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Unsupervised clustering identified clinically
relevant metabolic syndrome endotypes
in UK and Taiwan Biobanks

Aylwin Ming Wee Lim,1,2,3 Evan Unit Lim,2,4 Pei-Lung Chen,5,6 and Cathy Shen Jang Fann1,2,7,*
SUMMARY

Metabolic syndrome (MetS) is a collection of cardiovascular risk factors; however, the high prevalence and
heterogeneity impede effective clinical management. We conducted unsupervised clustering on individ-
uals from UK Biobank to reveal endotypes. Five MetS subgroups were identified: Cluster 1 (C1): non-
descriptive, Cluster 2 (C2): hypertensive, Cluster 3 (C3): obese, Cluster 4 (C4): lipodystrophy-like, and
Cluster 5 (C5): hyperglycemic. For all of the endotypes, we identified the corresponding cardiometabolic
traits and their associations with clinical outcomes. Genome-wide association studies (GWASs) were con-
ducted to identify associated genotypic traits. We then determined endotype-specific genotypic traits
and constructed polygenic risk score (PRS) models specific to each endotype. GWAS of eachMetS clusters
revealed different genotypic traits. C1 GWAS revealed novel findings of TRIM63, MYBPC3, MYLPF, and
RAPSN. Intriguingly, C1, C3, and C4 were associated with genes highly expressed in brain tissues. MetS
clusters with comparable phenotypic and genotypic traits were identified in Taiwan Biobank.

INTRODUCTION

Non-communicable diseases (metabolic diseases, cardiovascular diseases, neurodegenerative diseases, cancer, and pulmonary diseases) are

complex—influenced by both genetics and non-genetics factors.1,2 To understand the genetic causes and pathophysiology of complex dis-

eases, genome-wide association studies (GWASs) are widely utilized,3–6 however, the heterogeneous nature of complex disease has impeded

effective translation from GWAS to clinical, especially in case-control GWAS of complex diseases.7–9 Metabolic syndrome (MetS) is the very

definition of a highly heterogeneous complex disease because MetS encompasses a spectrum of obvolute conditions such as hypertension,

dyslipidemia, type 2 diabetes (T2D), and obesity.10,11

MetS represents a collection of known cardiovascular risk factors, which contributes to much morbidity and mortality associated with car-

diovascular diseases (CVDs) such as myocardial infarction, stroke, atherosclerosis, and heart failure.12–14 In addition to that, MetS also asso-

ciated with a multitude of other non-cardiovascular adverse health outcomes: malignancies, renal diseases, and neurological complications

(dementia and Alzheimer disease).15–17 For these reasons, identifying individuals with MetS with high risk of complications and preventing

MetS-associated diseases are crucial in treating MetS. Mulugeta et al. study on the UK Biobank further emphasizes this point, demonstrating

the importance of subgrouping in understanding cardiometabolic multimorbidity and its implications for public health and clinical

interventions.18

The diagnosis and classification of MetS are arbitrary and continually evolving according to experts’ consensus and clinical evidence from

observational studies.19 The prevalence of MetS is high and increasing; 34.2% in United States,20 22.1% in Australia,21 33.9% in Türkiye,22

29.3% in South Korea,23 and 25.5% in Taiwan.24 With such high MetS prevalence, almost one-third of the general population, managing

MetS poses an immense burden on healthcare systems.

However, the binary classification of MetS is insufficient to reflect the heterogeneity, differing risk to disease outcomes and unpredictable

pharmacotherapy effectiveness.25,26 k-means clustering is a well-known unsupervised learning approach that groups objects with similar char-

acteristics into clusters for identifying subtypes of complex diseases.27,28 Ahlqvist et al. through k-means clustering on T2D revealed clinically

relevant subtypes of T2D in Swedish cohorts,28 which was later replicated in other populations29–31; however, there are some variations that

indicated population-specific subtypes. Dennis et al. further evaluated the data-driven cluster analysis using clinical trials data but suggested

that models based on simple clinical features might be more useful in stratifying patients.32
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Endotypes refer to disease subtypes with differing pathophysiology; and to be clinically relevant, endotypes should be dependent on bio-

logical pathways and pathophysiology on top of the ability to distinguish between the heterogeneity of various clinical outcomes.33 Further-

more, the endotypes of complex diseases should allow for stratified or precision treatment approach with differing clinical course and treat-

ment responses. Unsupervised clustering can be a valuable technique to reclassify MetS, uncovering distinct endotypes and reducing the

overall heterogeneity of MetS. Furthermore, as MetS is more encompassing, which comprises multiple overlapping cardiometabolic condi-

tions, applying unsupervised clustering on MetS, the bigger picture, might reveal intriguing insights.

In our study, we applied unsupervised clustering on MetS in UK Biobank (UKB) cohort to reveal clinically relevant endotypes of MetS. We

conducted first-of-its-kind GWAS of endotypes to identify sub-phenotypes-associated genotypic traits and potential drug repurposing tar-

gets. MetS endotypes were further predicted and evaluated in Taiwan Biobank (TWB).

RESULTS

Prevalence and characterization of metabolic syndrome in UK Biobank

In our comprehensive analysis of 334,134 white British individuals from the UK Biobank (UKB), 31.1% (n = 103,996) were identified as having

metabolic syndrome (MetS), meeting at least three of the five established MetS criteria. Additionally, 55.3% (n = 184,644) were classified as

pre-MetS, meeting one or two criteria, underscoring the widespread prevalence of MetS and its precursor states.

