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Abstract

Genetic maps have been fundamental to building our understanding of disease
genetics and evolutionary processes. The gametes of an individual contain all of the
information required to perform a de novo chromosome-scale assembly of an
individual’s genome, which historically has been performed with populations and
pedigrees. Here, we discuss how single-cell gamete sequencing offers the potential
to merge the advantages of short-read sequencing with the ability to build
personalized genetic maps and open up an entirely new space in personalized
genetics.

Introduction
Reference genomes are valuable resources for biological research ranging from specific

gene function through to studying evolution. After decades of investment, the high-

quality human reference genome (GRCh38) has revolutionized clinical diagnostics.

However, the human genome still contains gaps and only recently has a telomere-to-

telomere assembly of a single human chromosome been within reach [1]. Nevertheless,

a reference genome does not represent the vast genetic variation between any two indi-

viduals. The aggregation of genetic variation from multiple genomes is available

through consortia (e.g., gnomAD), and graph genomes provide a useful way of inte-

grating structural variation and reference genomes. The current laboratory methods

used to assay genetic variation are often a combination of techniques such as bulk

short- and long-read sequencing, optical mapping, and cytogenetics. A complementary

tool for chromosome-scale assembly discussed here is the combination of accurate

short-read sequencing applied to nuclear DNA from single gametes. This review is

intended for a broad audience. Readers familiar with genetic linkage and genome

assembly may wish to advance to the “Platforms for constructing iMaps—proof of

principle and opportunities” section.

High-throughput DNA sequencing has made genome assembly more accessible;

however, fragmented DNA sequences still need to be assembled into highly contiguous

chromosomal sequences. Genome assembly has historically required a dense genetic

map to anchor and orient short DNA sequences onto larger chromosome-scale
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fragments. A genetic map is an ordering and spacing of loci (identified by markers) on

a chromosome map (Fig. 1a) [2]. Genetic maps can be built for sexually reproducing

species due to chromosome reshuffling in a process called meiosis. Meiosis serves two

purposes: (1) the generation of haploid gametes, sperm, and eggs and (2) the genetic di-

versification of gametes, by chromosome segregation and meiotic crossovers (Fig. 1b).

Meiotic crossovers (COs) are large reciprocal exchanges of genetic material between

homologous chromosomes, which generate unique combinations of alleles [3]. Cross-

over frequencies between linked markers are used to calculate genetic distances, mea-

sured in centiMorgans, which enable marker ordering at a fine scale. Historically,

genetic maps preceded physical chromosome maps, and physical sequence was an-

chored to its appropriate position on a genetic map. However, high-throughput sequen-

cing revolutionized the analysis of genomes by generating orders of magnitude

more data at a reasonable cost. In turn, marker density increased in line with sequen-

cing capabilities rapidly changing how researchers assemble genomes. More recent ad-

vances in genome assembly include optical mapping, long-read technologies, strand-

seq, and software capable of managing the assembly of large repetitive genomes [4–7].

A flow-on effect from the construction of marker-dense physical maps and genetic

Fig. 1 Meiosis and linkage. a Meiosis involves two rounds of cell divisions following DNA replication. In the
first division, meiosis I, homologous chromosomes pair for crossover formation, creating a physical link
(chiasmata), to exchange some genetic material and resulting in two haploid cells that have half the
number of chromosomes as the original cell. Meiosis II occurs when the sister chromatids segregate to
generate four genetically unique gametes (sperm or egg). b Comparison of genetic, cytological, and
physical maps, all of which characterize genetic markers. A genetic map is based on the frequency of co-
segregation of linked markers. A cytological map can be constructed by labeling certain DNA markers or
particular staining methods. cM, centiMorgan; Mbp, megabase base pair of DNA. c An iMap with an
inversion does not alter the DNA sequence but changes the linear ordering of markers. Translocation as a
result of chromosome breakage and fusion affects crossover formation and changes the marker distance
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maps was an increased capacity to research the non-random distribution of crossovers

throughout the human and mouse genomes [8–10].

Genetic map variation between individuals: a motivation for personalized
genetic maps
Genetic maps are population averages and, if personalized, would differ between any

two individuals. These differences can be attributed to two reasons, both of which are

challenging to assay: (1) there is structural variation between their chromosomes, and

(2) the crossover distributions in their gametes differ due to genetic regulation.

Crossover hotspot localization

The distribution of crossovers is not homogeneous across chromosomes, equally when

considering a chromosome arm, or focusing down to a scale of hundreds of nucleo-

tides. Research into the heterogeneity of crossover distributions led to the remarkable

independent discoveries of PRDM9 as a major determinant of crossover hotspots in

humans and mice. Different alleles of PRDM9, and the 13-mer to which it binds to ini-

tiate meiotic recombination, can explain a significant portion (~ 40%) of crossover hot-

spot localization in the genome when comparing across populations [11–17]. Further

studies have continued to dissect the variation in crossover distributions down to the

level of interpersonal heterogeneity [17–21].

Heterochiasmy

Differences in crossover distributions also exist between males and females [12, 22, 23]

and even male and female organs of hermaphrodite plants [24]. In addition, clusters of

sex-specific recombination hotspots were found in different regions of the human gen-

ome [12, 21, 25, 26]. Male recombination occurs more frequently in exons of genes and

telomeric regions, whereas in females, a higher proportion of crossovers occurs be-

tween genes and in promoter regions [12, 21]. Further, other factors play a role such as

survivor bias. For example, children from older mothers have higher crossover rates

compared to those from younger mothers, consistent with the idea that “extra” cross-

overs promote the retention of bivalents, and in turn protect against non-disjunction

[27]. This is an area of research that would benefit from improved tools to study inter-

individual crossover variation.

Genomic structural variation

Structural variation (SV) is by definition a variation in the marker ordering of a genetic

and physical map (Fig. 1c). SVs are genomic alterations that can range from

chromosome-scale alterations down to smaller inversions, duplications, insertions, dele-

tions, and translocations. Historically, chromosomal-scale SVs have been detected with

cytogenetic approaches and can still only be visualized when multiple megabases in

size. An orthogonal approach to detect SV, such as inversions, by measuring crossovers

is possible by observing changes in marker linkage that can only be resolved through a

reordering of markers. However, advances in high-throughput sequencing and compu-

tational methods are improving detection and breakpoint resolution [28].
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The minimum size of an SV is arbitrary sometimes referring to alterations > 50 bp,

but SVs are prevalent between any two individuals in the size ranges of hundreds of

base pairs to multi-megabase scale [29–33]. One of the most comprehensive lists cur-

rently available of SVs identified in healthy humans has been obtained by combining

several modern sequencing technologies to phase assembly of human genomes de

novo, identifying > 27,000 SVs and > 150 inversions per genome [34].

Even with current short- and long-read sequencing technologies, SV detection is

challenging above 100 kb [34, 35]. For example, inversions remain difficult to identify

as inversion breakpoints typically reside in large repetitive regions and suppress cross-

overs, which are needed for their detection [34].

Different technologies generate datasets that offer different advantages in SV detec-

tion. Short-read sequencing has high single-nucleotide accuracy but lower sensitivity

and higher false-positive rate in detecting SVs due to PCR amplification and low mapp-

ability to large repetitive sequences owing to shorter read lengths [34, 36]. Long-read

technologies can partially overcome the shortcomings of investigating SVs using short-

read sequencing thanks to their ability to span much longer sequences (up to 2Mb)

[37, 38]. The higher nucleotide error rate relative to short-read platforms has been a

barrier for the adoption of long-read platforms for certain applications, but recent im-

provements in accuracy suggest a prominent role for long-read sequencing in calling

SVs into the future [38–41].

Understanding the patterns and distribution of structural variation can facilitate ap-

propriate interpretation of clinical diagnostic testing data for clinical applications and,

more broadly, improve disease gene mapping. We speculate that haplotype-resolved

individual or “personalized” genomes will become more clinically relevant and useful as

the connection between SV and health advances to a point comparable to where gene

function and disease is today.

The iMap

In eukaryotes, the number of crossovers is low per meiosis; therefore, large numbers of

sequenced gametes are required to create a high-density genetic map. Single-cell se-

quencing enables the analysis of many thousands of genetically unique gametes from

one person to generate an individual genetic map, which we term an iMap. The iMap

overcomes the challenge of genotyping many human families with few offspring (Fig. 2).

The potential benefits of being able to construct an iMap in any sexually reproducing

species are significant. For human research, it will facilitate the detection of structural

variation in challenging size ranges between average long-read lengths and cytogenetic

resolution, e.g., 50 kb to 3 Mbp. The iMap could therefore be used as a complementary

tool for genome completion and gap closing. The advantage of the iMap approach can

be the capacity to assay tens of thousands of samples from one individual, and likely

more as sequencing costs come down. Therefore, genomic regions that have extremely

low crossover rates, e.g., centromeric regions, will still be challenging to assemble, but

by assaying many gametes, researchers can increase the probability of finding the de-

sired recombinants to assist with gap closing. Beyond human research, with common

laboratory animals, the ethical implications are positive as a genetic map can be built

from one animal rather than thousands. This approach will also reduce animal housing
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costs. Further, for exotic and endangered species, we speculate that these technologies

will eventually bring benefits such as rapid de novo genetic map construction.

