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Background: Sepsis is regarded as a life-threatening organ dysfunction syndrome

that responds to infection. Pyroptosis, a unique form of programmed cell death, is

characterized by inflammatory cytokine secretion. Recently, an increasing number

of studies have investigated the relationship between sepsis and pyroptosis.

Appropriate pyroptosis can help to control infection during sepsis, but an

immoderate one may cause immune disorders. The present study aimed to

identify pyroptosis-related gene biomarkers and their relationship with the

immune microenvironment using the genome-wide technique.

Methods: The training dataset GSE154918 and the validation dataset

GSE185263 were downloaded for bioinformatics analysis. Differentially

expressed pyroptosis-related genes (DEPRGs) were identified between sepsis

(including septic shock) and healthy samples. Gene Set Enrichment Analysis

(GSEA) was performed to explore gene function. CIBERSORT tools were

applied to quantify infiltrating immune cells, and the correlation between

differentially infiltrating immune cells and DEPRG expression was

investigated. Furthermore, based on multivariable Cox regression, the study

also utilized a random forest (RF) model to screen biomarkers.

Results: In total, 12 DEPRGs were identified. The expression level of PLCG1 was

continuously significantly decreased, while the expression level of NLRC4 was

elevated from control to sepsis and then to septic shock. GSEA found that one

DEPRG (PLCG1) was involved in the T-cell receptor signaling pathway and that

many T cell-related immunologic signature gene sets were enriched. The

proportions of plasma cells, T cells CD4 memory activated, and some innate

cells in the sepsis group were significantly higher than those in the healthy

group, while the proportions of T cells CD8, T cells CD4memory resting, T cells
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regulatory (Tregs), and NK cells were lower. Additionally, CASP4 was positively

correlated with Neutrophils and negatively correlated with T cells CD4memory

resting and Tregs. Lastly, two biomarkers (CASP4 and PLCG1) were identified,

and a nomogram model was constructed for diagnosis with area under the

curve (AUC) values of 0.998.

Conclusion: This study identified two potential pyroptosis-related diagnostic

genes, CASP4 and PLCG1, and explored the correlation between DEPRGs and

the immune microenvironment. Also, our study indicated that some DEPRGs

were satisfactorily correlated with several representative immune cells that can

regulate pyroptosis.
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Introduction

Sepsis is characterized by a life-threatening, organ

dysfunction response to infection and is associated with high

mortality and long-term morbidity (Cecconi et al., 2018). Septic

shock is described as a subset of sepsis, with circulatory and

metabolic abnormalities despite enough fluid resuscitation

(Cecconi et al., 2018). Globally, an estimated 48.9 million cases

of sepsis and 11.0 million sepsis-related deaths were reported in

2017, leading to serious healthcare costs, especially in Africa and

Asia (Rudd et al., 2020). Sepsis patients can manifest a broad

spectrum of clinical symptoms, ranging from mild symptoms to

the need for ventilation support, organ failure or septic shock,

and eventually death (Baghela et al., 2022). During the process of

sepsis, the host activates the immune system in response to

infection, originating from any infecting organism, which

induces the release of proinflammatory and anti-inflammatory

mediators and thereby leads to programmed immune cell deaths

(Zheng et al., 2021). Once proinflammatory response or

immunosuppression becomes excessive, organ dysfunction will

occur (Singer et al., 2016).

Pyroptosis, a novel form of programmed cell death, also

defined as gasdermin (GSDM)-mediated programmed necrosis,

has received much attention due to its association with innate

immunity and disease recently (Shi et al., 2017). Caspase-1

(CASP1)-mediated classical and caspase-11/4/5 (CASP11/4/5)-

mediated non-classical pyroptosis pathways cleave GSDMs to

eliminate intracellular pathogens (Miao et al., 2010; Jorgensen

et al., 2017; Zheng et al., 2021). Appropriate pyroptosis can

minimize tissue damage and help control infection due to the

effective defense against pathogens, but overactivated pyroptosis

will trigger severe immunoinflammatory dysfunction and

increase the risk of sepsis, septic shock, and secondary

infection (Esquerdo et al., 2017; Pu et al., 2017; Gao et al., 2018).
02
Some studies have investigated the relationship between