Five MetS clusters were identified with distinct phenotypic traits

The optimal number of clusters, k, was determined at five through silhouette coefficient and the elbow method (Figure S2). Individuals with

MetS formed five clusters: Cluster 1 (n= 33,707; 32.4%), Cluster 2 (n= 23,215; 22.3%), Cluster 3 (n= 30,089; 28.9%), Cluster 4 (n= 13,116; 12.6%),

and Cluster 5 (n = 3,869; 3.7%). From the principal-component analysis (PCA) plot (Figure 1) of the MetS criteria, the five MetS clusters were

located away from the healthy individuals with pre-MetS interspersed among healthy and MetS. MetS Clusters 1, 3, and 4 were in close prox-

imity with some overlaps. MetS Cluster 1 appeared to bemore consolidated due to smaller variation of principal component 1 and 2, which is

reflected in smaller standard deviations of the MetS criteria (Table S3).

Our results revealedmarkeddifferences in lipid profiles, bloodpressure, anthropometricmeasurements, glycemic traits, and liver enzymes

across the clusters (Figure 2). For instance, Cluster 5, designated as ‘‘hyperglycemic,’’ displayed the most severe glycemic abnormalities,

including the highest prevalence of diagnosed type 2 diabetes. In contrast, Cluster 4, with ‘‘lipodystrophy-like’’ characteristics, showed an

atypical MetS phenotype, mirroring findings from previous studies by Yaghootkar et al.34 and Udler et al.35 The ‘‘obese’’ Cluster 3 was char-

acterized by the most pronounced obesity-related traits. Interestingly, despite having the highest blood pressure readings, Cluster 2 ex-

hibited lower lung function, a novel finding warranting further investigation. Cluster 1 was less distinctive but was notable for its lower con-

centrations of ketone bodies and apolipoproteins (Figure S5). The interrelation of these phenotypic traits (Figure S3) underscores the complex

nature of MetS.

Our sex-specific clustering also revealed MetS clusters rather similar to the sex-combined clustering with slight differences shown in

Figures S13–S15. As the results from sex-specific clustering appear to be rather similar to that of sex-combined clustering, we did not proceed

with further analysis for sex-specific MetS clusters and will explore the sex-specific clusters in future work, which will reveal more sex-specific

effects on MetS.

Clinical implications of MetS cluster stratification

Utilizing multivariable logistic regression models, we assessed the association of each MetS cluster with 25 clinical outcomes, including car-

diovascular diseases, chronic kidney disease, various cancer types, dementia, and Alzheimer disease (Figures 3 and S6 and Table S5). Our

findings align with the known association of MetS with increased cardiovascular risk, particularly in specific clusters. MetS is a known risk factor

for multiple common cancers17; however, the mechanism linking MetS and cancer is not well elucidated. Furthermore, the cancer risk varied

significantly among the clusters, with Cluster 5 showing the highest odds for liver and pancreas cancer and Cluster 4 being most associated

with breast and colorectal cancer. The relative risks of various cancers are similar to that of odds ratio (Table S21). These differential risks un-

derscore the heterogeneity within MetS and the importance of cluster-specific medical management.

Genotypic traits of MetS clusters

Through genome-wide association studies (GWASs) and FUMA SNP2GENE analysis (Figure 4 and Tables S8A–S8F and S9A–S9F), we iden-

tified distinct genetic signatures for each MetS cluster. Notably, a comparison of Manhattan plots (Figure 5) revealed both common and

unique genomic loci across the clusters. The differential gene expression across various tissues (Figures S7A–S7F) further highlights the

complexity of MetS at the genetic level. GWAS of MetS clusters identified rather contrasting mapped genes from that of GWAS of MetS

criteria, with only %10 genes similar across that in all MetS clusters.

Comparison of genotypic traits among clusters

The pairwise genotype comparison among MetS clusters by Jaccard and cosine similarity index on independent significant SNPs and map-

ped genes are shown in Figure 5 and Table S15. MetS Clusters 1, 3, and 4 were the most similar in term of genotypic traits, whereas MetS

Clusters 2 and 5 were the most contrasting from other MetS clusters. Furthermore, the comparison of genotypic traits of MetS clusters
2 iScience 27, 109815, July 19, 2024



Figure 1. Principal-component analysis (PCA) plot and violin plot of five MetS criteria in UK Biobank

Principal-component analysis plot shows principal component 1 versus principal component 2. Principal-component analysis was constructed based on the five

MetS criteria namely serumglucose, waist circumference, triglyceride, HDL cholesterol, andmean arterial pressure. Principal component 1 explained 40.2% of the

variance, whereas principal component 2 explained 19.6% of the variance. Violin plots show the distribution of the fiveMetS criteria across healthy, pre-MetS, and

MetS clusters.
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with all MetS showed that each of theMetS clusters GWASmanaged to identify unique SNPs and genes despite them being subgroups of all

MetS (Table S16).
Precision drug repurposing and precision disease risk prediction

Leveraging the genetic insights from our GWAS, we performed GREP enrichment analysis to identify potential drug repurposing opportu-

nities. The analysis revealed distinct ATC drug groups associated with each MetS endotype, suggesting tailored therapeutic strategies (Ta-

ble 1). For instance, genes associated with Cluster 1 were enriched in cardiovascular drugs like anti-obesity and antihypertensive agents. Clus-

ter 4’s gene associations were specific to lipid-modifying agents, underscoring the potential for targeted lipid management in this group.