As chromosome numbers and ploidy increase, so too does the difficulty of finding

linked markers for the construction of a genetic map. Gamete-derived iMaps offer a

valuable component in the genome assembly toolkit. An important proof of concept

with apricot used a droplet encapsulation technique to sequence haploid gametes [42].

Using 445 gametes, SNPs were phased using genetic linkage. Next, bulk long-read se-

quences were mapped to their matching haplotypes. A number of orthogonal ap-

proaches verified that an accurate de novo genome assembly had been generated. We

believe that such an approach should assist consortia that sequence large, complex, and

economically important genomes such as the 17-Gb allohexaploid bread wheat with 42

chromosomes [43–47]. Finally, the same apricot haploid short-read dataset also de-

tected non-allelic meiotic crossovers at low frequencies, which opens up useful future

fertility-related applications in individuals of all species. Short-read technologies alone

cannot accurately detect and assemble the genome of species with high levels of dupli-

cations, and therefore, genome assembly requires an integrated approach.

Platforms for constructing iMaps—proof of principle and opportunities
Single-cell technologies are advancing rapidly and can provide finer resolution meas-

urement of cellular and molecular features of biological systems compared to bulk

sequencing [48]. This technological advance has created opportunities for sequencing

individual gametes at a large scale, which in turn allows the construction of iMaps.

Human males, for example, can provide > 107 spermatozoa [49] that can be collected

non-invasively. Single-gamete sequencing studies that measure meiotic crossovers have

emerged in the last decade [17–20, 50, 51]. We predict that this field will grow in the

coming years with the increasing accessibility of the tools for single-cell isolation and

sequencing that we review below.

Sequencing single gametes is challenging due to the limitation of one copy of any

given sequence per cell. Nevertheless, several methods exist for whole-genome amplifi-

cation (WGA) of DNA from single cells that have been successfully applied for single-

gamete sequencing and detection of crossovers. These methods include degenerate

oligonucleotide primed polymerase chain reaction (DOP-PCR [52]), multiple displace-

ment amplification (MDA [53]), multiple annealing and looping-based amplification

Fig. 2 Pedigree-based maps and iMaps. Genetic maps can be constructed de novo using pedigree data.
Personalized genetic maps can be inferred from gamete-derived sequence data
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cycles (MALBAC [54]), and, most recently, a method using RNA random priming [17].

Comparisons of amplification methods have been covered already [55, 56]. Here, we

focus on potential applications of these methods for iMap construction that can be

broadly grouped into plate-based or bead-based approaches and those that do or do

not require amplification steps before library construction (Fig. 3). Further, we discuss

the strengths and limitations of the different platforms (Table 1).

Plate-based gamete isolation methods

Multiple displacement amplification

Multiple displacement amplification (MDA) is an isothermal, strand-displacement amp-

lification method that can provide more uniform amplification across the genome com-

pared to PCR-based WGA methods [53] and was first applied to single-cell sequencing

more than 15 years ago [57, 58]. MDA was integrated into a microfluidic device to cap-

ture single sperm cells and conduct whole-genome amplification of haploid genomes in

parallel which, combined with multiplexing, can then be used for single-cell whole-

genome sequencing [19]. By integrating MDA in the microfluidic device, the contamin-

ation and amplification-induced error rate were reduced compared to the original

MDA method [19]. Crossover events and chromosome-level deletions could be de-

tected in the 91 sperm amplification products produced, resulting in a personal recom-

bination map that aligned well with averaged population map results [12, 59] while also

revealing some individual-specific differences such as sub-telomeric and short-arm

crossover frequencies.

Multiple annealing and looping-based amplification cycles

Multiple annealing and looping-based amplification cycles (MALBAC) for single-cell

amplification further reduced amplification bias compared to MDA by introducing a

quasi-linear pre-amplification step [54]. MALBAC has been used for haploid genome

amplification and investigation of crossover distribution of an Asian donor through

analyzing 99 sperm cells by first phasing the donor’s genome and then identifying

crossovers in the sperm cells [18]. On average, 26 crossovers per sperm cell were iden-

tified, which is broadly consistent with population-scale average crossover estimates

[22, 27] and cytological markers of crossovers per male meiosis [60, 61]. Crossover

breakpoint locations could be identified with higher resolution using MALBAC rather

than MDA. Aneupoid autosomes were found to have a significantly reduced crossover

rate, but the same trend was not observed for aneuploid sex chromosomes [18]. A simi-

lar MALBAC approach to sequence individual sperm was used in a bull and compared

to pedigree data from the same animal [62]. Good agreement in crossover distributions

was observed speaking to the robustness of the iMap approach.

Whole-genome amplification via RNA random priming

RNA random priming has recently been proposed as a new method for linear whole-

genome amplification in single sperm cells [17]. This method enables near-uniform

genome coverage and further improves the resolution of detected crossovers relative to

earlier methods [18, 19]. Whole genomes of 217 sperm cells from an F1 hybrid mouse

(C57BL/6J X CAST/EiJ) with heterozygous Prdm9 alleles (human/mouse) were
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sequenced, in combination with multiple molecular assays, to study factors that influ-

ence whether meiotic double-strand breaks (DSB) will be resolved as crossovers or

non-crossovers. These data were used to assay crossover distributions of an individual

in relation to chromosomal features, such as Prdm9 binding sites, distance from

telomere, and local sequence GC content.

Key applications for plate-based platforms

Plate-based platforms offer lower throughput compared to bead-based platforms but

allow a higher depth of coverage per cell and generally greater flexibility. Oocyte se-

quencing is one of the key applications for which plate-based platforms are appropriate

Fig. 3 Representation of plate- and droplet-based methods for isolating and sequencing gametes and in
silico map construction pipeline. a Schematic representation of plate- and bead-based approaches for
profiling gametes. Gametes collected from a donor can be processed through plate-based methods; the
single gamete is projected to individual compartments, and DNA amplification is carried out within each
chamber for each gamete that can further be used for genotyping using SNP array or DNA sequencing.
Bead-based methods either encapsulate single gametes or HMW DNA in a droplet with beads that contain
a barcode. Pooled barcode-tagged reads are sequenced in parallel and provide gamete sources or HMW
DNA sources. b General pipeline for crossover detection for individuals using gamete-based data. Reads
from multiple gametes are aggregated for hetSNP identification. hetSNPs are phased based on SNP co-
appearance in gametes. Genotypes of gametes and phased hetSNPs are used for constructing haplotypes
of gametes that can be further used for crossover detection. c Illustration of marker ordering for an
individual which shows different ordering and distancing from the reference genetic map
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given the low number of gametes that can be obtained from an individual. The oocyte

pronucleus genomes were inferred by sequencing the first and second polar bodies, and

the personalized female genetic map constructed was highly concordant with

population-derived genetic maps (i.e., HapMap and deCODE) [50, 51]. For the first

time, a personalized X chromosome recombination rate was estimated by sequencing,

with the result (1.01–1.18 crossovers per meiosis) proving to be similar to crossover

rate estimates for autosomes. Reduced crossover frequency in regions near transcrip-

tion start sites was also observed, as well as reduced crossovers in aneuploid oocytes

[18, 51], although the interpretation of these results must be tempered by the possibility

of detection artifacts. The high genome coverage obtained with this plate-based ap-

proach enables detection of maternally derived aneuploidies and disease-associated

single-nucleotide variants, which can aid in preimplantation genetic screening for

healthy egg selection.

Bead-based gamete isolation methods

Droplet encapsulation

A recently proposed method, Sperm-seq, can simultaneously sequence thousands of

sperm genomes by encapsulating individual sperm cells in droplets using an integration

of 10X Genomics and Drop-seq technologies [20]. With this approach, 31,228 sperm

cells from 20 male human donors were collected and sequenced. Recombination rates

in each sperm cell were estimated and then used to quantify genome-wide recombin-

ation frequencies for each donor individual. This study has by far the largest gamete

sample size in profiling thousands of single sperm cells in parallel per donor, compared

to previous studies that sequenced 100–200 sperm cells per donor. The large number

of sperm cells analyzed from each single donor improves precision for the donor-

specific crossover rate estimation.

Table 1 A comparison of the strengths and limitations of different methods for assaying
crossovers. The assumptions used to build the table are the following: A male mouse would be
used to obtain sperm. The mouse genome is approximately 2.5 Gbp, and generation times require
12 weeks. In bead-based single-cell experiments, 1000 gametes are captured and sequenced. 1×
genome coverage is used in all sequence-based experiments. Representative costs have been used
from experiments in our laboratories, or appropriate quotes, and are intended as a guide only.
Costs are only for reagents and sequencing. Costs are not included for wet-lab and bioinformatics
researchers, animal housing costs, and equipment.
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Linked-reads sequencing

High-molecular weight (HMW) DNA molecules (~ 50 kb) can be fragmented, tagged,

and computationally assembled by linked reads sequencing, which assists in haplotype

phasing [63]. In the 10X Genomics system, HMW DNA molecules are partitioned and

encapsulated in an emulsion droplet with barcodes attached to gel beads. Within each

droplet, the HMW DNA is fragmented and barcoded (Fig. 3). Short-read sequencing

can be used to sequence the barcoded DNA molecules as standard, and the barcode in-

formation can be exploited to assemble the long molecule [63–65]. Linked reads tech-

nology offers opportunities to measure crossover frequencies as demonstrated in mice,

fish, and plants by pooling haploid genomes to detect recombinant molecules [64, 65].