sepsis and pyroptosis. Intracellular lipopolysaccharide (LPS), a

component of Gram-negative bacteria, can activate murine

CASP11 (CASP4 and CASP5 in humans) and trigger

inflammasome activation, leading to the generation of pore-

forming GSDMD-N, which induces cell lysis and subsequent

pyroptosis (Shi et al., 2014). GSDMD-N can also activate the

Nod-like receptor family pyrin domain containing 3 (NLRP3)

sensor-mediated CASP1 activation, resulting in the activation of

IL-1b and IL-18 (Meixenberger et al., 2010). NLRP3

inflammasome can be activated by extracellular histones,

which could provoke membrane depolarization and enhance

oxidative stress (Beltrán-Garcıá et al., 2022). In addition,

pyroptotic cell death was triggered by GSDMD-N in a

phospholipase C gamma 1 (PLCG1)-dependent pattern in

macrophages (Kang et al., 2018).

Considering the rapid development of large-scale gene

expression profiling, key biomarkers can be screened out for

diagnosis or targets. In this study, we investigated the

significance of pyroptosis-related gene expression levels in

blood between sepsis and healthy individuals, based on the

Gene Expression Omnibus (GEO) database. Furthermore, we

explored the correlations between pyroptosis and the

immune microenvironment.
Materials and methods

Data collection and process

The training GSE154918 and validation GSE185263 data files

were downloaded from the GEO database annotated by

GPL20301 and GPL16791, respectively. The training dataset

contains peripheral blood samples from 53 sepsis patients (24
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sepsis patients and 29 septic shock patients) and 40 healthy people

based on high-throughput sequencing. The downloaded raw reads

of the GSE154918 dataset were mapped to transcript and gene

level counts by HISAT2.2 (https://ccb.jhu.edu/software/hisat2)

and SAMtools (http://htslib.org/), and the bam files were

acquired. The htseq2.0 (https://pypi.python.org/pypi/HTSeq)

and Cufflinks2.2 (https://anaconda.org/bioconda/cufflinks) were

used to perform expression level for mRNAs by calculating FPKM

(FPKM = [total_exon_fragments/mapped_reads (millions) ×

exon_length(kB)]). The validation dataset (GSE185263) contains

whole blood RNA-seq data collected from 348 sepsis patients and

44 healthy controls. The expression matrix of the validation

dataset was directly downloaded and analyzed.
Differentially expressed gene analysis and
function enrichment analysis

Principal component analysis (PCA) was performed to

evaluate intra-group data repeatability in the GSE154918

dataset. Next, to identify key pyroptosis-related genes in sepsis,

differentially expressed genes (DEGs) were screened between

sepsis (including septic shock) and healthy people, using the

“edgeR” package in R (version 4.1.3) (Love et al., 2014). The false

discovery rate <0.05 and |log2Fold Change| > 1 were set as the

cutoff criteria to identify significant DEGs. Volcano maps were

drawn using the “ggplot2” package. Gene Ontology (GO)

functional and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway enrichment analyses of DEGs were

performed using the online DAVID website (https://david.

ncifcrf.gov/home.jsp). p < 0.05 was considered as the threshold.
Differentially expressed pyroptosis-
related genes

A total of 33 pyroptosis-related genes (PRGs) were identified

by searching previous studies (Shi et al., 2017; Shao et al., 2021;

Ye et al., 2021), and they are listed in Supplementary Table 1.

The abovementioned DEGs intersected with the 33 PRGs to

obtain the differentially expressed PRGs (DEPRGs). A protein–

protein interaction (PPI) network was constructed using the

online STRING website (https://string-db.org), with the

interaction score set to 0.4. The expression heatmap of

DEPRGs was shown by using “pheatmap” in R.
Gene set enrichment analysis

Gene Set Enrichment Analysis (GSEA) was also performed

based on log2Fold Change ranked genes between the healthy and

sepsis groups (including septic shock patients) in GSE154918.
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The background gene sets including “C2, curated gene sets” and

“C7, gene immunologic signature gene sets” were obtained from

the Molecular Signature Database (MSigDB). A total of 1,000

permutations were used, and an adjusted p-value <0.05 was

regarded as statistically significant.
Evaluation of immune cell infiltration

To evaluate the relative proportion of immune infiltrates,

CIBERSORT (https://cibersort.stanford.edu/) was used to obtain

the infiltrating immune cell matrix (Newman et al., 2015). The

22 types of infiltrating immune cells in each sample were

analyzed using package “ggplot2”. A bar graph was drawn to

visualize the variance analysis of immune cells between sepsis

and healthy samples. Furthermore, Spearman’s correlation

analysis was performed on differentially infiltrating immune

cells and DEPRG expression.
Identification of pyroptosis-related
biomarkers in sepsis

A random forest (RF) model was established to rank the

diagnostic markers for DEPRGs, and the important variables were

obtained using MeanDecreaseAccuracy and MeanDecreaseGini.