In predictivemodeling, the polygenic risk scores (PRS) forMetS clusters demonstrated varying levels of predictive accuracy. Cluster 4’s PRS

was particularly effective at lower p-value thresholds, whereas the PRS for the collectiveMetS group excelled at higher thresholds (Figure 6A).
iScience 27, 109815, July 19, 2024 3



Figure 2. Parallel plot and heatmap displaying standard scores (Z scores) for 87 quantitative traits across metabolic syndrome clusters, pre-metabolic

syndrome, and healthy individuals in the UK Biobank

Figure 2 provides a detailed parallel plot and heatmap analysis, showcasing the standard scores (Z scores) for 87 distinct quantitative traits across metabolic

syndrome (MetS) clusters, pre-MetS, and healthy individuals within the UK Biobank dataset. This figure is designed to illuminate the complex and

multifaceted nature of MetS, revealing the unique phenotypic patterns that distinguish each MetS cluster from one another and from pre-MetS and healthy

baselines. Key observations include the pronounced obesity-related markers in Cluster 3 and the markedly elevated glucose levels and HbA1c in Cluster 5,

illustrating the heterogeneity within MetS diagnoses. By incorporating a wide range of cardiometabolic parameters, Figure 2 underscores the variability

within MetS clusters and highlights the critical need for a nuanced understanding of MetS subtypes in enhancing precision medicine approaches. tg,

triglyceride; hdl, high-density lipoprotein; tc, total cholesterol; ldl, low-density lipoprotein; apoA, apolipoprotein A; apoB, apolipoprotein B; sbp, systolic

blood pressure; dbp, diastolic blood pressure; pr, pulse rate; pp, pulse pressure; map, mean arterial pressure; wc, waist circumference; hc, hip

circumference; bmi: body mass index; bfp: body fat percentage; wbfm: whole-body fat mass; bmr: basal metabolic rate; whr: waist-to-hip ratio; avi:

abdominal visceral index; wi: waist index; vai: visceral adiposity index; afp_left: arm fat percentage (left); afp_right: arm fat percentage (right); lfp_left: leg fat

percentage (left); lfp_right: leg fat percentage (right); tfp: trunk fat percentage; IGF1: insulin growth factor 1; vit_d: vitamin d; SHBG: sex hormone binding
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Figure 2. Continued

globulin; crp: c-reactive protein; wbc: white blood cell; PDW: platelet distribution width; PCT: plateletcrit; MPV: mean platelet volume; MCHC: mean corpuscular

hemoglobin concentration; hb: hemoglobin; rbc_count: red blood cell count; RDW: red cell distribution width; alp: alkaline phosphatase; alb: albumin; ast:

aspartate aminotransferase; alt: alanine transaminase; tb: total bilirubin; ggt: gamma-glutamyl transferase; tp: total protein; fvc: forced vital capacity; fev1: forced

expiratory volume in 1s; pef: peak expiratory flow; CrCl: creatine clearance.
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Tomitigate sample size disparities, we conducted a random sampling of 3,800 cases per group, revealing that PRSmodels for three out of the

fiveMetS endotypes outperformed the all-MetSmodel across variousp-value thresholds (Figure 6B). This finding highlights the importance of

considering sample size and genetic heritability in PRS model performance.
Similar MetS endotypes identified in TWB

Extending our analysis to the Taiwan Biobank (TWB), we identified similar MetS clusters, indicating a cross-population consistency in MetS

phenotypes (Figures 7 and S9 and Table S12). A notable variance was observed in Cluster 4 (lipodystrophy-likeMetS) of TWB, which exhibited

distinct lipid profiles and a lower prevalence of T2D and hypertension compared to its UKB counterpart. This highlights potential population-

specific phenotypic expressions of MetS.

Despite the smaller MetS sample size in TWB, we observed significant overlaps in mapped genes between the two biobanks, although

independent significant SNPs were largely population-specific. For example, Cluster 1 in TWB shared 43 mapped genes with its UKB coun-

terpart, indicating potential common genetic pathways across populations. However, one GWAS in TWB (Cluster 2) did not identify any sig-

nificant genetic loci due to the smaller sample size (Figure S11), underscoring the challenges in cross-population genetic studies.
DISCUSSION

Our study utilized unsupervised clustering onMetS criteria in the UK Biobank (UKB) to delineate five clinically relevantMetS endotypes. These

endotypes are semi-distinct in both phenotypic and genotypic traits, as evidenced by our analyses across 25 clinical outcomes. This novel

approach, combining unsupervised clustering with genome-wide association studies (GWASs), has revealed critical insights into the under-

lying genotypes that drive the pathophysiology of MetS. Remarkably, we validated theseMetS clusters in the Taiwan Biobank (TWB), demon-

strating their applicability across populations with diverse ancestries.

Intriguingly, all MetS clusters except Cluster 2 shared only three genotypes of LPCAT2 (lysophosphatidylcholine acyltransferase 2),

NUDT21 (nudix hydrolase 21), and OGFOD1 (2-oxoglutarate and iron-dependent oxygenase domain containing 1). All three genes were

also identified in Cluster 1 and Cluster 3 of TWB.NUDT21 andOGFOD1 have both been reported to be associated with BMI,36,37 highlighting

the common shared obesity trait that might predispose to MetS in individuals within these clusters. LPCAT2 has never been reported to be

associated with any cardiometabolic traits. Single-cell RNA-sequencing data showed high LPCAT2 expression in immune cells, specifically

basophil, eosinophil, neutrophil, and monocytes.38,39 Furthermore, LPCAT2 has reported to be responsible for increased expression of in-

flammatory genes in response to bacterial stimuli.40 All these previous findings of LPCAT2 could indicate chronic inflammation being a

key player in MetS pathophysiology.

One of our study’s most intriguing findings is the unique profile of MetS Cluster 1. Despite lacking specific cardiometabolic traits, this

cluster is linked to a broad range of clinical outcomes, including cardiovascular disease (CVD), chronic kidney disease, dementia, and

bladder cancer. Notably, Cluster 1 exhibits the highest CVD odds, even after adjusting for T2D status, a trend that is also observed in

its TWB counterpart. This poses a significant clinical challenge, as patients in this cluster may not be readily identified as high-risk due

to their inconspicuous clinical presentation. Beyond just the aggregation of MetS risk factors, Cluster 1’s elevated risk suggests a deeper,

potentially unrecognized pathophysiological mechanism. This is further hinted at by its low levels of ketone bodies and medium high-den-

sity lipoprotein (HDL) lipid composition, factors inversely associated with insulin resistance and CVD risk.41,42 However, determining

whether these metabolomic traits are consequences or indicators of the disease remains challenging. The GWAS of Cluster 1 has high-

lighted several genes, including TRIM63 (tripartite motif containing 63), MYBPC3 (myosin-binding protein C3), MYLPF (myosin light chain,

phosphorylatable, fast skeletal muscle), RAPSN (receptor-associated protein of the synapse), and LPL (lipoprotein lipase), which may pro-

vide insights into underlying mechanisms. Particularly, the expression of TRIM63 and MYBPC3 in cardiomyocytes43,44 and MYLPF and

RAPSN in skeletal muscles45,46 could be indicative of a link between muscle function, skeletal insulin resistance,47 and increased CVD

risk in this cluster.