The crossovers cannot be resolved at single gamete resolution but still could be used to

measure crossover rates for the reconstruction of the linear order of genetic markers

for an individual. Measuring crossover frequency in live progeny, e.g., F2 mice, or a

droplet with a high-molecular weight molecule, e.g., from an F1 mouse, is fundamen-

tally the same in that for a heterozygous region, some progeny (or high-molecular

weight molecules) will be “parental” and some will be “recombinant.” The fraction

which are recombinant can be used with a mapping function to calculate the centi-

Morgan distance between markers. The principles that Sturtevant used to order more

than two markers on the same chromosome can be equally applied with high-

molecular weight read recombination fractions. While the computational complexity is

drastically larger when ordering hundreds of thousands of markers, the same principles

apply.

Challenges and opportunities

Bead-based methods all face the challenge of identifying and removing the effects of

doublets, where two or more single cells (or DNA molecules, depending on the plat-

form) are captured in the same physical droplet, and thus, the reads generated are

tagged with the same barcode. In such cases, we no longer obtain single-cell informa-

tion. A number of methods exist for doublet detection in droplet-based single-cell se-

quencing experiments [66–70]. In the construction of iMaps, unidentified doublets

could cause false-positive crossover events to be called. However, unlike in most

droplet-based single-cell applications, doublets in gamete sequencing do not necessarily

mean that the corresponding barcodes (and cells that they represent) need to be dis-

carded. Doublets can be identified for single-cell methods by metrics like heterozygosity

(which is not expected when sequencing single haploid cells) and read number (more

reads for a barcode are observed than would be expected for a single cell). For linked-

read methods, the constructed DNA molecule size, coupled with the read number per

constructed molecule, provides an indicator of doublet probability (for linked reads se-

quencing when two different HMW molecules, from adjacent genomic regions, are

tagged with the same barcode and are incorrectly constructed as one continuous DNA

molecule). While it is important to identify doublets in order to use the appropriate

analysis tools, it is still possible to identify crossovers with doublet data.

While plate-based methods are less likely to generate doublets, bead-based methods

are more readily applicable for large-scale studies owing to their suitability for batch

processing of thousands to tens of thousands of cells in parallel. However, plate-based
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approaches offer more flexibility in adapting or optimizing experimental protocols as

single cells are separated into wells. Thus, plate-based platforms offer greater opportun-

ities for increasing sensitivity in molecule capture and, all else being equal, typically

produce richer, higher-information data per cell.

The cost of whole-genome sequencing remains a challenge when profiling a large set

of gametes. The potential of combining targeted sequencing, where only DNA regions

of interest are amplified, with bead-based methods may enhance efficiency in detecting

crossovers and reducing sequencing cost (Table 1). With continuing, rapid techno-

logical development in this field, deciding on the most efficient technology to detect

crossovers in haploid cells and the sequencing depth required remain as open ques-

tions. With future improvements to sequencing depth and resolution, it may be pos-

sible to detect gene conversion events, which would be beneficial for crossover hotspot

research. Specific experimental protocols and kits are in a constant state of flux as com-

mercial solutions appear and disappear based on unpredictable market realities. There-

fore, researchers may need to survey their options anew when undertaking studies such

as those proposed here and may wish to consider the longevity and reliability of the

access to the kits along with other technical features when choosing a platform for

iMap data generation.

Statistical inference and computational tools used in estimating crossover
rates for building personalized genetic maps
Statistical inference methods are required to construct genetic maps from large datasets

that identify crossovers. Here, we describe common statistical concepts that apply to

the inference of crossover events from data collected from pedigree, population-level,

and now individual-level single-gamete data.

In all natural populations, the observed linkage disequilibrium (LD) of alleles is shaped

by generations of mutation and recombination, with specific LD patterns depending on

the underlying sample characteristics. Building a genetic map from family- or pedigree-

based cohorts takes advantage of co-segregation patterns of alleles across a known num-

ber of generations in families [12, 22, 71–73]. Coalescent-based statistical methods remain

the method-of-choice for modeling the stochastic processes that make up population gen-

etic histories and can incorporate estimation of population crossover rate [59, 74–76].

These methods provide either a population-averaged or a family-based estimation of

crossover rates that cannot resolve a genetic map for each individual.

Here, we focus on gamete-based analysis pipelines that can be adopted for constructing

personalized genomic structures from (single) gamete sequencing datasets, which will con-

tinue to accumulate with high-throughput sequencing and the advancement of single-cell se-

quencing methods (Platforms for constructing iMaps—proof of principle and opportunities).

General pipeline

Construction of individual genetic maps from gametes starts with phasing the donor’s

genome, that is defining the two haplotypes of the diploid donor genome. Crossover

detection and genetic map construction based on crossover rate estimation can then

follow.
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Phasing

In some cases, the genome or genotype phase can be directly obtained from high-

quality maternal and paternal reference genomes, such as when analyzing data from an

F1 hybrid of two inbred strains that each have a genome assembly or known genotypes

available [17, 64]. Otherwise, additional experiments such as deep sequencing of germ-

line DNA samples can be conducted for phasing donor genomes.

In fact, the gametes’ haploid genomes contain sufficient information about the do-

nor’s genome for haplotype reconstruction. Thus, especially when many gametes are

collected, genotypes called from gametes can be aggregated to infer the phase of the

donor [20, 51, 65, 77] (Fig. 3). To phase the donor genome, the first step is finding the

hetSNPs (heterozygous SNP loci that differ between the maternal and paternal homolo-

gous chromosomes) in the donor’s genome by aligning DNA reads pooled from gam-

etes to a reference genome and calling genotypes [51, 65]. The linkage of SNPs in each

gamete is used for phasing the donor, that is the hetSNP genotypes that appear in the

same gamete more often than expected by chance are inferred to lie on the same haplo-

type [18, 51]. The observation of genotypes in each gamete’s haploid genome is analo-

gous to sequencing long fragments of (recombinant) chromosomes from the donor.

Therefore, long fragment-based phasing tools can be applied to infer the phased gen-

ome for the individual [20, 65, 78, 79]. It is worth noting that iMap construction—like

all genetic map construction—is most useful for genomic regions of heterozygosity.

Crossover detection

With genome phase of the donor known and called genotypes of hetSNPs in each gam-

ete (or reconstructed DNA molecule), crossovers are inferred by detecting haplotype

shifts along a chromosome from the gamete’s hetSNP genotypes or counting the num-

ber of recombinant DNA molecules (in the case of linked-reads sequencing). The fol-

lowing section focuses on how a haplotype shift can be detected—and therefore

crossovers called—using a hidden Markov model (HMM; Fig. 4), a statistical model

frequently applied in the analysis of genomic sequence data.

Hidden Markov Model HMM approaches are commonly used in crossover detection

due to the sequential nature of chromosomes [17, 80]. In the context of crossover infer-

ence, we want to know the true haplotypes of hetSNPs, which are modeled as hidden

states, meaning that they are not directly observed but must be inferred. Instead of the

true haplotypes, we observe the genotypes called at each hetSNP or, even more funda-

mentally, the sequencing reads overlapping hetSNPs that provide evidence for the allele

inherited from one or the other parent (Fig. 4). Through modeling the transition be-

tween haplotype states and the probability of the observed data, the most probable state

sequence can be derived, from which the crossovers are inferred. Crossover hotspots

are located in various positions across the genome, which implies different crossover

rates and hence transition probabilities between states. However, a homogeneous tran-

sition probability is often used in HMMs for crossover detection, because within one

meiosis, the crossover detection should be driven by observed data instead of guided by

prior hotspot localization knowledge. Aggregating crossover positions found in each
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meiosis leads to the identification of hotspots within an individual and across

populations.

Genetic distance and map construction

The genetic distance (in units of centiMorgans) measures the likelihood of a crossover

occurring between two markers and are computed based on the observed crossover

rate. For short intervals between markers, where the recombination frequency is low,

the genetic distances tend to be close to the raw crossover rate estimated. For larger

crossover rates (observed recombination fraction > 0.1), mapping functions such as

Haldane or Kosambi (see Glossary), constructed with different assumptions on cross-

over interference, are usually applied to adjust the larger crossover rates to additive

genetic distance units. Even with the availability of dense marker sets in well-studied

organisms, including humans, runs of homozygosity may lead to large enough marker

intervals that mapping functions remain relevant for computing genetic distances from

estimated crossover rates. Genetic distances measured from querying gametes pro-

duced from an individual lead to the construction of an iMap.

