ORIGINAL PAPER

Vol. 25 no. 9 2009, pages 1152-1157
doi:10.10983/bioinformatics/btp123

Gene expression

A modified hyperplane clustering algorithm allows for efficient
and accurate clustering of extremely large datasets
Ashok Sharma’, Robert Podolsky'2, Jieping Zhao'! and Richard A. Mclndoe'-3-*

Center for Biotechnology and Genomic Medicine, 2Department of Medicine and 3Department of Pathology,

Medical College of Georgia, Augusta, GA, USA

Received on October 7, 2008; revised on January 27, 2009; accepted on February 28, 2009

Advance Access publication March 4, 2009
Associate Editor: David Rocke

ABSTRACT

Motivation: As the number of publically available microarray
experiments increases, the ability to analyze extremely large
datasets across multiple experiments becomes critical. There is
a requirement to develop algorithms which are fast and can
cluster extremely large datasets without affecting the cluster quality.
Clustering is an unsupervised exploratory technique applied to
microarray data to find similar data structures or expression
patterns. Because of the high input/output costs involved and large
distance matrices calculated, most of the algomerative clustering
algorithms fail on large datasets (30000 + genes/200 +arrays). In
this article, we propose a new two-stage algorithm which partitions
the high-dimensional space associated with microarray data using
hyperplanes. The first stage is based on the Balanced lterative
Reducing and Clustering using Hierarchies algorithm with the second
stage being a conventional k-means clustering technique. This
algorithm has been implemented in a software tool (HPCluster)
designed to cluster gene expression data. We compared the
clustering results using the two-stage hyperplane algorithm with
the conventional k-means algorithm from other available programs.
Because, the first stage traverses the data in a single scan, the
performance and speed increases substantially. The data reduction
accomplished in the first stage of the algorithm reduces the memory
requirements allowing us to cluster 44460 genes without failure
and significantly decreases the time to complete when compared
with popular k-means programs. The software was written in C#
(.NET 1.1).

Availability: The program is freely available and can be downloaded
from http://www.amdcc.org/bioinformatics/bioinformatics.aspx.
Contact: rmcindoe@mail.mcg.edu

Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION

Clustering gene expression data can be done using either supervised
or unsupervised algorithms that group genes with similar expression
pattern. For unsupervised methods, the similarity between gene
expression vectors is calculated using a distance metric. Common
distance metrics used for this purpose are Euclidean, Manhattan
and Pearson. The goal of clustering is to minimize the intracluster
distances and to maximize the intercluster distances. There are

*To whom correspondence should be addressed.

many data clustering algorithms available in the literature with the
three most popular clustering algorithms used for clustering gene
expression data being: Hierarchical Clustering; k-means; and self
organizing maps (SOM). These methods are popular because of
their conceptual simplicity and their availability in standard software
packages rather than their algorithmic qualities (Handl et al., 2005).

Hierarchical Clustering is widely used in the scientific community
because it is easy to read and interpret due to better visualization
of clusters using a dendrogram (assuming the dataset size is small).
In this method, a pairwise distance matrix is calculated for all the
genes prior to the construction of the dendrogram. Initially, all genes
are considered as individual clusters followed by sequential merging
of the two closest clusters in each subsequent step based on their
distance. The final step has only one cluster left with all the genes
in it. The dendrogram represents the hierarchy of clusters in the
dataset based on their distance from one another. When merging two
clusters, one must calculate the new distance for the merged cluster.
Three different methods can be used to calculate the new cluster
distance; single linkage, average linkage and complete linkage.
Single linkage takes the smaller of the two distance values, complete
linkage takes the greater of the two distance values and average
linkage takes the average of the two distance values.