The phenotypic traits of MetS Cluster 4 are similar to that of lipodystrophy-like and liver/lipid T2D clusters identified by Udler et al.35 with

lipodystrophy-like features such as low obesity traits and dyslipidemia. Furthermore, Cluster 4 GWAS highlighted some of the genes previ-

ously reported in ‘‘lipodystrophy-like’’ insulin resistance cluster by both Yaghootkar et al.34 and Udler et al.35 such as GRB14 (growth factor

receptor bound protein 14), GCKR (glucokinase regulator), and IRS1 (insulin receptor substrate 1). We also identified several genes from

similar gene families such as FAM (family with sequence similarity member): FAM76A, FAM171A2, FAM192A, FAM89B, and FAM180B, similar

to FAM13A in Yaghootkar et al.34 Genetic variants mapped to GCKR were discovered in Cluster 4 of both UKB and TWB. Cluster 4 supports

the importance of identifying individuals of normal weight obesity due to the high CVD risks.48

MetS and individual MetS components such as hypertension, hyperglycemia, and obesity are known risk factors for AF.49–53 Cluster 3 had

the highest odds for AF after adjusting for type 2 diabetes status and highlights the alarming risk of developing AF in this MetS endotype,

probably due to the role of obesity inMetS towardAF. Cluster 3 GWAS highlighted genes that are uniquely expressed in adipose tissue, brain
iScience 27, 109815, July 19, 2024 5
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Figure 3. Odds ratios (and 95% confidence intervals) for health outcomes (composite CVD outcomes, atrial fibrillation, depression, and all cancers) in

metabolic syndrome, its clusters, and pre-metabolic syndrome compared to healthy controls (left); percentage of cases in each category (right)

Left panel: x axis represents the odds ratios for health outcomes, adjusted for age and sex (blue), and further adjusted for T2D status (orange). A red dotted line

indicates an odds ratio of 1, signifying equal event odds in metabolic syndrome groups versus healthy controls. Right panel: x axis shows the percentage of each

health outcome; y axis categorizes overall metabolic syndrome, its clusters, and pre-metabolic syndrome. Table S5 provides further details.
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amygdala, or associated with obesity traits: for example, FTO (fat-mass- and obesity-associated protein), MC4R (melanocortin 4 receptor),

CALCRL (calcitonin-receptor-like receptor), and IL34 (interleukin-34). FTO and MC4R are well-known obesity genes, which were associated

with obesity traits36,54 and type 2 diabetes.55,56CALCRL have been reported to be associatedwith obesity traits,57 highly expressed in adipose

tissue45 and negatively associated with leptin, a hormone that helps maintain normal body weight.58 Genetic variants of IL34 were associated

with Alzheimer disease,59 BMI,60 and type 2 diabetes in multi-ancestry cohort.61 However, it is unsure which specific genetic traits underlie the

pathophysiology of obesity and AF in this MetS cluster.

We noticed that the intersection of genotypic traits among MetS Clusters 1, 3, and 4 was highly expressed in the brain, specifically hypo-

thalamus and pituitary, such as CNIH2 (cornichon family AMPA receptor auxiliary protein 2), TMEM151A (transmembrane protein 151A),

C1QTNF4 (C1q and TNF related 4), and MT3 (metallothionein 3). The neuroendocrine systems, especially the hypothalamus and pituitary,

are involved in energy thermoregulation and satiety control.62 Our results highlighted the importance of the neuroendocrine system shared

by these three MetS endotypes. For instance, C1QTNF4modulated food intake patterns and systemic energy metabolism in obese mice.63

MT3 expression in hypothalamus of mice may be involved in leptin signaling and peripheral energy expenditure.64

Cluster 2, despite its higher blood pressure traits, exhibited lower odds for CVD, similar to that observed in the pre-MetS group. This

phenomenon may be attributed to the higher proportion of females in the cluster, which is generally considered a cardioprotective

factor65,66 and higher proportion of subcutaneous fat over visceral fat.67 Additionally, the influence of menopausal status, particularly

early menopause, as a risk factor for CVD, was notable. Adjustments for menopausal status reduced the risks for clinical outcomes,

but these risks still exceeded those of the healthy and pre-MetS groups (Tables S6, and S7), suggesting menopausal status as a signif-

icant, yet not sole, factor in CVD risk. The absence of data on postmenopausal hormone therapy, which can impact cardiovascular risk,68

is a limitation. Cluster 2 GWAS highlighted some brain-specific genes such as C1QL1 (complement C1q like 1), MAPT (microtubule-

associated protein tau), and GFAP (glial fibrillary acidic protein). C1QL1, MAPT, and GFAP are known genotypes associated with blood

pressure traits.69–71

MetS Cluster 5 featured the role of type 2 diabetes and hyperglycemia as a critical component ofMetS and also the strong association with

CVD, chronic kidney disease, and neurovascular diseases. It should be noted that there were around 20% prevalence of T2D in other clusters,

highlighting the heterogeneity of T2D. Despite being the smallestMetS cluster, GWASof Cluster 5managed to identify important well-known

type 2 diabetes genes such as TCF7L2 (transcription factor 7-like 2), BBIP1 (BBSome interacting protein 1), GIN1 (gypsy retrotransposon in-

tegrase 1), and IRS1 (insulin receptor substrate 1).55,72,73 The discovery of multiple important type 2 diabetes genes, despite the small sample

size of cases and lack of ancestral diversity compared to previously reported GWASs,55,72,73 implied that size does not always matter but the

homogeneity of the cases does.