Challenges and opportunities

Comparing genetic maps

To facilitate comparisons of genetic maps, genetic distances can be computed using a

window-based approach, which bins chromosomes by genomic positions (using, e.g., 1

Mb interval bins) and calculates crossover frequency per bin [17, 18]. Correlation ana-

lysis among individual genetic maps or with a reference genetic map such as HapMap

can be performed across the binned windows. However, the window size and the

marker densities in different studies affect the comparisons and need to be managed

Fig. 4 Statistical methods for crossover detection using a hidden Markov model. a The true haplotypes of
the markers (h1, h2) are unknown, and the transitions between haplotype states are modeled by a hidden
Markov model. The genotypes are observed from data and are controlled via an emission model b.
Integrating information from the observed data, the transition model, and emission model, the most likely
true haplotype sequence is inferred. b Example of a missing markers in Gamete 2 and Gamete 4. In Gamete
4 missing data for marker m4 creates ambiguity in crossover identification. Statistical inference methods can
be used to probabilistically assign crossovers to the subinterval where information is missing
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carefully. Different window sizes may be tried to identify crossover events with higher

or lower resolution. Larger window sizes will enable more stable identification of the

haplotype but reduce the precision of inferred crossover locations. Higher marker dens-

ity and deeper read coverage allow the use of smaller window sizes. Downsampling

analysis can be helpful in making sure the marker densities are at the same scale across

all samples [20]. Inter-individual differences in meiotic crossover landscapes can be re-

vealed by crossover density plots that plot distributions of crossover locations along

chromosomes for all individuals. Statistical tests for differences in distributions of the

number of crossovers detected per gamete within individuals can also be applied. Such

tests can be used to test the effects of specific factors that may influence variation in in-

dividual genetic maps. Bootstrapping and permutation testing approaches are useful

where assumptions required for standard statistical estimators are not met, for ex-

ample, when comparing total genetic map lengths or evidence for crossover interfer-

ence between experimental groups. In addition, individualized crossover interference

can be analyzed and compared within individuals [20].

Missing markers

Marker-based crossover frequency estimation for each gamete faces the problem of

missing markers in which some marker information may be missing from the under-

lying gamete (Fig. 4b), due to lack of reads or other factors. As in pedigree-based stud-

ies [12, 21], statistical inference can be used to improve the estimation of crossovers in

marker intervals for single-gamete-based datasets.

When the observed crossover can only be assigned to a large marker interval (Fig. 4b,

gamete 4, m3-m5) because information from markers (i.e., m4) within the interval is

missing, a simple approach attributes the observed crossover to all the constituent in-

tervals (m3-m4, m4-m5) within it evenly, or proportionally based on intervals’ physical

sizes. A more sophisticated approach adopts the EM (expectation-maximization) algo-

rithm which is a statistical algorithm for dealing with incomplete data with unobserved

latent variables [81]. The EM algorithm uses information about crossover frequencies

in sub-intervals from other samples for increased precision of crossover rate estimation

when marker data is missing. It can be used to find the expected number of crossover

events happening in each interval with some markers missing in certain meioses [12]

(Fig. 4).

To infer the expected number of crossover events in each sub-interval and refine the

estimation of crossover rates (for example, Fig. 4b, in gamete 4, m3-m4, m4-m5), the

EM algorithm starts with an initial guess and updates the crossover membership prob-

abilities to the sub-intervals iteratively. In each iteration, the crossover membership

probabilities are updated based on crossover rates estimated from the previous step,

and the crossover rates are updated with newly assigned crossover membership prob-

abilities. When the estimates converge, that is show little change after some minimum

number of iterations, the final estimates are obtained.

Another class of statistical inference methods uses simulation or sampling-based

solutions that generate random samples from the desired distribution [21, 82]. For in-

stance, a hierarchical model which assumed a Poisson distribution for crossover counts

within each interval and a Gamma distribution for crossover frequencies for each
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interval has been used [21]. Estimation of refined crossover rates for marker intervals

was achieved by implementing a Markov chain Monte Carlo-based approach (Gibbs

sampler) that samples from the conditional distributions of relevant parameters.

EM- and MCMC-based methods both assume that individual meioses under analysis

(assayed from gametes or whole organisms) share similar crossover positions along the

list of markers. If the individual meioses are believed to have heterogeneous crossover

landscapes, then these methods either should not be applied or, with caution, should

be applied separately to sub-groups with similar expected landscapes.

Conclusion and future perspectives
Genetic maps have provided a solid foundation for twenty-first century genome biol-

ogy. The future of personalized genomics likely is a combination of long-read sequen-

cing methods with specialized DNA library preparation methods (e.g., linked-reads,

strand-seq, Hi-C, optical mapping), and short-read sequencing techniques that can pro-

vide accurate genotyping and reveal long-range chromosome-scale information. We be-

lieve that high-throughput sequencing of gametes offers a tool that can complement

some of the limitations of other sequencing technologies. For example, iMaps may aid

in patient screening for individuals who are at increased risk of having a pregnancy

with an unbalanced genomic complement, and building personal genetic maps with

higher physical resolution will help to accurately identify SVs. In addition, single-

gamete sequencing could facilitate de novo genome assembly particularly for rare and

endangered species.
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Glossary

Bulk sequencing The sequencing of a pool of nuclear DNA from many cells belonging to an individual.

centiMorgan A map unit for measuring recombination to infer relative distances between linked markers.

Crossover Large reciprocal exchanges of DNA between homologous chromosomes which
produce recombinant chromatids. Crossovers are required for the correct segregation of
chromosomes during meiosis.

Crossover interference A biological phenomenon where one meiotic crossover reduces the probability of a
crossover at an adjacent internal, in the same meiosis, in a distance-dependent manner.

DNA double-strand break
(DSB)

Programmed DNA double-strand breaks are formed to initiate homologous recombination
in meiosis I and are essential to make crossovers.

Genetic distance A measure of the likelihood of a crossover occurring between two genetic markers. The
smaller the genetic distance between markers, the more likely they will be inherited
together.
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(Continued)

Genome-wide association
study

An approach to link genetic variants with traits.

Haplotype A group of alleles that tend to segregate together and are inherited from one parent.

Heterochiasmy Difference in the frequency and location of crossovers occurring between sexes of the
same species.

Hidden Markov model Markov process models random system where the future is independent of the past
given the current status. Hidden Markov model applies to systems with Markov
property, with unobservable (hidden) variable. It consists of two layers of stochastic
processes including Markovian transitions between hidden states (transition model)
along sequential time steps and the distribution of observable data (emission model)
over hidden states.

Individual genetic map
(iMap)

The genetic map derived from an individual’s gametes.

Mapping functions Haldane, cM = − 0.5 × ln(1 − 2r) × 100
Kosambi, cM = 0.25 × ln ((1 + 2r)/(1 − 2r)) × 100
r is the recombination fraction.
The Haldane mapping function adds mathematical adjustments to the recombination
fraction. It assumes that crossover events are random and independent along the
chromosome, and the number of crossover events between two loci follows a Poisson
distribution. Haldane’s mapping function adjusts underestimated crossover rate in larger
intervals that are likely to have unobserved even number of crossovers.
Kosambi’s mapping function was derived based on Haldane’s and takes consideration
of crossover interference.

Markers Polymorphic DNA sequences that are located at known positions in the genome and
used as genetic features to distinguish sequences between people/populations.

Markov chain A stochastic system which models the transitioning among states. The probability of
transitioning to any particular state is dependent solely on the current state and time
elapsed.

Non-crossover A type of homologous recombination used in the repair of DNA double-strand breaks,
which does not result in a crossover. The repair between two homologs is non-
reciprocal.

Physical distance An absolute measure of DNA length in nucleotide base pairs.

Quantitative trait locus (QTL) A genomic region that contributes to a trait of interest. QTL mapping often aims to
identify the gene that controls the measurable trait.

Single-cell sequencing The sequencing of nucleic acids from an individual cell using optimized short-read se-
quencing technology. Sequencing single gametes of an individual overcomes the ne-
cessity of recruiting thousands of family trios to generate a reference genetic map that
is not a representation of any individual.

Single-nucleotide
polymorphism (SNP)

Alteration of a single nucleotide at a specific position in the genome that is present in a
large fraction of the population.

Structural variation (SV) Large genomic alterations, which can include inversions, duplications, translocations,
insertions, and deletions. The minimum size is arbitrary, but in this review, SV refers to
events > 50 kb unless specified otherwise.

Authors’ contributions
All authors wrote, reviewed and discussed the manuscript. VT and RL prepared the figures. All authors read and
approved the final manuscript.

Authors’ information
Twitter handles: @VanessaTsui3 (Vanessa Tsui); @davisjmcc (Davis J McCarthy); @wcrismani (Wayne Crismani).

Funding
WC and DM receive fellowships and funding related to this work from the Australian National Health and Medical
Research Council (GNT1129757, GNT1112681, GNT1185387). DM is supported by funding from Paul Holyoake and
Marg Downey. RL and VT are recipients of a Research Training Program Scholarship from the Australian
Commonwealth Government and the University of Melbourne and SVI Foundation Top-Up Scholarship from St. Vin-
cent’s Institute. RL receives a Xing Lei PhD Top-up Scholarship in Mathematics and Statistics. VT receives a St. Vincent’s
Institute Top-up scholarship.