The k-means and SOM are partition based algorithms and
therefore clusters are not represented as hierarchies but rather
the genes are grouped into partitions based on their similarity in
expression. These two methods have been consistently reported to
perform better than other methods, such as hierarchical clustering
(Chen et al., 2002; Datta and Datta, 2003; Thalamuthu et al., 20006).
As the number of genes on a single microarray chip increases with
technological advances, the size of the dataset becomes an issue in
cluster analysis. Most of the available algorithms are good for small
datasets, but either fail or have difficulty completing when analyzing
large datasets (e.g. tens of thousands of genes by hundreds of arrays).
Because most of the conventional clustering algorithms require
multiple iterative scans of the data and intermediate calculations,
a significant amount of memory and CPU time is required to
perform cluster analysis for large datasets. For example, using a
desktop computer, it is time consuming and difficult to cluster
>30000 genes x 100 arrays using the available algorithms. The
memory requirements and computation time increases dramatically
as the dataset size increases with the complexity being proportional
to the square of the dataset size. To address this issue we have
developed a two-stage algorithm designed to cluster large datasets.

© 2009 The Author(s)

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.amdcc.org/bioinformatics/bioinformatics.aspx
http://creativecommons.org/licenses/

A modified hyperplane clustering algorithm for gene expression

The first stage of the algorithm reduces the data complexity using
the Balanced Iterative Reducing and Clustering using Hierarchies
(BIRCH) algorithm (Zhang et al., 1996). This data reduction step
is done in a single scan of the data and reduces the memory
requirements. The second stage uses the resulting partitions from
the first stage and performs a conventional k-means algorithm on the
reduced dataset. This algorithm has been implemented in a software
application designed to analyze microarray data.

To test this algorithm, we used both simulated and real datasets.
The simulated datasets have defined clusters with known results
and are used to assess the accuracy of the algorithm. Our results
indicate the modified hyperplane algorithm is significantly faster
than existing algorithms, using substantially reduced memory
requirements and provides comparable accuracy and quality when
evaluated relative to existing algorithms.

2 METHODS

2.1 Algorithm

The modified hyperplane clustering algorithm (HPCluster) works in two
stages: (i) reduction of the dataset using cluster features (CFs) and (ii)
conventional k-means clustering on the CFs obtained in stage 1. The first
stage of the algorithm is derived from the BIRCH algorithm proposed
by Zhang et al. (1996). BIRCH summarizes a dataset into a set of CFs
(subclusters) to reduce the scale of the clustering problem. Dense data points
that are extremely close to each other are treated collectively as a single CF
and not individually.

2.1.1 CF A CF is a group of closely related data points and is defined
based on three variables (N, LS, SS) that summarize information related to
the data points in the CF.

CF=(N, LS, SS) 1

N =Number of data points in the CF.
LS =Linear sum of the N vector data points.

N
Ls=>"X,)
i=1

Where X; is the d-dimensional data point vector.
SS =Sum of the squares of the N data points.

N
ss=Y X? ©)
i=1

The centroid, radius and diameter of a CF can be calculated using these
variables and are defined as:

(= S
Centroid (X 0) =N 4)
N o a2\ 12
> (¥i-%o)
Radius (R)= | = 5
adius (R) N 5
NN oy 2
EEE)
Diameter (D)= | == 6
iameter (D) N(Nfl) (6)

The first stage of the algorithm is as follows.

(1) Calculate the maximum allowable diameter (Dy,x) for the CFs. Diyax
is an important parameter which is calculated based on a random

sampling of 10% of the genes from the dataset. The details of this
step are explained in the next section.

(2) The first gene from the dataset becomes the first CF with N =1.
(3) The next gene is added to this first CF.

(4) After addition of this gene, the diameter of the CF is calculated. If the
diameter is greater than Dp,,y, this gene is taken out and a new CF is
made with this gene.

(5) The next gene is then compared with each of the CFs and is added to
the closest CF.

(6) Steps 4 and 5 are repeated till the end of the gene list.

At the end of the first stage, the whole dataset is partitioned into CFs with
summary information available for these dense collections of data points. The
centroid, radius and diameter of these CFs can be calculated using Equations
(4-6). The second stage of the algorithm uses a conventional k-means
clustering algorithm. CFs obtained in the first stage are now considered as
individual data points and we use the Euclidian distance between two CFs
as a measure of the distance between these CFs. The Euclidean distance
between two CFs is the distance between their centroids

,71/2
Euclidean distance (ED) = [(7() 04— YOB) j| @)
The second stage of the algorithm is as follows.

(1) Cluster centroids are initialized; the different initialization schemes
used are explained in the next section.