GWAS signals had successfully identified drug targets for various complex diseases such as statins targeting HMGCR for lowering LDL,74

ustekinumab and risankizumab repurposing for Crohn disease by targeting IL23R,75 and antiarrhythmics in AF targeting SCN5A.76 In our

study, SLC12A3 (solute carrier family 12 member 3) was unique to Cluster 1 and is a known drug target for thiazide diuretics,77 which could

imply that thiazide diuretics might be a useful drug class for Cluster 1 to reduce CVD risk.78 SLC5A11 (solute carrier family 5 member 11), also

known as SGLT6, is one of the dapagliflozin target receptors.79 Inhibition of SGLT6 by dapagliflozin had been reported to reduce oxidative

stress, which could be beneficial in reversing diabetic cardiomyopathy.80 SLC5A11 was exclusively associated with Cluster 3. NCAN (neuro-

can), which was unique to Cluster 5, had been reported to be associated to T2D,61 diastolic blood pressure,81 and cholesterol82 in previous

GWAS. NCAN is a drug target of hyaluronic acid, a glycosaminoglycan commonly used in cosmetic treatment, wound healing, and joint

pain.83 Dimethyl fumarate (anti-inflammatory for multiple sclerosis)84 and edasalonexent (still in clinical trials for type 2 diabetes and

Duchennemuscular dystrophy)85 target RELA (proto-oncogene, NF-kB subunit), which was shared byClusters 1, 3, and 4. Phentermine, widely

prescribed to promote weight loss, is an inhibitor of the sodium-dependent noradrenaline transporter encoded by SLC6A2 (solute carrier

family 6 member 2).86 SLC6A2 was specifically associated with Clusters 1, 3, and 5 in UKB on top of Cluster 3 of TWB. Lipid-lowering agents

such as clofibrate and gemfibrozil target LPL, which was identified in both Cluster 1 and 4 of UKB and TWB. All these findings might indicate

effective drug repurposing for specific MetS endotypes across two populations.

In our first-of-a-kind PRS comparison between the more homogeneous endotypes of MetS against the heterogeneous all MetS, we

managed to show that accuracy of some PRS models can be improved by reducing the heterogeneity of cases especially for endotypes

that are highly influenced by genetics. PRS for endotypes that are affected more by non-genetic factors or environmental influences will

be less useful such as that for Cluster 2. We expect that our approach will assist in improving the accuracy of precision risk prediction with

polygenic scores for complex diseases. However, this finding should be evaluated and further validated in other complex diseases with vary-

ing heritability.

MetS is a highly heterogeneous condition with multiple clinically relevant endotypes that are semi-distinctive in terms of phenotypic and

genotypic traits across two populations. The identification of the endotypes is a key step toward precision medicine that could allow treat-

ment stratification according to the phenotypic and genotypic traits of endotypes.
iScience 27, 109815, July 19, 2024 7
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Figure 4. GWAS Manhattan plots and summary statistics

(A–F) Manhattan plots for GWAS of overall metabolic syndrome and clusters 1–5 in the UK Biobank; summary of GWAS and FUMA SNP2GENE with cluster-

specific independent significant SNPs and prioritized genes for MetS.
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Figure 5. Comparative analysis of metabolic syndrome clusters using Jaccard similarity index: independent SNPs and associated genes in the UK

Biobank
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Limitations of the study

The major limitation of our study is that the hard clustering approach by k-means clustering might not be the most ideal method for identi-

fication of diseases subtypes as pathophysiology for diseases often overlap. Nonetheless, overlaps between subgroups in soft clustering

might interfere with the assumptions of various statistical tests in subsequent analyses. The clustering based on phenotypic data also

possessed an inherent limitation where phenotypic data tend to fluctuate with disease progression and are affected by pharmacotherapy;

nevertheless, our MetS clusters still show semi-distinct differences in terms of genotypic data. One thing to note is that clustering is an

NP-hard problem; implementation of other effective metaheuristics needs to be further explored when clustering based on genomic

data.87 The drug repurposing targets merely serve as indicators that certain group of drugs could be more effective for specific MetS endo-

types. We also advise caution when interpreting the precision risk prediction results in clinical settings due to the minimal differences in ac-

curacy across the MetS endotypes. More studies are needed to validate our findings for clinical implementation especially with further lon-

gitudinal follow-up data and prescription information. In our UKB application, participants’ dates of birth are not accessible; consequently,

determining the age at which diseases occur is not feasible, which restricts our ability to conduct Cox regression analyses. Furthermore,

caution should be taken with regard to the interpretation on comparison between two distinct biobanks of different ancestry with contrasting

environmental influences, diverse lifestyle factors, dissimilar genotyping techniques, and different laboratory investigation standards. Lastly,

the addition of other omics88 such as proteomics, metabolomics,89 and metagenomics90 will provide further insights to the pathophysiology

of the different MetS endotypes.
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Figure 6. Predictive accuracy (R2) of PRS models for overall metabolic syndrome and clusters 1–5 in the UK Biobank

(A) PRS models constructed using the full sample size of cases.