Lyu et al. Genome Biology          (2021) 22:112 Page 15 of 19



Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1Bioinformatics and Cellular Genomics, St. Vincent’s Institute of Medical Research, Melbourne, Australia. 2Melbourne
Integrative Genomics, Faculty of Science, The University of Melbourne, Melbourne, Australia. 3DNA Repair and
Recombination Laboratory, St. Vincent’s Institute of Medical Research, Melbourne, Australia. 4The Faculty of Medicine,
Dentistry and Health Science, The University of Melbourne, Melbourne, Australia.

Received: 11 December 2020 Accepted: 25 March 2021

References
1. Miga KH, Koren S, Rhie A, Vollger MR, Gershman A, Bzikadze A, Brooks S, Howe E, Porubsky D, Logsdon GA, Schneider

VA, Potapova T, Wood J, Chow W, Armstrong J, Fredrickson J, Pak E, Tigyi K, Kremitzki M, Markovic C, Maduro V, Dutra A,
Bouffard GG, Chang AM, Hansen NF, Wilfert AB, Thibaud-Nissen F, Schmitt AD, Belton JM, Selvaraj S, Dennis MY, Soto
DC, Sahasrabudhe R, Kaya G, Quick J, Loman NJ, Holmes N, Loose M, Surti U, Risques R, Graves Lindsay TA, Fulton R, Hall
I, Paten B, Howe K, Timp W, Young A, Mullikin JC, Pevzner PA, Gerton JL, Sullivan BA, Eichler EE, Phillippy AM. Telomere-
to-telomere assembly of a complete human X chromosome. Nature. 2020;585(7823):79–84. https://doi.org/10.1038/s41
586-020-2547-7.

2. Sturtevant AH. The linear arrangement of six sex-linked factors in Drosophila, as shown by their mode of association. J
Exp Zool. 1913;14(1):43–59. https://doi.org/10.1002/jez.1400140104.

3. Hunter N. Meiotic recombination: the essence of heredity. Cold Spring Harb Perspect Biol. 2015;7(12) Available from:
https://doi.org/10.1101/cshperspect.a016618

4. Rhie A, McCarthy SA, Fedrigo O, Damas J, Formenti G. Towards complete and error-free genome assemblies of all
vertebrate species. bioRxiv. 2020; Available from: https://www.biorxiv.org/content/10.1101/2020.05.22.110833v1.full-text

5. Porubsky D, Ebert P, Audano PA, Vollger MR, Harvey WT, Marijon P, et al. Fully phased human genome assembly
without parental data using single-cell strand sequencing and long reads. Nat Biotechnol. 2020; Available from: https://
doi.org/10.1038/s41587-020-0719-5

6. Garg S, Fungtammasan A, Carroll A, Chou M, Schmitt A, Zhou X, et al. Chromosome-scale, haplotype-resolved assembly
of human genomes. Nat Biotechnol. 2020; Available from: https://doi.org/10.1038/s41587-020-0711-0

7. Schrinner SD, Mari RS, Ebler J, Rautiainen M, Seillier L, Reimer JJ, Usadel B, Marschall T, Klau GW. Haplotype threading:
accurate polyploid phasing from long reads. Genome Biol. 2020;21(1):252. https://doi.org/10.1186/s13059-020-02158-1.

8. Paigen K, Szatkiewicz JP, Sawyer K, Leahy N, Parvanov ED, Ng SHS, Graber JH, Broman KW, Petkov PM. The
recombinational anatomy of a mouse chromosome. PLoS Genet. 2008;4(7):e1000119. https://doi.org/10.1371/journal.
pgen.1000119.

9. McVean GAT, Myers SR, Hunt S, Deloukas P, Bentley DR, Donnelly P. The fine-scale structure of recombination rate
variation in the human genome. Science. 2004;304(5670):581–4. https://doi.org/10.1126/science.1092500.

10. Myers S, Bottolo L, Freeman C, McVean G, Donnelly P. A fine-scale map of recombination rates and hotspots across the
human genome. Science. 2005;310(5746):321–4. https://doi.org/10.1126/science.1117196.

11. Berg IL, Neumann R, Sarbajna S, Odenthal-Hesse L, Butler NJ, Jeffreys AJ. Variants of the protein PRDM9 differentially
regulate a set of human meiotic recombination hotspots highly active in African populations. Proc Natl Acad Sci U S A.
2011;108(30):12378–83. https://doi.org/10.1073/pnas.1109531108.

12. Kong A, Thorleifsson G, Gudbjartsson DF, Masson G, Sigurdsson A, Jonasdottir A, Walters GB, Jonasdottir A, Gylfason A,
Kristinsson KT, Gudjonsson SA, Frigge ML, Helgason A, Thorsteinsdottir U, Stefansson K. Fine-scale recombination rate
differences between sexes, populations and individuals. Nature. 2010;467(7319):1099–103. https://doi.org/10.1038/na
ture09525.

13. Berg IL, Neumann R, Lam K-WG, Sarbajna S, Odenthal-Hesse L, May CA, Jeffreys AJ. PRDM9 variation strongly influences
recombination hot-spot activity and meiotic instability in humans. Nat Genet. 2010;42(10):859–63. https://doi.org/10.103
8/ng.658.

14. Parvanov ED, Petkov PM, Paigen K. Prdm9 controls activation of mammalian recombination hotspots. Science. 2010;
327(5967):835. https://doi.org/10.1126/science.1181495.

15. Myers S, Bowden R, Tumian A, Bontrop RE, Freeman C, MacFie TS, et al. Drive against hotspot motifs in primates
implicates the PRDM9 gene in meiotic recombination. Science. 2010;327(5967):876–9. https://doi.org/10.1126/science.11
82363.

16. Baudat F, Buard J, Grey C, Fledel-Alon A, Ober C, Przeworski M, Coop G, de Massy B. PRDM9 is a major determinant of
meiotic recombination hotspots in humans and mice. Science. 2010;327(5967):836–40. https://doi.org/10.1126/
science.1183439.

17. Hinch AG, Zhang G, Becker PW, Moralli D, Hinch R, Davies B, et al. Factors influencing meiotic recombination revealed
by whole-genome sequencing of single sperm. Science. 2019;363(6433) Available from: https://doi.org/10.1126/
science.aau8861

18. Lu S, Zong C, Fan W, Yang M, Li J, Chapman AR, Zhu P, Hu X, Xu L, Yan L, Bai F, Qiao J, Tang F, Li R, Xie XS. Probing
meiotic recombination and aneuploidy of single sperm cells by whole-genome sequencing. Science. 2012;338(6114):
1627–30. https://doi.org/10.1126/science.1229112.

19. Wang J, Fan HC, Behr B, Quake SR. Genome-wide single-cell analysis of recombination activity and de novo mutation
rates in human sperm. Cell. 2012;150(2):402–12. https://doi.org/10.1016/j.cell.2012.06.030.

20. Bell AD, Mello CJ, Nemesh J, Brumbaugh SA, Wysoker A, McCarroll SA. Insights into variation in meiosis from 31,228
human sperm genomes. Nature. 2020;583(7815):259–64. https://doi.org/10.1038/s41586-020-2347-0.

Lyu et al. Genome Biology          (2021) 22:112 Page 16 of 19

https://doi.org/10.1038/s41586-020-2547-7
https://doi.org/10.1038/s41586-020-2547-7
https://doi.org/10.1002/jez.1400140104
https://doi.org/10.1101/cshperspect.a016618
https://www.biorxiv.org/content/10.1101/2020.05.22.110833v1.full-text
https://doi.org/10.1038/s41587-020-0719-5
https://doi.org/10.1038/s41587-020-0719-5
https://doi.org/10.1038/s41587-020-0711-0
https://doi.org/10.1186/s13059-020-02158-1
https://doi.org/10.1371/journal.pgen.1000119
https://doi.org/10.1371/journal.pgen.1000119
https://doi.org/10.1126/science.1092500
https://doi.org/10.1126/science.1117196
https://doi.org/10.1073/pnas.1109531108
https://doi.org/10.1038/nature09525
https://doi.org/10.1038/nature09525
https://doi.org/10.1038/ng.658
https://doi.org/10.1038/ng.658
https://doi.org/10.1126/science.1181495
https://doi.org/10.1126/science.1182363
https://doi.org/10.1126/science.1182363
https://doi.org/10.1126/science.1183439
https://doi.org/10.1126/science.1183439
https://doi.org/10.1126/science.aau8861
https://doi.org/10.1126/science.aau8861
https://doi.org/10.1126/science.1229112
https://doi.org/10.1016/j.cell.2012.06.030
https://doi.org/10.1038/s41586-020-2347-0


21. Bhérer C, Campbell CL, Auton A. Refined genetic maps reveal sexual dimorphism in human meiotic recombination at
multiple scales. Nat Commun. 2017;8(1):14994. https://doi.org/10.1038/ncomms14994.

22. Kong A, Gudbjartsson DF, Sainz J, Jonsdottir GM, Gudjonsson SA, Richardsson B, Sigurdardottir S, Barnard J, Hallbeck B,
Masson G, Shlien A, Palsson ST, Frigge ML, Thorgeirsson TE, Gulcher JR, Stefansson K. A high-resolution recombination
map of the human genome. Nat Genet. 2002;31(3):241–7. https://doi.org/10.1038/ng917.