(2) CFs are assigned to the closest centroids.
(3) Cluster centroids are recalculated.

(4) Steps 2 and 3 are repeated until there is no change in the centroids.

2.2 Estimation of the maximum diameter of a CF

The degree of data reduction depends upon the maximum allowable size of
the CFs, which is a function of the maximum diameter (Dmax). A large Dmax
will result in a smaller number of CFs and hence a greater degree of data
reduction whereas a small Dy will result in a larger number of CFs and
a lesser degree of data reduction. By setting the Dmax, we can control the
maximum size (in space) of the CFs. If we over estimate Dp,x, we will get
very few final CFs. If the diameter is too small, than we will get a large
number of final CFs. For example, Dmax can be set so large that you could
result in a single CF containing all the genes in the dataset or so small that
the number of CFs is equal to the number of genes. This means we can get
1 — N number partitions of the data depending upon the diameter. Estimating
the initial Dmax to use in the first stage of the algorithm is an important step.

In order to estimate Dpax for the CFs, we use the 90-10 rule suggested
by Dash et al. (2003) to assess the similarity of the data between nodes
of a cluster. This empirically derived rule is based on the observation that
~90% of the agglomerations in a hierarchical cluster of non-uniform data will
initially have very small distances as compared with the maximum closest
pair distances (the last 10% of agglomerations). In order to calculate an
appropriate Dmax, we perform hierarchical clustering on a random 10%
of the genes and create a distance plot of the distance values from the
first merge to last merge (iteration number versus closest pair distance).
The inflection point of the distance plot indicates a sharp increase from
the smallest distance pairs to the largest distance pairs (the last 10% of
agglomerations). Below this inflection point the closest pair distances are
small (Fig. 1). This inflection point is an appropriate initial value of the
maximum diameter because the objective of the first phase is to merge
the data points which are extremely close to each other and consider them
collectively.

2.3 Initial centroid calculation schemes

Because the second phase of the algorithm uses a classic k-means algorithm,
the results of the modified hyperplane clustering algorithm are sensitive to

1153

A.Sharma et al.

Distance Graph

35

30

25

20

97.3%Data below D,

Distance between the cluster-pairs merged

0 ==
0 100 200 300 400 500 600 700 800 900 1000

Iteration Number

Fig. 1. Example distance plot using a random 10% of the experimental
microarray dataset to calculate the Dpayx.

the values of the initial centroids used in the second phase. We use two
approaches to initialize the centroids.

(1) Dense regions from data (DEN): The CF with the maximum number
of data points are the dense regions of the dataset. After completing
the first stage, we sort the CFs based on the value of N in each CF
and use the top k number of clusters as the initial centroids.

(2) Random initial assignments (RIA): The initial centroids are calculated
based on a random assignment of each gene to a cluster followed by
a calculation of the mean for the random clusters. For example, if
the algorithm is using k = 3 clusters, the method will randomly assign
each gene to one of three clusters. It will then calculate the average
for each cluster and use that vector as the initial centroid for each
cluster.

2.4 Implementation

The modified hyperplane clustering algorithm is implemented in a program
called HPCluster. This program is a high-performance windows application
that implements the two-stage algorithm in a graphical user interface (GUI)
application. The program is suited for large datasets because of the decrease
in memory usage. All the software was written using the .NET Framework
vl.1 and C# as the programming language. Installation of the program is
easy and uses the built-in Windows Installer (MSI files). Screen shots of the
HPCluster program can be found in the supplemental figures.

2.5 Creation of simulated datasets

We simulated clusters using a cluster-specific pattern across the arrays. In
doing so, we created five time points with an equal number of replicates per
time point. The mean at the initial time point was chosen randomly from a
uniform (—4, 4) distribution. The mean at the subsequent time points was
adjusted by a value (8) randomly chosen from a uniform (0, 1) distribution.
We introduced ‘cycles’ into the pattern by sampling a new $ and changing
its sign. The means for the replicates within a time point deviated from
the mean for the time point by a value randomly selected from a Gaussian
distribution with mean, O and variance, 0.1. The number of genes in a cluster
was chosen randomly. The mean vector for each gene within a cluster was
set by sampling from a Gaussian distribution with mean equal to the cluster
mean and variance equal to 0.1. Random noise drawn from a Chi-squared
distribution (X62) was added to the resulting matrix of ‘means’. We used a

combination of conditions for the number of genes (P =10 000), number of
clusters present (4, 10, 20) and number of arrays (n=100) in the dataset to
generate six total datasets. A heatmap of the simulated 20 cluster dataset is
given in the Supplementary Materials (Supplementary Fig. S1).