The receiver operating characteristic (ROC) curve was generated

to evaluate the model. In addition, DEPRGs were also screened

through multivariable Cox regression; p < 0.1 was regarded as

statistically significant. Finally, according to the importance of the

variables, the two most important variables were selected for

further analysis. To validate the two biomarkers, an

independent external GSE185263 dataset was used. The

expression level of the two biomarkers was compared between

sepsis and control groups in the GSE185263 dataset.
Nomogram establishment

The nomogrammodel was constructed by the “rms” package

to predict the occurrence of sepsis. “Total points” was a

summary of the score of factors. The performance of the

model was evaluated via the area under the ROC curve

(AUC) analysis.
Statistical analysis

All statistical analyses were performed with R software

(version 4.1.3). A two-sided p < 0.05 was considered

statistically significant, except for where a certain p-value has

been noted.
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Results

Identification of differentially
expressed genes

The GSE154918 dataset was obtained from the GEO public

database. To evaluate each sample’s dissimilarity, PCA showed a

good similarity in the intra-group and a different distribution

between the sepsis (including septic shock) and healthy groups

(Figure 1A), which indicated the difference between the two

groups. To investigate the two groups, 8,881 DEGs were

identified after analyzing the high-throughput data, and the

volcano plot is shown (Figure 1B). GO and KEGG functional

enrichment analyses were performed based on DEGs to

investigate the sepsis-related biological function and pathways,

and the top 20 terms are shown (Figure 1). GO analysis revealed

that the cellular component (CC)-associated terms were T-cell

receptor complex, plasma membrane, extracellular region,

integral component of plasma membrane, and extracellular

space (Figure 1C). For GO molecular function (MF) analysis,

the mainly enriched terms were transmembrane signaling

receptor activity, protein heterodimerization activity,

carbohydrate binding, voltage-gated ion channel activity, and

calcium ion binding (Figure 1D). In the biological process (BP),

the most enriched annotations were adaptive immune response,

immune response, cell surface receptor signaling pathway, cell

adhesion, and extracellular matrix organization (Figure 1E). The

KEGG pathways were neutrophil extracellular trap formation,

cell adhesion molecules, cytokine–cytokine receptor interaction,

extracellular matrix (ECM)–receptor interaction, and Th1 and

Th2 cell differentiation (Figure 1F).
Identification of differentially expressed
pyroptosis-related genes

A total of 33 genes were considered as PRGs, and they are

listed in Supplementary Table 1. According to the Venn diagram

(Figure 2A), we found 12 PRGs that were differential

expressions, including PJVK, PLCG1, GSDMC, IL-1b, AIM2,

CASP5, CASP1, CASP4, NLRC4, PYCARD, ELANE, and IL18,

and were regarded as DEPRGs. To further investigate underlying

relationships between proteins encoded by the 12 DEPRGs, a

PPI network is shown in Figure 2B. There were 12 nodes and 32

edges. The expression of DEPRGs is shown by a heatmap

(Figure 2C). In addition, we have shown the expression level

of each DEPRG in healthy, sepsis, and septic shock patients by

box plots. Compared to that of healthy individuals, the

expression level of AIM2, CASP4, NLRC4, and PYCARD was

significantly upregulated, while the expression level of PVJK and

PLCG1 was significantly downregulated in both sepsis and septic
Frontiers in Cellular and Infection Microbiology 04
shock patients. Interestingly, the expression level of PLCG1 was

