increased
modularity15,41,43,44,57. Research in social learning58 has shown
that group outcomes are affected by a complex interplay among
several factors, including learning strategies, task complexity,
modularity, and network structure. The present study showed
how two factors that independently reduce correlated errors,
namely group composition and modularity, can interact in
unexpected ways14,15,20. To characterize this novel interaction, we
described information aggregation using a range of exploratory
analyses, such as within-group disagreement (Fig. 4A), con-
vergence speed to consensus forecast (Supplementary Material
§6) and performance variability among group members (Fig. 4B).
Among these variables, performance variability—often a pre-
requisite for good group performance in the literature on col-
lective intelligence51,52,59—may help understand how our
treatment influenced information aggregation in our task.

Notwithstanding the value of these results, we would like to
raise a word of caution. In particular, as specified in our pre-
registration, we had no expectations on the direction of the
interaction between group composition and group size before
testing our model. Similarly, some analyses were exploratory in
nature and cannot be used to draw definitive conclusions. Future
studies will need to address whether the result can be replicated. If
so, our results suggest that, given the difficulty in reducing the
impact of homophily and self-assortativity on the Internet,
decision makers may try instead to increase its modularity.
Addressing the ethical considerations in this debate is beyond the
scope of this paper, but an equally important avenue of
investigation60.

Methods
Procedure. The study was approved by MIT Institutional Review Board. Partici-
pants (N= 193, Supplementary Tables 2 and 3) gave informed consent before
joining the study. Three days before test (pretest), participants answered a battery
of demographic, cognitive, and personality questions that was used to map them on
a multidimensional space Θ. We used an unsupervised clustering algorithm
(DBSCAN) to label participants as belonging to the center mass of the distribution
(core segment) or its tail (inner and outer segments, Fig. 1A). This structure was
already visible on a low-dimensional projection of participants on the first two
principal components of the data (Supplementary Fig. 18).

We manipulated group composite diversity (low vs. high) and crowd
modularity (low vs. high; Fig. 1B). Core participants (~50% of our initial sample)
were randomly assigned (a) to work with either close (inner segment,~25% of our
sample) or distant (outer segment, ~25% of our sample) participants on the feature
space, and (b) to work in small (~5 people) or large (~25 people) groups (Fig. 1C).
During the experiment (test phase), participants answered eight IFPs, randomly
selected from a larger pool of binary real geo-political forecasting problems released
within IARPA’s Hybrid Forecasting Competition and unresolved (i.e., whose
solution was unknown) at the time of the experiment. The exact problems selected
were not preregistered. For each IFP, participants went through three timed

consecutive stages. During stage one, participants answered a binary forecasting
problem (Supplementary Table 1) and had to enter an initial private forecast off the
top of their heads (initial forecast). During stage two, they had to search relevant
information online, using their browser, and enter a revised private forecast
(revised forecast). Finally, during the third and last stage, participants discussed in
real time their views using an inbuilt chat (Fig. 1C). During this stage, participants
had to agree on a joint forecast (consensus forecast), as well as giving their final
private forecast (final forecast). Notice that although consensus forecasts in a group
had to be the same final forecasts could differ, thus allowing us to capture residual
disagreement existing between group members after interaction had taken place.
Participants were rewarded both for their time and—~6 months later (post-test)
when the ground truths were revealed—for accurate predictions. Performance was
evaluated using Brier scores, a quadratic error score used in forecasting for its
proper scoring properties, i.e., a scoring rule incentivizing honest responding. For a
binary question, a Brier score is computed as:

b ¼ ðo� pÞ2 þ ð�o� �pÞ2 ð1Þ
where p represents the predicted event probability (range [0, 1]) and o is the
indicator variable for the observed event (0: the event happened; 1: the event did
not happen). �p and �o represent complementary probabilities. A Brier score of 0
represent a fully predicted event (i.e., no uncertainty), while a Brier score of 2
represents a gross forecasting error (the forecaster predicted with absolute
confidence the event would occur and it did not, or viceversa). Notice that Brier
scores measure second-order accuracy, meaning that they punish over- (and
under-)confidence rather than number of incorrect binary judgments. An
improvement in Brier score represents a more precise probabilistic forecast, which
might not necessarily reflect how often a participant is right (first-order accuracy).
For these reasons, Brier scores represent the standard in forecasting49,61,62.

Analyses. Errors were fitted with multilevel generalized linear mixed-effects
models (GLMM) with Gaussian log link function. The results are robust across
alternative link functions, like probit and logit (Supplementary Table 17, and
Supplementary Figs. 10 and 11). All analyses, unless specified, were limited only to
participants who fell in the core segment (i.e., test participants), as these were the
only ones to whom the randomization procedure applied. This allows us to draw
causal inferences on the effect of our manipulation, as all core participants were
equal in expectation. Our main analyses corresponding to our preregistered
hypotheses are reported in Table 1A and D. They included at the individual level
the effect of forecast type, and the aggregate level the effect of composite diversity
and size assignment. To provide a full picture, we complement the main analyses
with the effect of the manipulation on individual errors (Table 1B) and the effect of
forecast type on aggregate errors (Table 1C).

Also according to our preregistered hypotheses, we analyzed within-group
disagreement at each stage of the experiment (Supplementary Table 15).
Disagreement was defined as the standard deviation of the forecast within a group,
broken down by forecast type and condition. We also run a set of exploratory
analyses on chat data, aimed at understanding how individuals integrated private
information to reach a consensus within their group (see Supplementary material
§5-6).

Statistics and reproducibility. The experiment was repeated only once. A pilot
experiment had been previously discarded (data never analyzed) due to a bug in the
web application.

Preregistration material. Preregistration material is available via AsPredicted.org:
https://aspredicted.org/9m6df.pdf.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Research data supporting the findings of this study have been deposited in Open Science
Framework. N.P., A.R., and I.R. (July 6, 2020). Modularity and composite diversity affect
the collective gathering of information online. Data can be retrieved using the permanent
link: osf.io/wb538. A Reporting summary for this article is available as a Supplementary
Information. Source data are provided with this paper.

Code availability
Code to replicate analysis and figures supporting the findings of this study have been
deposited in Open Science Framework. N.P., A.R., and I.R. (July 6, 2020). Modularity and
composite diversity affect the collective gathering of information online. Data can be
retrieved using the permanent link: osf.io/wb538.
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