23. Broman KW, Murray JC, Sheffield VC, White RL, Weber JL. Comprehensive human genetic maps: individual and sex-
specific variation in recombination. Am J Hum Genet. 1998;63(3):861–9. https://doi.org/10.1086/302011.

24. Giraut L, Falque M, Drouaud J, Pereira L, Martin OC, Mézard C. Genome-wide crossover distribution in Arabidopsis
thaliana meiosis reveals sex-specific patterns along chromosomes. PLoS Genet. 2011;7(11):e1002354. https://doi.org/1
0.1371/journal.pgen.1002354.

25. de Boer E, Jasin M, Keeney S. Local and sex-specific biases in crossover vs. noncrossover outcomes at meiotic
recombination hot spots in mice. Genes Dev. 2015;29(16):1721–33. https://doi.org/10.1101/gad.265561.115.

26. Coop G, Wen X, Ober C, Pritchard JK, Przeworski M. High-resolution mapping of crossovers reveals extensive variation in
fine-scale recombination patterns among humans. Science. 2008;319(5868):1395–8. https://doi.org/10.1126/science.1151851.

27. Campbell CL, Furlotte NA, Eriksson N, Hinds D, Auton A. Escape from crossover interference increases with maternal
age. Nat Commun. 2015;6(1):6260. https://doi.org/10.1038/ncomms7260.

28. Mahmoud M, Gobet N, Cruz-Dávalos DI, Mounier N, Dessimoz C, Sedlazeck FJ. Structural variant calling: the long and
the short of it. Genome Biol. 2019;20(1):246. https://doi.org/10.1186/s13059-019-1828-7.

29. Kidd JM, Cooper GM, Donahue WF, Hayden HS, Sampas N, Graves T, Hansen N, Teague B, Alkan C, Antonacci F, Haugen
E, Zerr T, Yamada NA, Tsang P, Newman TL, Tüzün E, Cheng Z, Ebling HM, Tusneem N, David R, Gillett W, Phelps KA,
Weaver M, Saranga D, Brand A, Tao W, Gustafson E, McKernan K, Chen L, Malig M, Smith JD, Korn JM, McCarroll SA,
Altshuler DA, Peiffer DA, Dorschner M, Stamatoyannopoulos J, Schwartz D, Nickerson DA, Mullikin JC, Wilson RK, Bruhn
L, Olson MV, Kaul R, Smith DR, Eichler EE. Mapping and sequencing of structural variation from eight human genomes.
Nature. 2008;453(7191):56–64. https://doi.org/10.1038/nature06862.

30. de Smith AJ, Tsalenko A, Sampas N, Scheffer A, Yamada NA, Tsang P, Ben-Dor A, Yakhini Z, Ellis RJ, Bruhn L, Laderman S,
Froguel P, Blakemore AIF. Array CGH analysis of copy number variation identifies 1284 new genes variant in healthy
white males: implications for association studies of complex diseases. Hum Mol Genet. 2007;16(23):2783–94. https://doi.
org/10.1093/hmg/ddm208.

31. Stefansson H, Helgason A, Thorleifsson G, Steinthorsdottir V, Masson G, Barnard J, Baker A, Jonasdottir A, Ingason A,
Gudnadottir VG, Desnica N, Hicks A, Gylfason A, Gudbjartsson DF, Jonsdottir GM, Sainz J, Agnarsson K, Birgisdottir B,
Ghosh S, Olafsdottir A, Cazier JB, Kristjansson K, Frigge ML, Thorgeirsson TE, Gulcher JR, Kong A, Stefansson K. A
common inversion under selection in Europeans. Nat Genet. 2005;37(2):129–37. https://doi.org/10.1038/ng1508.

32. Telenti A, Pierce LCT, Biggs WH, di Iulio J, Wong EHM, Fabani MM, Kirkness EF, Moustafa A, Shah N, Xie C, Brewerton SC,
Bulsara N, Garner C, Metzker G, Sandoval E, Perkins BA, Och FJ, Turpaz Y, Venter JC. Deep sequencing of 10,000 human
genomes. Proc Natl Acad Sci U S A. 2016;113(42):11901–6. https://doi.org/10.1073/pnas.1613365113.

33. Audano PA, Sulovari A, Graves-Lindsay TA, Cantsilieris S, Sorensen M, Welch AE, et al. Characterizing the major structural
variant alleles of the human genome. Cell. 2019;176(3):663–75.e19.

34. Chaisson MJP, Sanders AD, Zhao X, Malhotra A, Porubsky D, Rausch T, Gardner EJ, Rodriguez OL, Guo L, Collins RL, Fan X,
Wen J, Handsaker RE, Fairley S, Kronenberg ZN, Kong X, Hormozdiari F, Lee D, Wenger AM, Hastie AR, Antaki D,
Anantharaman T, Audano PA, Brand H, Cantsilieris S, Cao H, Cerveira E, Chen C, Chen X, Chin CS, Chong Z, Chuang NT,
Lambert CC, Church DM, Clarke L, Farrell A, Flores J, Galeev T, Gorkin DU, Gujral M, Guryev V, Heaton WH, Korlach J, Kumar S,
Kwon JY, Lam ET, Lee JE, Lee J, Lee WP, Lee SP, Li S, Marks P, Viaud-Martinez K, Meiers S, Munson KM, Navarro FCP, Nelson
BJ, Nodzak C, Noor A, Kyriazopoulou-Panagiotopoulou S, Pang AWC, Qiu Y, Rosanio G, Ryan M, Stütz A, Spierings DCJ, Ward
A, Welch AME, Xiao M, Xu W, Zhang C, Zhu Q, Zheng-Bradley X, Lowy E, Yakneen S, McCarroll S, Jun G, Ding L, Koh CL, Ren
B, Flicek P, Chen K, Gerstein MB, Kwok PY, Lansdorp PM, Marth GT, Sebat J, Shi X, Bashir A, Ye K, Devine SE, Talkowski ME,
Mills RE, Marschall T, Korbel JO, Eichler EE, Lee C. Multi-platform discovery of haplotype-resolved structural variation in
human genomes. Nat Commun. 2019;10(1):1784. https://doi.org/10.1038/s41467-018-08148-z.

35. Huddleston J, Chaisson MJP, Steinberg KM, Warren W, Hoekzema K, Gordon D, Graves-Lindsay TA, Munson KM,
Kronenberg ZN, Vives L, Peluso P, Boitano M, Chin CS, Korlach J, Wilson RK, Eichler EE. Discovery and genotyping of
structural variation from long-read haploid genome sequence data. Genome Res. 2017;27(5):677–85. https://doi.org/1
0.1101/gr.214007.116.

36. De Coster W, Van Broeckhoven C. Newest methods for detecting structural variations. Trends Biotechnol. 2019;37(9):
973–82. https://doi.org/10.1016/j.tibtech.2019.02.003.

37. Huddleston J, Eichler EE. An incomplete understanding of human genetic variation. Genetics. 2016;202(4):1251–4.
https://doi.org/10.1534/genetics.115.180539.

38. Rang FJ, Kloosterman WP, de Ridder J. From squiggle to basepair: computational approaches for improving nanopore
sequencing read accuracy. Genome Biol. 2018;19(1):90. https://doi.org/10.1186/s13059-018-1462-9.

39. Jain M, Koren S, Miga KH, Quick J, Rand AC, Sasani TA, Tyson JR, Beggs AD, Dilthey AT, Fiddes IT, Malla S, Marriott H,
Nieto T, O’Grady J, Olsen HE, Pedersen BS, Rhie A, Richardson H, Quinlan AR, Snutch TP, Tee L, Paten B, Phillippy AM,
Simpson JT, Loman NJ, Loose M. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat
Biotechnol. 2018;36(4):338–45. https://doi.org/10.1038/nbt.4060.

40. Wenger AM, Peluso P, Rowell WJ, Chang P-C, Hall RJ, Concepcion GT, Ebler J, Fungtammasan A, Kolesnikov A, Olson ND,
Töpfer A, Alonge M, Mahmoud M, Qian Y, Chin CS, Phillippy AM, Schatz MC, Myers G, DePristo MA, Ruan J, Marschall T,
Sedlazeck FJ, Zook JM, Li H, Koren S, Carroll A, Rank DR, Hunkapiller MW. Accurate circular consensus long-read
sequencing improves variant detection and assembly of a human genome. Nat Biotechnol. 2019;37(10):1155–62.
https://doi.org/10.1038/s41587-019-0217-9.

41. Amarasinghe SL, Su S, Dong X, Zappia L, Ritchie ME, Gouil Q. Opportunities and challenges in long-read sequencing
data analysis. Genome Biol. 2020;21(1):30. https://doi.org/10.1186/s13059-020-1935-5.

42. Campoy JA, Sun H, Goel M, Jiao W-B, Folz-Donahue K, Wang N, Rubio M, Liu C, Kukat C, Ruiz D, Huettel B, Schneeberger
K. Gamete binning: chromosome-level and haplotype-resolved genome assembly enabled by high-throughput single-
cell sequencing of gamete genomes. Genome Biol. 2020;21(1):306. https://doi.org/10.1186/s13059-020-02235-5.