continuously significantly decreased during sepsis development,

while the expression level of NLRC4 was gradually significantly

elevated (Figure 2D).
Gene set enrichment analysis

To further explore the possible pathways and gene sets

involved in immune functions, GSEA was conducted between

sepsis and healthy groups in GSE154918. The results revealed

that 18 KEGG pathways were obtained, and many of them

were associated with pyroptosis, like KEGG_T_CELL_

R ECE PTOR _ S I GNAL ING _ PATHWAY , K EGG_

PATHOGENIC_ESCHERICHIA_COLI_INFECTION, and

KEGG_LYSOSOME. Specifically, PLCG1, one of the hub genes,

was related to the T-cell receptor signaling pathway, and the

normalized enrichment score (NES) was −1.55 in the sepsis group,

indicating that this pathway was impaired in sepsis patients. Eight

representative KEGG pathways were visualized in Figure 3A.

Furthermore, 1,426 functional gene sets were enriched in

immunologic signature gene sets, and the gene sets related to T

cells were significantly enriched, such as GSE9650_NAIVE_VS_

EFF_CD8_TCELL_DN, GSE43955_TH0_VS_TGFB_IL6_TH17_

ACT_CD4_TCELL_30H_UP, GSE11057_PBMC_VS_MEM_

CD4_TCELL_DN, and GSE10325_CD4_TCELL_VS_

BCELL_UP. Eight representative plots are shown in Figure 3B.
Immune cell infiltration

To further understand the immunologic processes, we

evaluated the compositions of 22 immune cell types in each

sample (Figure 4A). Next, we compared the difference in

immune cell infiltration between sepsis (including septic

shock) and healthy samples, and a box plot is shown in

Figure 4B. We found that the relative abundance of plasma

cells, T cells CD4 memory activated, T cells gamma delta,

monocytes, Macrophages M0, Macrophages M2, and

Neutrophils in the sepsis group were significantly higher

compared with those of normal patients, while the relative

abundance of T cells CD8, T cells CD4 memory resting, T

cells regulatory (Tregs), NK cells resting, and NK cells activated

was lower. We also compared the difference in immune cell

infiltration between sepsis and septic shock, and only the

proportion of Macrophages M0 and B cells naive had a

significant difference, which was significantly higher in the

septic shock group than in the sepsis group (Supplementary

Figure 1). Next, a correlation heatmap was constructed to

explore the relationship between DEPRGs and immune cells

with significant differences (Figure 4C and Supplementary
frontiersin.org
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Table 2). The graph showed that CASP4 was positively

correlated with Neutrophils (r = 0.41) and negatively

correlated with T cells CD4 memory resting (r = −0.38) and

Tregs (r = −0.37). Furthermore, NLRC4 was positively correlated

with Neutrophils (r = 0.52), monocytes (r = 0.48), and

Macrophages M0 (r = 0.48), and negatively correlated with

Tregs (r = −0.62), T cells CD8 (r = −0.58), and T cells CD4

memory resting (r = −0.55). PLCG1 was positively correlated

with T cells CD8 (r = 0.70), Tregs (r = 0.67), and T cells memory

resting (r = 0.66) and negatively correlated with Neutrophils (r =

−0.68) and monocytes (r=-0.47).
Frontiers in Cellular and Infection Microbiology 05
CASP4 and PLCG1 as pyroptosis-related
biomarkers for sepsis diagnosis

To select the hub genes, a random forest was constructed,

and the importance of each DEPRG was ranked. The plot shows

the relationship between error and the number of decision trees

(Figure 5A); 500 trees were decided as the number of the final

model, which indicated a stable error in this model. The

importance of variables was measured based on the output

results of MeanDecreaseAccuracy and MeanDecreaseGini

(Figures 5B, C), and NLRC4 and PLCG1 were the most
A

B

D

E F

C

FIGURE 1

Differential mapping and functional enrichment analysis of sepsis in GSE154918. (A) Principal components analyses were performed on all
samples in healthy, sepsis, and septic shock groups (B) Volcano plots of DEGs between healthy and sepsis (including septic shock). The
enrichment analysis shows the top 20 items ranked by p-value. (C) GO analysis on cellular component (CC), (D) molecular function (MF), and
(E) biological process (BP). (F) KEGG pathways. DEGs, differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes
and Genomes.
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A