2.5.1 Experimental microarray data We also analyzed a real
experimentally derived microarray dataset. The dataset was downloaded
from the NCBI Gene Expression Omnibus (GEO) (GSE9006: Gene
expression in PBMCs from children with diabetes) (Kaizer et al., 2007). The
array platform is the Affymetrix GeneChip Human Genome HG-U133A
and HG-U133B chips. Combined data from both chips were used for 44 760
genes dataset analyzed. The data from only one chip (HG-U133A) was used
for the 22283 genes dataset and 10000 randomly picked genes from the
HG-U133A set was used for the 10000 gene dataset.

2.6 Testing the performance of the algorithm

The performance of the algorithm was compared with other popular free
clustering algorithms, including GUI based packages. R is a popular
open source statistics package that is used extensively by the biomedical
community and contains a number of clustering algorithms. For our tests,
we used the ‘k-means’ and ‘som’ functions to perform both k-means and
SOM clustering using R. We also compared our algorithm with both versions
of Cluster (versions 2.0 and 3.0) (Eisen et al., 1998). This Windows
based software is used by many biomedical researchers due to the ease of
analysis and GUI. All the algorithms were run on a Dell Poweredge 2650
machine with Dual 3.06 GHz/512K Cache Xeon Processors and 8.0 GB DDR
266 MHz RAM.

A common technique used to do meaningful comparisons of gene
expression patterns across conditions is to rescale the data by centering the
data. This allows one to look for clusters of genes with relatively similar
expression patterns across the dataset without concern for the differences
in the magnitude of the expression. We standardized the data for each gene
separately to center the data,

8ij —&i
8 y— Ta) (8)
where g;; is the expression value of the i-th gene across the j-th array, g; is
the mean expression of the i-th gene and SD; is the standard deviation of the
i-th gene.

Clustering was performed 12 times on each of the simulated and real
microarray datasets for both centered and uncentered data. Three parameters
were compared during the testing: time taken, accuracy and stability.
Accuracy reflects the similarity between clustering results and the true
underlying partitions in the simulated datasets. Stability reflects the similarity
between different runs using the same program.

The similarity measure used to compare clustering results was the adjusted
Rand index (ARI), which measures the fraction of agreement between two
clustering results and can be between 0 and 1, where 1 is perfect agreement
(Hubert and Arabie, 1985; Rand, 1971).

3 RESULTS

3.1 Significantly reduced time to completion

In order to assess the speed of the new algorithm, we clustered
both the simulated and real microarray datasets for both centered
and un-centered data and recorded the time to completion. Each
dataset had 100 arrays, varying numbers of genes (10000, 22283
and 44 760), varying numbers of clusters (4, 10 and 20) and run
12 times each. The times and cluster assignments were recorded
for each run. Table 1 presents the results of this analysis for both
the simulated and real microarray centered datasets. All data are
the average time in minutes to complete the cluster analysis. We ran

1154

A modified hyperplane clustering algorithm for gene expression

Table 1. Comparison of time to complete analysis of various clustering algorithms using the centered data