(B) PRS models developed with random sampling of 3,800 cases.
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Table 1. Selected precision drug repurposing targets for MetS endotypes identified through GREP by Anatomical Therapeutic Chemical (ATC)

classification system

MetS Cluster ATC Group Name Odds Ratio p-value Target Gene: Drug Names

C1 Cardiovascular system 2.492 0.037 ABCA1: probucol

APOB: mipomersen
aLPL: clofibrate, gemfibrozil

SCN9A: lidocaine

SLC12A3: bendroflumethiazide, hydrochlorothiazide,

chlorothiazide, polythiazide, quinethazone, metolazone

SLC12A4: bumetanide

SLC6A2: phentermine, amfepramone, mazindol, sibutramine

C3 Blood and blood forming system 8.004 0.01 F2: lepirudin, argatroban, melagatran, ximelagatran,

bivalirudin, dabigatran etexilate, conestat alfa

Anti-obesity agents 14.314 0.079 aSLC6A2: phentermine, amfepramone,

mazindol, sibutramine

SLC5A11: dapagliflozin

C4 Lipid-modifying agents 9.464 0.026 APOB: mipomersen
aLPL: clofibrate, gemfibrozil

C5 Alimentary tract and metabolism N 0.004 CES1: cholic acid

SLC6A2: phentermine, amfepramone,

mazindol, sibutramine

aSimilar drug repurposing targets in TWB.
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Figure 7. Radar plot of Z scores forMetS-related features (BMI, HbA1C, CrCl,WBC, ALT/AST ratio, TG/HDL ratio, LDL, and SBP) inmetabolic syndrome

clusters of the UK Biobank and Taiwan Biobank
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Mägi, R., et al. (2010). Association analyses
of 249,796 individuals reveal 18 new loci
associated with body mass index. Nat.
Genet. 42, 937–948. https://doi.org/10.
1038/ng.686.

61. Vujkovic, M., Keaton, J.M., Lynch, J.A.,
Miller, D.R., Zhou, J., Tcheandjieu, C.,
Huffman, J.E., Assimes, T.L., Lorenz, K., Zhu,
X., et al. (2020). Discovery of 318 new risk loci
for type 2 diabetes and related vascular
outcomes among 1.4 million participants in
a multi-ancestry meta-analysis. Nat. Genet.
52, 680–691. https://doi.org/10.1038/
s41588-020-0637-y.

62. Benarroch, E.E. (2007). Thermoregulation:
recent concepts and remaining questions.
Neurology 69, 1293–1297. https://doi.org/
10.1212/01.wnl.0000275537.71623.8e.

63. Sarver, D.C., Stewart, A.N., Rodriguez, S.,
Little, H.C., Aja, S., and Wong, G.W. (2020).
14 iScience 27, 109815, July 19, 2024
Loss of CTRP4 alters adiposity and food
intake behaviors in obese mice. Am. J.
Physiol. Endocrinol. Metab. 319, E1084–
E1100. https://doi.org/10.1152/ajpendo.
00448.2020.

64. Byun, H.R., Kim, D.K., and Koh, J.Y. (2011).
Obesity and downregulated hypothalamic
leptin receptors in male metallothionein-3-
null mice. Neurobiol. Dis. 44, 125–132.
https://doi.org/10.1016/j.nbd.2011.06.012.

65. Walli-Attaei, M., Joseph, P., Rosengren, A.,
Chow, C.K., Rangarajan, S., Lear, S.A.,
AlHabib, K.F., Davletov, K., Dans, A., Lanas,
F., et al. (2020). Variations between women
and men in risk factors, treatments,
cardiovascular disease incidence, and death
in 27 high-income, middle-income, and low-
income countries (PURE): a prospective
cohort study. Lancet 396, 97–109. https://
doi.org/10.1016/S0140-6736(20)30543-2.

66. Bots, S.H., Peters, S.A.E., and Woodward,
M. (2017). Sex differences in coronary heart
disease and stroke mortality: a global
assessment of the effect of ageing between
1980 and 2010. BMJ Glob. Health 2,
e000298. https://doi.org/10.1136/bmjgh-
2017-000298.

67. Després, J.P., Carpentier, A.C., Tchernof, A.,
Neeland, I.J., and Poirier, P. (2021).
Management of Obesity in Cardiovascular
Practice: JACC Focus Seminar. J. Am. Coll.
Cardiol. 78, 513–531. https://doi.org/10.
1016/j.jacc.2021.05.035.

68. Rozenberg, S., Vandromme, J., and
Antoine, C. (2013). Postmenopausal
hormone therapy: risks and benefits. Nat.
Rev. Endocrinol. 9, 216–227. https://doi.org/
10.1038/nrendo.2013.17.

69. Plotnikov, D., Huang, Y., Khawaja, A.P.,
Foster, P.J., Zhu, Z., Guggenheim, J.A., and
He, M. (2022). High Blood Pressure and
Intraocular Pressure: A Mendelian
Randomization Study. Invest. Ophthalmol.
Vis. Sci. 63, 29. https://doi.org/10.1167/iovs.
63.6.29.

70. Kichaev, G., Bhatia, G., Loh, P.R., Gazal, S.,
Burch, K., Freund, M.K., Schoech, A.,
Pasaniuc, B., and Price, A.L. (2019).
Leveraging Polygenic Functional
Enrichment to Improve GWAS Power. Am.
J. Hum. Genet. 104, 65–75. https://doi.org/
10.1016/j.ajhg.2018.11.008.

71. Giri, A., Hellwege, J.N., Keaton, J.M., Park,
J., Qiu, C., Warren, H.R., Torstenson, E.S.,
Kovesdy, C.P., Sun, Y.V., Wilson, O.D., et al.
(2019). Trans-ethnic association study of
blood pressure determinants in over
750,000 individuals. Nat. Genet. 51, 51–62.
https://doi.org/10.1038/s41588-018-0303-9.

72. Mahajan, A., Spracklen, C.N., Zhang, W.,
Ng, M.C.Y., Petty, L.E., Kitajima, H., Yu, G.Z.,
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

UK Biobank dataset https://www.ukbiobank.ac.uk/ The application number is 46789.