B

D

C

FIGURE 2

Identification of DEPRGs between healthy and sepsis. (A) Venn diagram of DEGs and PRGs in GSE154918. (B) The PPI network shows the
interactions of the 12 DEPRGs (interaction score = 0.7). (C) Heatmap of the 12 DEPRGs’ expression of each sample. (D) Boxplot showing
expression of each DEPRG in healthy, sepsis, and septic shock patients. *p < 0.05, **p < 0.01, ***p < 0.001. DEPRGs, differentially expressed
pyroptosis-related genes; DEGs, differentially expressed genes; PPI, protein–protein interaction. ns is short for no significance
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important variables, followed by AIM2, PJVK, PYCARD,

ELANE, CASP4, CASP5, and so on. Finally, the AUC was

utilized to assess the predictive ability of the model, which was

0.974 (Figure 5D). In addition, multivariate Cox regression

analysis was performed on the 12 DEPRGs, and only three

DEPRGs—PLCG1 (p < 0.001), CASP4 (p < 0.001), and IL-1b
(p = 0.09)—exhibited a significant value (p < 0.1). However,

IL-1b was a less important variable among the 12 DEPRGs

according to the RF. Thus, the two genes, PLCG1, and CASP4,

were chosen as pyroptosis-related biomarkers for further

analysis. In addition, an external GSE185263 dataset was

utilized to validate the two genes, and the results showed that

the expression of PLCG1 was greatly lower in the sepsis group

than in the healthy group, and the expression of CASP4 was
Frontiers in Cellular and Infection Microbiology 07
higher (Figure 5E). The expression of the two biomarkers in the

external validation set was in agreement with the training set

GSE154918. To verify the accuracy of two genes as biomarkers, a

nomogram was established based on the two genes and sex

features, using the GS154918 dataset (Figure 6A). This

nomogram indicated an excellent predictive performance, with

AUC values of 0.998 (Figure 6B).
Discussion

Sepsis refers to a syndrome that resulted from a dysregulated

host response to infections. Timely recognition and diagnosis of

sepsis are always associated with a better prognosis. The
A

B

FIGURE 3

Gene Set Enrichment Analysis in GSE154918. (A) KEGG pathways. (B) Gene immunologic signature gene sets. KEGG, Kyoto Encyclopedia of
Genes and Genomes.
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pathogenesis of this syndrome is extraordinarily complicated,

and it involves many pathophysiological processes, such as

unbalanced immunological regulation, inappropriate

inflammatory response, autophagy, and pyroptosis (Huang

et al., 2019; Zheng et al., 2021). Many previous bioinformatics
Frontiers in Cellular and Infection Microbiology 08
studies explored sepsis-related cellular and molecular

dysregulation mechanisms and identify some biomarkers

(Mohammed et al., 2019; Zeng et al., 2021). However,

pyroptosis-related mechanisms and biomarkers for sepsis

are scarce.
A

B

C

FIGURE 4

Immune infiltration between sepsis and healthy controls. (A) The box-plot diagram demonstrates the composition of immune cells in each
sample. (B) The difference in immune infiltration between sepsis and healthy controls. (C) The correlation heatmap shows the relationship
between DEPRGs and immune cells. *p < 0.05, **p < 0.01, ***p < 0.001. DEPRGs, differentially expressed pyroptosis-related genes.
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In this study, we first screened DEGs related to sepsis in

GSE154918 and conducted an enrichment analysis based on

these DEGs. Some enriched terms or pathways were probably

associated with pyroptosis, such as the T-cell receptor complex

in GO CC, adaptive immune response in GO BP, and neutrophil

extracellular trap formation in the KEGG pathway. Next, we

identified 12 DEPRGs between healthy and sepsis (including

septic shock) samples, demonstrating that DEPRGs do indeed

take part in the occurrence and development of sepsis. Our

results showed the expression of AIM2, CASP4, NLRC4, and

PYCARD was higher and the expression of PVJK and PLCG1

was lower in both sepsis and septic shock patients than in

healthy controls. In addition, we found the upregulation of

NLRC4 and the downregulation of PLCG1 participated during

sepsis progression. Therefore, PLCG1 and NLRC4 may mediate

the development of sepsis. It has been reported that suppressing

the activation of NLRC4 and lacking AIM2 inflammasomes
Frontiers in Cellular and Infection Microbiology 09
could decrease IL-1b release and increase the survival rate of

septic shock mice induced by LPS (Shin et al., 2017; Xu

et al., 2017).