Simulated dataset Experimental dataset

Genes 10000 10000 22283 44760

Clusters 4 10 20 4 10 20 4 10 20 4 10 20
HPC-DEN 0.39+0.04 0.42+0.03 0.46+£0.03 0.32+£0.01 0.36+0.02 0.67+0.08 0.49+0.07 0.84+0.07 1.48+0.14 1.01+0.17 2.16+0.25 3.37+0.74
HPC-RIA 0.40+0.05 0.624+0.06 0.92+£0.09 0.33+0.02 0.41+0.02 0.71£0.09 0.58+0.10 0.92+0.13 1.58+0.15 1.27+0.14 2.41+0.30 4224044
R-KM 0.23+0.02 0.56+£0.07 1.61£0.09 0.24£0.02 0.86+0.08 2.94+0.10 0.59+0.04 2.00£0.09 9.02+0.49 1.07£0.07 4.724+0.19 22.68+1.39
R-SOM 0.224+0.01 0.48+0.04 0.80+0.01 0.21+£0.01 0.43+0.01 0.83+0.01 0.44+0.01 0.93+0.03 1.68+0.03 1.01+0.02 1.9440.04 3.48+0.02
Cluster v2 0.35+0.02 0.62+0.12 1.95+£0.45 1.48+0.08 5.094£0.49 11.80£1.20 4.72+0.61 2594+1.32 45254881 9.02+2.09 47.75+£9.67 118.33+6.51

Cluster v3 1.12+£0.08 3.064+0.18 8.94+£0.50 3.70+0.42 9.68+0.54 19.28+1.61 8.73+£0.28 26.90+1.88 57.50+4.95 11.70+£0.56 51.504+2.89 162.33+10.60

HPC-DEN, density from data; HPC-RIA, random initial assignment; R-KM, R-k-mean; R-SOM, R self organizing maps; Cluster v2, Cluster v3, k-means algorithm.
All values for the programs are the average time to completion in minutes and the standard deviation.

N =12 for each. Bold items indicate significantly lower times within each column.

our algorithm using the two different centroid initialization schemes
(HPC-DEN, HPC-RIA). For comparison, we also ran the same
analysis using four clustering algorithms in three software packages.
For the HPCluster (HPC) program, the times include the calculation
of Dmax. All data is the time to complete the algorithm and does
not include the time to load the datasets. As can be seen in Table 1,
the modified hyperplane clustering algorithm is significantly faster
than the R function (k-means) and both versions of Eisen’s Cluster
program. The improvement in speed is most notable as the datasets
analyzed increase in both size and complexity. For example, the time
to complete the smallest dataset (10 000 gene real microarray data)
with k =4 clusters shows a significant difference between the two
versions of Cluster (5X faster than v2 and 12X faster than v3), but
no difference between the R functions. Clustering the same data with
k =20 clusters (more complex) resulted in HPC being significantly
faster than the R k-means (4X) and both Cluster versions (18X v2,
29X v3). The largest and most complex dataset analyzed (44 760
genes, k =20) clearly demonstrated that HPC was significantly faster
than all but the R-SOM algorithm (7X R-KM, 35X Cluster v2,
48X Cluster v3). Interestingly, analysis of the time to completion
for the un-centered data showed the same significant increase in
speed (see Supplementary Table S1) with the exception that the
modified hyperplane clustering algorithm performed significantly
faster than all the algorithms tested, including R-SOM (26X R-KM,
2X R-SOM, 42X Cluster v2, 112X Cluster v3).

3.1.1 Scalability of HPC As the size and complexity of the
datasets grow, the scalability of the algorithm becomes more
important. An ideal algorithm is one that scales well as the size and
complexity of the dataset increases. We used a factorial analysis of
variance of time to completion to compare the HPC algorithm to
the other clustering algorithms, using the number of clusters, the
number of genes and algorithm as the three factors. We then used
contrasts to compare algorithms for the linear slopes of the time
to completion versus number of genes, separately for each number
of clusters. Differences in slope indicate differences in scalability.
Since the slopes of all algorithms were compared pairwise, we
adjusted our tests using Tukey’s HSD. The results of this analysis
indicate that the HPC algorithm performs significantly better as the
datasets increases in size and complexity. For example, when one
uses k=20 clusters, HPC performs significantly better than all the

programs tested (adjusted P <0.01). However, when k=10, HPC
performs significantly better than all but the R-SOM program (all
other programs P <0.0001, R-SOM P =0.16).