Lyu et al. Genome Biology          (2021) 22:112 Page 17 of 19

https://doi.org/10.1038/ncomms14994
https://doi.org/10.1038/ng917
https://doi.org/10.1086/302011
https://doi.org/10.1371/journal.pgen.1002354
https://doi.org/10.1371/journal.pgen.1002354
https://doi.org/10.1101/gad.265561.115
https://doi.org/10.1126/science.1151851
https://doi.org/10.1038/ncomms7260
https://doi.org/10.1186/s13059-019-1828-7
https://doi.org/10.1038/nature06862
https://doi.org/10.1093/hmg/ddm208
https://doi.org/10.1093/hmg/ddm208
https://doi.org/10.1038/ng1508
https://doi.org/10.1073/pnas.1613365113
https://doi.org/10.1038/s41467-018-08148-z
https://doi.org/10.1101/gr.214007.116
https://doi.org/10.1101/gr.214007.116
https://doi.org/10.1016/j.tibtech.2019.02.003
https://doi.org/10.1534/genetics.115.180539
https://doi.org/10.1186/s13059-018-1462-9
https://doi.org/10.1038/nbt.4060
https://doi.org/10.1038/s41587-019-0217-9
https://doi.org/10.1186/s13059-020-1935-5
https://doi.org/10.1186/s13059-020-02235-5


43. Paux E, Sourdille P, Salse J, Saintenac C, Choulet F, Leroy P, Korol A, Michalak M, Kianian S, Spielmeyer W, Lagudah E,
Somers D, Kilian A, Alaux M, Vautrin S, Berges H, Eversole K, Appels R, Safar J, Simkova H, Dolezel J, Bernard M, Feuillet C.
A physical map of the 1-gigabase bread wheat chromosome 3B. Science. 2008;322(5898):101–4. https://doi.org/10.1126/
science.1161847.

44. Ling H-Q, Zhao S, Liu D, Wang J, Sun H, Zhang C, Fan H, Li D, Dong L, Tao Y, Gao C, Wu H, Li Y, Cui Y, Guo X, Zheng S,
Wang B, Yu K, Liang Q, Yang W, Lou X, Chen J, Feng M, Jian J, Zhang X, Luo G, Jiang Y, Liu J, Wang Z, Sha Y, Zhang B,
Wu H, Tang D, Shen Q, Xue P, Zou S, Wang X, Liu X, Wang F, Yang Y, An X, Dong Z, Zhang K, Zhang X, Luo MC, Dvorak
J, Tong Y, Wang J, Yang H, Li Z, Wang D, Zhang A, Wang J. Draft genome of the wheat A-genome progenitor Triticum
urartu. Nature. 2013;496(7443):87–90. https://doi.org/10.1038/nature11997.

45. Ling H-Q, Ma B, Shi X, Liu H, Dong L, Sun H, Cao Y, Gao Q, Zheng S, Li Y, Yu Y, du H, Qi M, Li Y, Lu H, Yu H, Cui Y, Wang
N, Chen C, Wu H, Zhao Y, Zhang J, Li Y, Zhou W, Zhang B, Hu W, van Eijk MJT, Tang J, Witsenboer HMA, Zhao S, Li Z,
Zhang A, Wang D, Liang C. Genome sequence of the progenitor of wheat A subgenome Triticum urartu. Nature. 2018;
557(7705):424–8. https://doi.org/10.1038/s41586-018-0108-0.

46. International Wheat Genome Sequencing Consortium (IWGSC), IWGSC RefSeq principal investigators, Appels R, Eversole
K, Feuillet C, Keller B, et al. Shifting the limits in wheat research and breeding using a fully annotated reference
genome. Science. 2018;361(6403) Available from: https://doi.org/10.1126/science.aar7191

47. International Wheat Genome Sequencing Consortium (IWGSC). A chromosome-based draft sequence of the hexaploid
bread wheat (Triticum aestivum) genome. Science. 2014;345(6194):1251788.

48. Stuart T, Satija R. Integrative single-cell analysis. Nat Rev Genet. 2019;20(5):257–72. https://doi.org/10.1038/s41576-019-0093-7.
49. Cooper TG, Noonan E, von Eckardstein S, Auger J, Baker HWG, Behre HM, Haugen TB, Kruger T, Wang C, Mbizvo MT,

Vogelsong KM. World Health Organization reference values for human semen characteristics. Hum Reprod Update.
2010;16(3):231–45. https://doi.org/10.1093/humupd/dmp048.

50. Ottolini CS, Newnham L, Capalbo A, Natesan SA, Joshi HA, Cimadomo D, et al. Genome-wide maps of recombination
and chromosome segregation in human oocytes and embryos show selection for maternal recombination rates. Nat
Genet. 2015;47(7):727–35. https://doi.org/10.1038/ng.3306.

51. Hou Y, Fan W, Yan L, Li R, Lian Y, Huang J, Li J, Xu L, Tang F, Xie XS, Qiao J. Genome analyses of single human oocytes.
Cell. 2013;155(7):1492–506. https://doi.org/10.1016/j.cell.2013.11.040.

52. Telenius H, Carter NP, Bebb CE, Nordenskjöld M, Ponder BA, Tunnacliffe A. Degenerate oligonucleotide-primed PCR:
general amplification of target DNA by a single degenerate primer. Genomics. 1992;13(3):718–25. https://doi.org/10.101
6/0888-7543(92)90147-K.

53. Dean FB, Hosono S, Fang L, Wu X, Faruqi AF, Bray-Ward P, Sun Z, Zong Q, du Y, du J, Driscoll M, Song W, Kingsmore SF,
Egholm M, Lasken RS. Comprehensive human genome amplification using multiple displacement amplification. Proc
Natl Acad Sci U S A. 2002;99(8):5261–6. https://doi.org/10.1073/pnas.082089499.

54. Zong C, Lu S, Chapman AR, Xie XS. Genome-wide detection of single-nucleotide and copy-number variations of a
single human cell. Science. 2012;338(6114):1622–6. https://doi.org/10.1126/science.1229164.

55. de Bourcy CFA, De Vlaminck I, Kanbar JN, Wang J, Gawad C, Quake SR. A quantitative comparison of single-cell whole
genome amplification methods. PLoS One. 2014;9(8):e105585. https://doi.org/10.1371/journal.pone.0105585.

56. Hou Y, Wu K, Shi X, Li F, Song L, Wu H, Dean M, Li G, Tsang S, Jiang R, Zhang X, Li B, Liu G, Bedekar N, Lu N, Xie G,
Liang H, Chang L, Wang T, Chen J, Li Y, Zhang X, Yang H, Xu X, Wang L, Wang J. Comparison of variations detection
between whole-genome amplification methods used in single-cell resequencing. Gigascience. 2015;4(1):37. https://doi.
org/10.1186/s13742-015-0068-3.

57. Handyside AH, Robinson MD, Simpson RJ, Omar MB, Shaw M-A, Grudzinskas JG, Rutherford A. Isothermal whole
genome amplification from single and small numbers of cells: a new era for preimplantation genetic diagnosis of
inherited disease. Mol Hum Reprod. 2004;10(10):767–72. https://doi.org/10.1093/molehr/gah101.

58. Hellani A, Coskun S, Benkhalifa M, Tbakhi A, Sakati N, Al-Odaib A, et al. Multiple displacement amplification on single cell
and possible PGD applications. Mol Hum Reprod. 2004;10(11):847–52. https://doi.org/10.1093/molehr/gah114.

59. International HapMap Consortium. A haplotype map of the human genome. Nature. 2005;437(7063):1299–320. https://
doi.org/10.1038/nature04226.

60. Barlow AL, Hultén MA. Crossing over analysis at pachytene in man. Eur J Hum Genet. 1998;6(4):350–8. https://doi.org/1
0.1038/sj.ejhg.5200200.

61. Gruhn JR, Rubio C, Broman KW, Hunt PA, Hassold T. Cytological studies of human meiosis: sex-specific differences in
recombination originate at, or prior to, establishment of double-strand breaks. PLoS One. 2013;8(12):e85075. https://doi.
org/10.1371/journal.pone.0085075.

62. Zhou Y, Shen B, Jiang J, Padhi A, Park K-E, Oswalt A, Sattler CG, Telugu BP, Chen H, Cole JB, Liu GE, Ma L. Construction
of PRDM9 allele-specific recombination maps in cattle using large-scale pedigree analysis and genome-wide single
sperm genomics. DNA Res. 2018;25(2):183–94. https://doi.org/10.1093/dnares/dsx048.

63. Marks P, Garcia S, Barrio AM, Belhocine K, Bernate J, Bharadwaj R, Bjornson K, Catalanotti C, Delaney J, Fehr A, Fiddes IT,
Galvin B, Heaton H, Herschleb J, Hindson C, Holt E, Jabara CB, Jett S, Keivanfar N, Kyriazopoulou-Panagiotopoulou S, Lek
M, Lin B, Lowe A, Mahamdallie S, Maheshwari S, Makarewicz T, Marshall J, Meschi F, O’Keefe CJ, Ordonez H, Patel P,
Price A, Royall A, Ruark E, Seal S, Schnall-Levin M, Shah P, Stafford D, Williams S, Wu I, Xu AW, Rahman N, MacArthur D,
Church DM. Resolving the full spectrum of human genome variation using linked-reads. Genome Res. 2019;29(4):635–
45. https://doi.org/10.1101/gr.234443.118.