Taiwan Biobank dataset https://www.biobank.org.tw/english.php The application number is TWBR10503-02.

Software and algorithms

Python; RRID: SCR_008394 https://www.python.org/ Version 3.10.6

scikit-learn; RRID: SCR_002577 https://scikit-learn.org/ Version 1.2.2

SciPy; RRID: SCR_008058 https://scipy.org/ Version 1.10.1

MatPlotLib; RRID: SCR_008624 https://matplotlib.org/ Version 3.7.1

Plotly; RRID: SCR_013991 https://plotly.com/python/ Version 5.3.1

seaborn; RRID: SCR_018132 https://seaborn.pydata.org Version 0.11.2
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Cathy SJ Fann

(csjfann@ibms.sinica.edu.tw).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� The genetic and phenotype datasets are not publicly available but can be accessed via the UK Biobank data access process (http://

www.ukbiobank.ac.uk/register-apply/) and through Taiwan Biobank (https://taiwanview.twbiobank.org.tw/data_appl). GWAS sum-

mary statistics are available on GWAS Catalog (https://www.ebi.ac.uk/gwas/).
� This paper does not report original code. Any additional information required to reanalyze the data reported in this paper is available

from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

UKB is a population-based prospective cohort that recruited 502,637 individuals aged 37–73 from year 2006–2010 across the UK. Similarly,

TWB is a population-based prospective cohort that recruited 127,708 adult individuals from 2012 to 2019 across Taiwan. Full details of the

UKB and TWB have been reported in Bycroft et al.91 and Wei et al..92 Among the half a million participants in UKB, 94$7% individuals are

of European ancestry. In contrast, TWB mainly consists of East Asian ancestry, specifically Han Chinese with over 99% of the entire cohort.

Ethics, consent and permissions

This study has been approved by the institutional review board of Academia Sinica (AS-IRB01-21065) and conducted according to the prin-

ciples of Declaration of Helsinki. All participants gave informed consent when joining biobanks, which allow for sharing of all anonymized data

to authorized researchers. Participants can withdraw consent to sharing of their data at any stages of their participation.

METHOD DETAILS

Based on the ATP III criteria, we classified individuals as having MetS when fulfilled three or more of the criteria.93,94 Individuals were defined

as pre-MetS if they met one or two of the MetS criteria.

Based on the Third Report of the National Cholesterol Education Program Expert Panel on Detection, Evaluation, and Treatment of High

Blood Cholesterol in Adults (ATP III) criteria93,94.

(1) Systolic blood pressureR130 mmHg or diastolic blood pressureR85 mmHg or on antihypertensive treatment or diagnosed or self-

reported to have hypertension

(2) Serum glucose R100 mg/dL (5$6 mmol/L) or antidiabetic treatment or diagnosed or self-reported to have T2D
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(3) Serum triglycerides R150 mg/dL (1$7 mmol/L) or on cholesterol medications

(4) Waist circumference R102 cm in men and R88 cm in women for Caucasians

(5) Waist circumference R90 cm in men and R80 cm in women for Asians

(6) HDL-C level <40 mg/dL (1$0 mmol/L) for men and <50 mg/dL (1$3 mmol/L) for women

Data extraction and transformation was conducted on UKB research analysis platform (RAP) through JupyterLab and Google Colab. UKB

also contains a comprehensive plasma nuclear magnetic resonance (NMR) biomarker data encompassing 249 measurements related to lipo-

protein lipids, fatty acids, as well as small molecules like amino acids, ketones, and glycolysis metabolites.95 Clinical outcomes are defined as

shown in Table S1 and composite CVD outcomewhich encompasses CVD defined by ICD10 codes, self-reported conditions, mortality due to

CVD, and coronary revascularization procedure as shown in Table S2. Missing data was dropped during analysis. The TWB phenotypic data

were pre-processed using pipeline similar to that used for the UKB data, and outliers were removed with Peirce’s criterion.

Unsupervised clustering for mets clusters

The k-means clustering is a centroid-based unsupervised learning technique that divides a dataset into various clusters by minimizing the

within-cluster variances.96 In our study, we applied the k-means clustering algorithm to the z-scores of MetS criteria, which include waist

circumference, mean arterial pressure (MAP), serum glucose, triglyceride, and HDL cholesterol. This allowed us to identify MetS sub-clusters.

The optimal number of clusters (k) was determined through the elbow method and silhouette coefficient.97 For improved initialization of the

algorithm, we chose k-means++ over naive k-means.98We also significantly increased themaximumnumber of iterations to ensure the explo-

ration of feature space for elevated accuracy. For the implementation, we utilized the sklearn.cluster.KMeans() class from the scikit-learnmod-

ule in Python.99 In addition to that, we have also performed sex-specific clustering for UKB. A k-means model was computed with the UKB

data, and this model was used to predict the cluster memberships of the TWB data.

Genetic QC and GWAS

Genotyping and imputation of UKB and TWB were performed as previously described.91,92 Individuals with ambiguous sex (different sex and

genetic sex), sex chromosome aneuploidy, ten or more third-degree relatives identified, non-white British ancestry, who are outliers in het-

erozygosity andmissing rates were removed. For TWB, similar QC of individuals were performedbut as TWB consists of purely homogeneous

Han Chinese ancestry, no filtering based on ancestry was conducted. GWAS of each MetS clusters with healthy control were performed

through two-stage REGENIE v3.1.1 101. Individuals with high genotype missingness (>10%) were also removed. Variants (both genotype

and imputation) with high genotype missingness (>10%), low Hardy-Weinberg equilibrium (HWE) p-value (<1x10�15), minor allele count

(MAC) < 20, minor allele frequency (MAF) < 0$01, and sample missing rate were filtered out prior to step 1 and 2 of REGENIE100 using

PLINK 2.0 v1.0.6. Imputation information score was set as >0.8.