3.2 Evaluation of cluster quality

In order to evaluate the quality of the cluster assignments produced
by the modified hyperplane clustering algorithm, we need to use a
statistic that provides a measure of agreement between the cluster
results. A common statistic used to evaluate gene clustering methods
is the Rand index (Rand, 1971). This statistic indicates the fraction of
agreement between two cluster partitions. Agreement can be either
pairs of objects that are in the same group in both partitions or in
different groups in both partitions. The Rand index can be between
0 and 1 with 1 indicating perfect agreement. The ARI (Hubert and
Arabie, 1985; Rand, 1971) adjusts the score so that the expected
value in the case of random partitions is 0. The ARI is a popular
statistic used to evaluate gene expression clustering algorithms (Kraj
et al., 2008; Thalamuthu et al., 2006; Yeung et al., 2003).

We used the ARI to evaluate both the accuracy and stability of the
cluster partitions generated by gene clustering methods. Accuracy
was evaluated on the simulated datasets using the ARI calculated
between the output cluster partitions and the true partitions.
Accuracy is difficult to measure with experimentally derived data
since the true clusters are not known. However, the true clusters are
known for the simulated dataset. Figure 2 presents the average ARI
results for the accuracy of the gene assignments for 10000 genes
and 20 true clusters for both the centered and uncentered data after
running each program 12 times. The HPC program was run using
the two different initialization schemes to determine their effect on
cluster accuracy.

Interestingly, all the programs tested were sensitive to whether
or not the data were centered before clustering. In general, the
programs tended to do a better job of clustering the centered data.
The exceptions to this are the HPC-RIA and Eisen’s Cluster v2,
both of which use the same centroid initialization scheme (RIA).
With respect to the uncentered data, HPC-RIA was significantly
more accurate (ARI=0.75=£0.01) than the other programs tested
(P <0.01). However, the R-SOM algorithm had the lowest accuracy
(ARI=0.54) when compared with the other algorithms (average
14% lower). Interestingly, using the density based initialization

1155

A.Sharma et al.

B centered data Ouncentered data

e 9o
N o oo =

e ©
o

Accuracy (ARI)
© © o o
N w =y [5,]

o
o

o

HPC-DEN HPC-RIA RKM RSOM Cluster v2 Cluster v3
Fig. 2. Accuracy of clustering algorithms using the simulated dataset.
Cluster assignments for each algorithm were recorded 12 times each using
both centered and uncentered data. The average ARI was calculated for each
algorithm.

scheme for the HPC program resulted in an accuracy that was not
significantly different than the R-KM function and Cluster v2, but
was significantly worse than the RIA initialization scheme.

As stated previously, using the centered data produced different
results from all the programs when compared with the uncentered
data (Fig. 2). The HPC algorithm using the DEN initialization
scheme did significantly better then all programs with an average
ARI=0.89 £0.01. In fact, the HPC-DEN analysis averaged 19.3%
better accuracy then all the programs. Unlike the previous
analysis with uncentered data, the HPC-RIA had the lowest
accuracy (ARI=0.48+0.02) followed by Eisen’s Cluster v2
(ARI=0.55+0.03).

Since accuracy of experimental data is difficult to determine, we
examined cluster stability for analyses involving the experimental
data. These analyses provide information on the extent to which
similar results would be obtained when running the software
multiple times. Figure 3 presents the stability plots for both the
centered and uncentered 22283 gene experimental dataset using
k =10 clusters. Similar to the accuracy data, centering the data has
an effect on the stability of the HPC algorithm, namely HPC-DEN
is more stable for centered data while the HPC-RIA is more stable
for the uncentered data. The R-SOM (ARI=1.0) and Cluster v3
(ARI=0.98-1.0) algorithms were the most stable followed by the
R-KM (ARI=0.87-0.95), HPC (ARI=0.64-0.83) and Cluster v2
(ARI=0.65-0.9).

Given the level of agreement observed for both the simulated and
experimental data, and the accuracy observed for the simulated data,
the DEN initialization would be expected to produce a solution that
is more accurate than the other methods when the data is centered.
On the other hand, the RIA initialization scheme produces cluster
partitions that are more accurate when the data is uncentered.