AIM2, an inflammasome sensor, is critical for recognizing

both bacterial and viral pathogens and provoking innate

immunity (Rathinam et al., 2010). AIM2 can be activated by

high-mobility group box 1 (HMGB1) via Toll-like receptors

(TLR) 2, TLR4, and RAGE/NF-kB pathways in macrophages,

and inhibition of AIM2 inflammasome activation can restrain

macrophages from releasing IL-1b and IL-18 and protect mice

against polymicrobial sepsis and septic death (Xie et al., 2016; Li

and Lu, 2020). CASP4 in humans is a homologous protein of

CASP11 in mice, which recognizes LPS, mediates GSDMD

cleavage and cytokine release, and consequently drives

pyroptosis in a non-canonical inflammasome activation

manner (Downs et al., 2020). When CASP11 was activated by

LPS, pyroptosis and susceptibility to sepsis can be induced by the
A B

D E

C

FIGURE 5

Random forest (RF) algorithm to select hub genes in GSE154918 datasets and validation of hub genes in GSE185263. (A) The impact
of the number of decision trees on the error rate. (B) The importance index of genetic variables, ranked by MeanDecreaseAccuracy
and (C) MeanDecreaseGini. (D) ROC curve. (E) The expression level of two biomarkers in GSE185263. ROC, receiver operating
characteristic. ***P < 0.001.
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non-canonical inflammasome through pannexin-1 and the

P2X7 signaling pathway, which was downstream of CASP11

(Yang et al., 2015). In order to optimally activate non-canonical

inflammasome, type I IFN-a/b and type II IFN-g were required
to upregulate CASP11/4/5, which could also trigger HMGB1

release from innate immune cells effectively (Zhu et al., 2021).

HMGB1 plays a pivotal role in the progression of sepsis, which

can deliver extracellular LPS into the cytosol of macrophages

and endothelial cells to mediate CASP11-dependent pyroptosis

and lethality in sepsis (Deng et al., 2018). CASP11-dependent

cell death pathway has been reported to aggravate pathologies

and shorten survival time in a sepsis mouse model (Napier et al.,

2016). NLRC4 exerts a key role in host defense, especially against

enteric pathogens (Duncan and Canna, 2018). It mediates the

activation of CASP1, which promotes maturation, the release of

cytokines, and cell membrane perforation and ultimately

induces pyroptosis (Duncan and Canna, 2018). PLCG1 is a

kind of membrane-related enzyme and acts as a crucial

intermediate process of pyroptosis. It is reported to be
Frontiers in Cellular and Infection Microbiology 10
associated with cell death and inflammatory response and

causes cytotoxicity mediated by GSDMD-N in a calcium-

dependent mechanism (Kadamur and Ross, 2013; Kang

et al., 2018).

GSEA showed differences in 18 KEGG pathways and 1,426

immunologic signature gene sets between healthy and sepsis

groups. The KEGG T-cell receptor signaling pathway was

impaired in sepsis patients in this study. Previous studies

showed that immunosuppression could occur in sepsis and

mediated sepsis-related mortality, and T-cell exhaustion is a

serious response (Patil et al., 2016; Jensen et al., 2018). Moreover,

the T cell-related gene sets were also enriched based on

immunologic signature gene sets, such as NAIVE_VS_EFF_

CD8_TCELL_DN, PBMC_VS_MEM_CD4_TCELL_DN, and

CD4_TCELL_VS_BCELL_UP.

Sepsis could impair the host’s innate and adaptive immune

responses, which are susceptible to primary and secondary

infections (Mcbride et al., 2020). Many immune cells

part ic ipated in this process , such as neutrophi ls ,
A

B

FIGURE 6

Nomogram to predict the occurrence of sepsis. (A) Prognostic nomogram. (B) ROC curve to evaluate the performance of the nomogram. ROC,
receiver operating characteristic.
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lymphocytes, and mononuclear/macrophages, which could

recognize and devour pathogens and trigger cytokine release

to activate other cells (Wen et al., 2022). The results of immune

cell infiltration using CIBERSORT algorithm analysis in this

study demonstrated that the levels of some innate immune

cells, such as monocytes, macrophages M2, neutrophils, and

some adaptive immune cells, such as plasma cells and T cells

CD4 memory activated, were significantly higher in sepsis

patients, while some other adaptive immune cells, such as T

cells CD8, T cells CD4 memory resting, and Tregs, were

significantly lower. Both monocytes and macrophages are

involved in pro- and anti-inflammatory responses in sepsis.