GWAS of each MetS clusters with healthy control were performed through REGENIE v3.1.1 101. Step 1 standard logistic regression was

conducted with leave-one out cross validation and size of the genotype blocks of 1000 markers. Step 2 was conducted through Firth logistic

regression on variants withp-value <0.01 from the standard logistic regression and size of the genotype blocks of 200. Covariates of age, age,2

first 20 genetic principal components, and sex were included in both steps of REGENIE. Genome-wide significance was determined as

p-value <1X10�9, multiple testing correction for six GWAS. PLINK and REGENIE are conducted through RAP Swiss Army Knife v4.7.1 for UKB.

Post-GWAS functional mapping and annotation was conducted through FUMA SNP2GENE and GENE2FUNCTION.101 Independent sig-

nificant SNPS were defined with r2 threshold ofR0.6 and genome-wide significant p-value of 1 X 10�9, a Bonferroni multiple correction for six

GWAS from the standard threshold of 5 X 10�8; and lead SNPs with a further r2 threshold ofR0$1. For TWB, a least stringent genome-wide

significant p-value of 5 X 10�8 was used instead. All candidate SNPs were annotated using built-in ANNOVAR with UKB release 2b 10k White

British as reference panel and with 1000 genomes Phase 3 East Asian reference panel. Annotated SNPs were mapped through positional

mapping (physical distances of 10kb, expression quantitative trait locus (eQTL) mapping (SNPs that likely affect expression of genes up to

1Mb), and chromatin interaction mapping with FDR threshold %1 X 10�6. For eQTL mapping, only GTEx v8 tissue types were selected

with eQTL maximum p-value %1 X 10�3. Gene mapping is filtered based on functional annotation with CADD score R12$37,

RegulomeDB score R7, and maximum state of chromatin %7 from all tissue/cell types available. Tissue-expression analysis of prioritized

genes were done through FUMA101 GENE2FUNCTION using data from GTEx v8 53 specific tissue types. In addition to that, FUMA also per-

formed MAGMA gene and gene-set analysis with gene windows of 10kb.

Genotypic traits comparison among MetS clusters

We compared the independent significant single nucleotide polymorphisms (SNPs) and mapped genes amongst the MetS clusters, and

defined SNPs and genes unique to each cluster as cluster-specific genotypes. For numerical comparison of the different MetS clusters, we

employed Jaccard and cosine similarity coefficients on both independent significant SNPs and mapped genes. We also conducted pairwise

genotype comparison (SNPs and genes) of the five MetS clusters with GWAS of all MetS to examine if the GWAS of MetS clusters can reveal

novel findings. Mapped genes fromMetS clusters were also compared to that from GWAS of five MetS components (glucose, systolic blood

pressure, triglycerides, waist circumference, and high-density lipoprotein-cholesterol) from Lind.102
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Precision drug repurposing

FUMAGENE2FUNCTION assigned Drug IDs to UniProt IDs of genes that are targets of drugs, enabling identification of cluster-specific drug

repurposing targets for each endotype. GREP (Genome for REPositioning drugs) identified drugs and drug classes enriched for genes prior-

itized fromGWAS results categorized in gene-sets by Anatomical Therapeutic Chemical (ATC) classification system.103 GREP utilized twoma-

jor drug databases, Drug Bank104 and Therapeutic Target Database.105 Fisher’s exact tests were performed to inspect whether the genes

associated with each endotype were enriched in genes targeted by drugs in gene-sets according to ATC classification system.
Precision disease risk prediction

To test the hypothesis that homogeneity of cases can improve the performance of polygenic risk score prediction in complex disease, we

constructed and compared PRS models for MetS endotypes with all MetS. The dataset was split 50:50 into a baseline dataset and a target

dataset for all MetS and MetS clusters. The baseline dataset was used to conduct a GWAS with the exact same parameters, and resulting

GWAS summary statistics were used to construct PRS models with PRSice2 (v1.0.2). The remaining target dataset was used for PRS model

testing to compare the performance.

In order to reduce the influence of sample sizes on the performance of PRSmodels, we randomly sampled 3,800 cases and 38,000 controls

for all MetS and MetS clusters, and repeated the analysis process as that for the entire sample size of cases. 3,800 cases were selected based

on the smallest MetS cluster, MetS C5. In brief, PRS models were constructed by averaging the dosage of each variant associated with the

traits (all MetS orMetS endotypes), weighted by the effect size from the correspondingGWAS summary statistics. Furthermore, we estimated

the SNP-based heritability (h2) of all MetS and MetS clusters using the LD Score regression (ldsc) software (v1.0.1)106 with LD Scores from the

European ancestry samples of the 1000 Genomes Project.107
QUANTIFICATION AND STATISTICAL ANALYSIS

To compare the phenotypic traits among different MetS clusters, quantitative traits were compared through one-way analysis of variance (-

ANOVA) and post-hoc analysis with Tukey’s HSD test. The associations of different MetS clusters with clinical outcomes were analysed

through age and sex adjusted multivariate logistic regression models with healthy individuals as comparator group; further adjusted for

T2D status. The statistical significance of the associations with MetS clusters was evaluated using a p-value <0.001 based on a Bonferroni

adjustment for performing 50 tests (25 clinical outcomes and two models: T2D-unadjusted and T2D-adjusted). Relative risks and adjusted

relative risk calculation using Poisson regression with robust error variances were also calculated for incidence of multiple common cancers.

We further investigated the role of menopausal status in subset of female individuals from UKB through menopausal status adjusted and un-

adjusted logistic regression. For TWB, as only self-reported diagnosis was available, comparable self-reported clinical outcomes (coronary

artery disease, arrythmia, cardiomyopathy, stroke, chronic kidney disease, depression, and cancer) were analysed using a similar pipeline.
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