3.3 Effect of incorrect cluster number

The partitioning methods for clustering require that the user
provide the number of clusters (k) before executing the algorithm.
Determining the appropriate number of clusters to use can be
difficult and has an impact on the accuracy and usefulness of the

0.9
0.8
0.7

0.5 A

FR—
o socsfecoe
-

Stability (ARI)

0.4

03

0.2

0.1

HPC-DEN HPC-RIA R-KM R-SOM Cluster v2 Cluster v3
c u c u [u c u c u [u

Fig. 3. Stability of the clustering algorithms using experimental data
(22283 genes) and searching for 10 clusters. Cluster assignments for each
algorithm were recorded 12 times each. The average ARI was calculated
for each pairwise comparison for the 12 results from each algorithm. The
median for each algorithm is shown as a horizontal bar. C =centered data,
U =uncentered data.

Accuracy (4Cx1000G) Centered data

1.00 - - ————
—&— HPC-DEN

0.80 —&— HPC-RIA
3 - ¢ —-RKM
< - ® -RSOM
> 0.60 1
g % Cluster2
5 -+~ @ Cluster3
o
o
< 0.40 -

0.20 -

0.00

2C 4c 10C 20C

of Clusters

Fig. 4. Accuracy of the clustering algorithms over a range of cluster sizes.
The four cluster 1000 gene 100 array centered simulated dataset was analyzed
by each program using varying numbers of clusters with the resulting ARI
for each analysis plotted.

resulting cluster analysis. In order to determine the effect of using
an incorrect number of clusters, we ran the modified hyperplane
clustering algorithm under varying numbers of clusters. Because
we want to assess the accuracy, we used both the centered and
uncentered simulated four cluster dataset with 1000 genes and 100
arrays and determined the ARI for the resulting partitions with the
programs set to run at 2, 4, 10 and 20 clusters. For comparison, we
performed the same cluster analysis using the R functions (k-means
and SOM) and Eisen’s Cluster v2 and Cluster v3. Figure 4 presents
the accuracy plots for each of the programs with the centered data.
As expected, each of the programs had their peak ARI value at the
correct four cluster analysis with R-SOM (ARI=0.83) and Cluster
v2 (ARI=0.84) having the lowest values. Once k clusters increase
above 4 (the correct number of clusters), the calculated ARIs for
the R algorithms (k-means and SOM) and Cluster v3 decrease very
quickly (lowest ARI=0.21). However, the HPC algorithm sustains

1156

A modified hyperplane clustering algorithm for gene expression

high accuracy over the entire range of k clusters assessed. For
example, the ARI for HPC-DEN at four clusters is 1.0 while the
ARI at 20 clusters is 0.97.

The uncentered data provided similar results to both the accuracy
and stability analyses described in Section 3.2. Specifically, the
HPC-RIA initialization scheme performed consistently better across
the entire range of k clusters evaluated with the ARI=0.97-1.0 (4-20
clusters). Interestingly, all other programs, including the HPC-DEN
initialization scheme, decreased very quickly as the cluster number
increased (Supplementary Fig. S2).

4 DISCUSSION

Clustering of large datasets can be very difficult with the
available clustering algorithms mainly due to the memory and time
complexity. Hierarchical clustering is suitable for smaller datasets
but fails when the datasets become large due to memory constraints
of creating the large distance matrices required to perform the
clustering algorithm. Additionally, graphical visualization of the
larger datasets using a dendrogram is extremely difficult at the lower
end of the tree. Therefore, partitioning methods such as k-means or
SOM are more suitable to cluster the larger datasets.

The modified hyperplane clustering algorithm described provides
a fast and accurate way to cluster very large datasets. Many factors
can affect the speed and accuracy of clustering methods. These
include not only the size and complexity of the data being analyzed
but how it is processed before the partitioning schemes are applied.
In this study, we investigated the effect of the number of genes,
clusters and arrays on the time to completion as well as the effect
of preprocessing the data for our modified hyperplane clustering
algorithm.