Infiltrated monocytes were considered to cause early cytokine

storm, which may induce multiorgan dysfunction (MODS) in

sepsis. Macrophages were manifested in immunosuppressive

responses and played a harmful role in sepsis through CASP11-

dependent pyroptosis (Dash et al., 2021; Wen et al., 2022).

Neutrophils could direct the cells to the site of infection and

create neutrophil extracellular traps (NETs) to enmesh bacteria

and trigger local coagulation (Yipp and Kubes, 2013; Nauseef

and Borregaard, 2014). However, neutrophils, along with

monocytes, could contribute to MODS during sepsis (Dash

et al., 2021). Neutrophil pyroptosis is a pro-inflammatory

process mediated by GSDMD (Wen et al., 2022). Yang et al.

showed that neutrophils could secrete IL-1b through a CASP1-

dependent pathway, resulting in a higher mortality rate in mice

(Yang et al., 2021). Sepsis could cause immune dysregulation

and suppression of adaptive immune cells. CD4+ T cells lose

appropriate functions, and CD8+ T cells decrease cytotoxic

functions post-sepsis (Nedeva, 2021). Tregs could suppress

excessive immune responses and were involved in sepsis-

associated immunoparalysis in sepsis patients (Venet et al.,

2006; Venet et al., 2009). To understand the relationship

between pyroptosis and the immune microenvironment of

sepsis, a correlation analysis was conducted. CASP4 was

positively correlated with neutrophils and negatively

correlated with Tregs. Neutrophils were found sensitive to

CASP11-dependent non-classical pathway, and conditional

deletion of CASP11 could decrease neutrophil accumulation

and pyroptosis (Cheng et al., 2017). A recent study illustrated

that the activation of Tregs could attenuate the CASP11-

dependent pyroptosis in sepsis-induced lung injury mouse

models (Zhang et al., 2021), and depleting Tregs could

aggravate lung pyroptosis. This study demonstrated that

NLRC4 was positively correlated with neutrophils and

Macrophages M0. NLRC4 inflammasomes were present in

macrophages and neutrophils , which could release

inflammatory mediators via CASP1 or CASP8 (Duncan and

Canna, 2018). Our study also showed that PLCG1 was

positively correlated with T cells CD8 and Tregs and

negatively correlated with neutrophils and monocytes. GSEA
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showed that PLCG1 was related to the T-cell receptor signaling

pathway with NES of −1.55 in the sepsis group, indicating that

this impaired pathway may mediate the progress of sepsis.

In addition, the present study has good clinical significance.

We conducted a diagnosis model including two genes related to

pyroptosis, that is, CASP4 and PLCG1, based on the RF model

and multivariate Cox regression analysis. Our study revealed

that CASP4 and PLCG1 had a good diagnostic value with AUC

values of 0.974 in the RF model, and the nomogram further

indicated an excellent predictive performance of the two

pyroptosis-related biomarkers with AUC values of 0.998. In

addition, the two biomarkers were confirmed using an external

validation cohort, and the trend of the relative expression was

consistent. CASP4 may serve as a potential therapeutic target

because previous studies showed that loss of CASP11 could

reduce mouse mortality induced by LPS or that deletion of

CASP4 could attenuate pyroptosis and cytokine release in

human macrophages (Kayagaki et al., 2011; Casson et al.,

2015; Downs et al., 2020).

There are also some limitations in this study. The expression

level of biomarkers, such as CASP4 and PLCG1, may require

further verification using larger clinical samples. The

heterogeneous data integration regardless of patients’ age,

gender, comorbidities, and other characteristics may

contribute to potential, unexpected, and adverse effects on the

accuracy of the results of the present study. Therefore, the results

should be interpreted carefully.

In summary, we investigated the underlying correlation

between pyroptosis and the occurrence of sepsis, and two

biomarkers were screened out. Some DEPRGs also had a close

connection with the immune microenvironment of sepsis. These

findings may offer new insight to investigate the mechanism of

sepsis and pyroptosis.
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