64. Sun H, Rowan BA, Flood PJ, Brandt R, Fuss J, Hancock AM, Michelmore RW, Huettel B, Schneeberger K. Linked-read
sequencing of gametes allows efficient genome-wide analysis of meiotic recombination. Nat Commun. 2019;10(1):4310.
https://doi.org/10.1038/s41467-019-12209-2.

65. Dréau A, Venu V, Avdievich E, Gaspar L, Jones FC. Genome-wide recombination map construction from single
individuals using linked-read sequencing. Nat Commun. 2019;10(1):4309. https://doi.org/10.1038/s41467-019-12210-9.

66. Wolock SL, Lopez R, Klein AM. Scrublet: computational identification of cell doublets in single-cell transcriptomic data.
Cell Syst. 2019;8(4):281–91.e9.

67. Bernstein NJ, Fong NL, Lam I, Roy MA, Hendrickson DG, Kelley DR. Solo: doublet identification in single-cell RNA-Seq via
semi-supervised deep learning. Cell Syst. 2020;11(1):95–101.e5.

Lyu et al. Genome Biology          (2021) 22:112 Page 18 of 19

https://doi.org/10.1126/science.1161847
https://doi.org/10.1126/science.1161847
https://doi.org/10.1038/nature11997
https://doi.org/10.1038/s41586-018-0108-0
https://doi.org/10.1126/science.aar7191
https://doi.org/10.1038/s41576-019-0093-7
https://doi.org/10.1093/humupd/dmp048
https://doi.org/10.1038/ng.3306
https://doi.org/10.1016/j.cell.2013.11.040
https://doi.org/10.1016/0888-7543(92)90147-K
https://doi.org/10.1016/0888-7543(92)90147-K
https://doi.org/10.1073/pnas.082089499
https://doi.org/10.1126/science.1229164
https://doi.org/10.1371/journal.pone.0105585
https://doi.org/10.1186/s13742-015-0068-3
https://doi.org/10.1186/s13742-015-0068-3
https://doi.org/10.1093/molehr/gah101
https://doi.org/10.1093/molehr/gah114
https://doi.org/10.1038/nature04226
https://doi.org/10.1038/nature04226
https://doi.org/10.1038/sj.ejhg.5200200
https://doi.org/10.1038/sj.ejhg.5200200
https://doi.org/10.1371/journal.pone.0085075
https://doi.org/10.1371/journal.pone.0085075
https://doi.org/10.1093/dnares/dsx048
https://doi.org/10.1101/gr.234443.118
https://doi.org/10.1038/s41467-019-12209-2
https://doi.org/10.1038/s41467-019-12210-9


68. DePasquale EAK, Schnell DJ, Van Camp P-J, Valiente-Alandí Í, Blaxall BC, Grimes HL, et al. DoubletDecon: deconvoluting
doublets from single-cell RNA-sequencing data. Cell Rep. 2019;29(6):1718–27.e8.

69. McGinnis CS, Murrow LM, Gartner ZJ. DoubletFinder: doublet detection in single-cell RNA sequencing data using
artificial nearest neighbors. Cell Syst. 2019;8(4):329–37.e4.

70. Bais AS, Kostka D. scds: computational annotation of doublets in single-cell RNA sequencing data. Bioinformatics. 2019;
Available from: https://doi.org/10.1093/bioinformatics/btz698

71. Lander ES, Green P. Construction of multilocus genetic linkage maps in humans. Proc Natl Acad Sci U S A. 1987;84(8):
2363–7. https://doi.org/10.1073/pnas.84.8.2363.

72. Gudbjartsson DF, Jonasson K, Frigge ML, Kong A. Allegro, a new computer program for multipoint linkage analysis. Nat
Genet. 2000;25(1):12–3. https://doi.org/10.1038/75514.

73. Abecasis GR, Wigginton JE. Handling marker-marker linkage disequilibrium: pedigree analysis with clustered markers.
Am J Hum Genet. 2005;77(5):754–67. https://doi.org/10.1086/497345.

74. Fearnhead P, Donnelly P. Estimating recombination rates from population genetic data. Genetics. 2001;159(3):1299–318.
75. Fearnhead P, Harding RM, Schneider JA, Myers S, Donnelly P. Application of coalescent methods to reveal fine-scale rate

variation and recombination hotspots. Genetics. 2004;167(4):2067–81. https://doi.org/10.1534/genetics.103.021584.
76. Stumpf MPH, McVean GAT. Estimating recombination rates from population-genetic data. Nat Rev Genet. 2003;4(12):

959–68. https://doi.org/10.1038/nrg1227.
77. Kirkness EF, Grindberg RV, Yee-Greenbaum J, Marshall CR, Scherer SW, Lasken RS, Venter JC. Sequencing of isolated

sperm cells for direct haplotyping of a human genome. Genome Res. 2013;23(5):826–32. https://doi.org/10.1101/gr.144
600.112.

78. Bansal V, Bafna V. HapCUT: an efficient and accurate algorithm for the haplotype assembly problem. Bioinformatics.
2008;24(16):i153–9. https://doi.org/10.1093/bioinformatics/btn298.

79. Xie M, Wang J, Jiang T. A fast and accurate algorithm for single individual haplotyping. BMC Syst Biol. 2012;6(Suppl 2):S8.
80. Rowan BA, Patel V, Weigel D, Schneeberger K. Rapid and inexpensive whole-genome genotyping-by-sequencing for

crossover localization and fine-scale genetic mapping. G3. 2015;5(3):385–98.
81. Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Series

B Stat Methodol. 1977;39(1):1–38.
82. Hinch AG, Tandon A, Patterson N, Song Y, Rohland N, Palmer CD, Chen GK, Wang K, Buxbaum SG, Akylbekova EL,

Aldrich MC, Ambrosone CB, Amos C, Bandera EV, Berndt SI, Bernstein L, Blot WJ, Bock CH, Boerwinkle E, Cai Q, Caporaso
N, Casey G, Adrienne Cupples L, Deming SL, Ryan Diver W, Divers J, Fornage M, Gillanders EM, Glessner J, Harris CC, Hu
JJ, Ingles SA, Isaacs W, John EM, Linda Kao WH, Keating B, Kittles RA, Kolonel LN, Larkin E, le Marchand L, McNeill LH,
Millikan RC, Murphy, Musani S, Neslund-Dudas C, Nyante S, Papanicolaou GJ, Press MF, Psaty BM, Reiner AP, Rich SS,
Rodriguez-Gil JL, Rotter JI, Rybicki BA, Schwartz AG, Signorello LB, Spitz M, Strom SS, Thun MJ, Tucker MA, Wang Z,
Wiencke JK, Witte JS, Wrensch M, Wu X, Yamamura Y, Zanetti KA, Zheng W, Ziegler RG, Zhu X, Redline S, Hirschhorn JN,
Henderson BE, Taylor Jr HA, Price AL, Hakonarson H, Chanock SJ, Haiman CA, Wilson JG, Reich D, Myers SR. The
landscape of recombination in African Americans. Nature. 2011;476(7359):170–5. https://doi.org/10.1038/nature10336.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Lyu et al. Genome Biology          (2021) 22:112 Page 19 of 19

https://doi.org/10.1093/bioinformatics/btz698
https://doi.org/10.1073/pnas.84.8.2363
https://doi.org/10.1038/75514
https://doi.org/10.1086/497345
https://doi.org/10.1534/genetics.103.021584
https://doi.org/10.1038/nrg1227
https://doi.org/10.1101/gr.144600.112
https://doi.org/10.1101/gr.144600.112
https://doi.org/10.1093/bioinformatics/btn298
https://doi.org/10.1038/nature10336

	Abstract
	Introduction
	Genetic map variation between individuals: a motivation for personalized genetic maps
	Crossover hotspot localization
	Heterochiasmy
	Genomic structural variation
	The iMap

	Platforms for constructing iMaps—proof of principle and opportunities
	Plate-based gamete isolation methods
	Multiple displacement amplification
	Multiple annealing and looping-based amplification cycles
	Whole-genome amplification via RNA random priming
	Key applications for plate-based platforms

	Bead-based gamete isolation methods
	Droplet encapsulation
	Linked-reads sequencing

	Challenges and opportunities

	Statistical inference and computational tools used in estimating crossover rates for building personalized genetic maps
	General pipeline
	Phasing
	Crossover detection
	Genetic distance and map construction

	Challenges and opportunities
	Comparing genetic maps

	Missing markers

	Conclusion and future perspectives
	Supplementary Information
	Acknowledgements
	Review history
	Peer review information
	Glossary
	Authors’ contributions
	Authors’ information
	Funding
	Declarations
	Competing interests
	Author details
	References
	Publisher’s Note