Depending on the design of the microarray experiment, it may
be advantageous to center your data before beginning a cluster
analysis. For example, one may want to center the data if the
data represents a time course experiment and the investigator is
looking for similar expression profile patterns over time without
regard to the magnitude of the change. However, if the microarray
data represents multiple groups (e.g. four different types of cancer)
you may be more interested in absolute expression differences
between the groups. Surprisingly, all the programs we tested were
sensitive to whether or not the data was centered prior to cluster
analysis. The HPC algorithm had the highest accuracy in both the
centered (ARI=0.8940.01) and un-centered (ARI=0.75+0.01)
datasets. However, the stability of the algorithm was modest when
compared with the other programs tested. With respect to the
cluster initialization schemes, the DEN based initialization was more
accurate when analyzing centered data while the RIA was more
accurate for the uncentered data (Fig. 1). Interestingly, one of the
most stable programs (R-SOM, ARI=1.0) had the worst accuracy
when the data was centered (ARI=0.54), indicating that being more
stable does not necessarily give you a better answer. In addition, the
HPC algorithm preformed consistently better over a wide range of
k clusters. Meaning, the cluster solution determined by the HPC
program will be robust even if the investigator uses a k that is very
different then the true cluster number (Fig. 4).

The advantage of the HPC algorithm is not only can it produce
accurate results, but it performs the analysis in a scalable and fast
manner. When the datasets are small and less complex (e.g. 10 000
genes, k=4) all the algorithms tend to run quickly. However, as
the datasets increase in size and complexity (e.g. 44 760, k =20),
the HPC algorithm performs significantly faster. Similar to the
accuracy data presented, we also observed that centering the data
before analysis affected how fast the algorithms completed (Table 1
and Supplementary Table S1). Specifically, the R-KM, R-SOM,
Cluster v2 and Cluster v3 all performed significantly slower on the
uncentered data. However, the HPC algorithm was not affected and
the time to completion was similar for both datasets, especially for
the large complex data.

The speed of clustering algorithms will continue to gain in
importance. The GEO at NCBI currently has 706 Homo sapiens
datasets and over 200000 gene expression measurements. As the
number of publically available microarray experiments increases,
the ability to analyze extremely large datasets across multiple
experiments becomes critical (Butte and Kohane, 2006). There is
a requirement to develop algorithms which are fast and can cluster
extremely large datasets without affecting the cluster quality. Here,
we present a modified hyperplane clustering two-phase algorithm
that solves this problem. To encourage use of this algorithm, we also
developed an application (HPCluster) that implements this algorithm
and has practical applicability in the scientific community. Screen
captures of the program are provided in the Supplementary Material.

Funding: National Institute of Diabetes Digestive and Kidney
Diseases (DK076169 to R.A.M.).

Conflict of Interest: none declared.

REFERENCES

Butte,A.J. and Kohane,I.S. (2006) Creation and implications of a phenome-genome
network. Nat. Biotechnol., 24, 55-62.

Chen,G. et al. (2002) Evaluation and comparison of clustering algorithms in anglyzing
ES cell gene expression data. Stat. Sin., 12, 241-262.

Dash,M. et al. (2003) Fast hierarchical clustering and its validation. Data Knowl. Eng.,
44, 109-138.
Datta,S. and Datta,S. (2003) Comparisons and validation of statistical clustering
techniques for microarray gene expression data. Bioinformatics, 19, 459-466.
Eisen,M.B. et al. (1998) Cluster analysis and display of genome-wide expression
patterns. Proc. Natl Acad. Sci. USA, 95, 14863-14868.

Handl,J. ef al. (2005) Computational cluster validation in post-genomic data analysis.
Bioinformatics, 21, 3201-3212.

Hubert,L. and Arabie,P. (1985) Comparing partitions. J. Classif., 2, 193-218.

Kaizer,E.C. et al. (2007) Gene expression in peripheral blood mononuclear cells from
children with diabetes. J. Clin. Endocrinol. Metab., 92, 3705-3711.

Kraj,P. et al. (2008) ParaKMeans: implementation of a parallelized K-means algorithm
suitable for general laboratory use. BMC Bioinformatics, 9, 200.

Rand,W.M. (1971) Objective criteria for the evaluation of clustering methods. J. Am.
Stat. Assoc., 66, 846-850.

Thalamuthu,A. et al. (2006) Evaluation and comparison of gene clustering methods in
microarray analysis. Bioinformatics, 22, 2405-2412.

Yeung,K.Y. et al. (2003) Clustering gene-expression data with repeated measurements.
Genome Biol., 4, R34.

Zhang,T. et al. (1996) BIRCH: an efficient data clustering method for very large
databases. ACM SIGMOD Record, 25, 103-114.

1157

