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Abstract
Purpose Data augmentation is a common technique to overcome the lack of large annotated databases, a usual situation
when applying deep learning to medical imaging problems. Nevertheless, there is no consensus on which transformations to
apply for a particular field. This work aims at identifying the effect of different transformations on polyp segmentation using
deep learning.
Methods A set of transformations and ranges have been selected, considering image-based (width and height shift, rota-
tion, shear, zooming, horizontal and vertical flip and elastic deformation), pixel-based (changes in brightness and contrast)
and application-based (specular lights and blurry frames) transformations. A model has been trained under the same
conditions without data augmentation transformations (baseline) and for each of the transformation and ranges, using CVC-
EndoSceneStill and Kvasir-SEG, independently. Statistical analysis is performed to compare the baseline performance against
results of each range of each transformation on the same test set for each dataset.
Results This basic method identifies the most adequate transformations for each dataset. For CVC-EndoSceneStill, changes
in brightness and contrast significantly improve the model performance. On the contrary, Kvasir-SEG benefits to a greater
extent from the image-based transformations, especially rotation and shear. Augmentation with synthetic specular lights also
improves the performance.
Conclusion Despite being infrequently used, pixel-based transformations show a great potential to improve polyp seg-
mentation in CVC-EndoSceneStill. On the other hand, image-based transformations are more suitable for Kvasir-SEG.
Problem-based transformations behave similarly in both datasets. Polyp area, brightness and contrast of the dataset have an
influence on these differences.

Keywords Polyp segmentation · Deep learning · Data augmentation · Transformations · Semantic segmentation

Introduction

Deep learning techniques have been widely used for the last
years as they have proved their ability to extract features
for different computer vision tasks such as object detection,
classification or segmentation [1]. Undoubtedly, these tech-
niques have also been used for medical imaging with great
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success [2, 3]. Even though, one limitation that must be faced
in this field is the lack of large datasets with relevant anno-
tations and/or labelling [4, 5]. One of the most widely used
strategies for addressing this problem is data augmentation
[6].

Data augmentation for images consists of increasing the
amount and diversity of training cases based on the avail-
able images in the database through the application of image
transformations such as translation or flipping of the origi-
nal image [7]. Different computational libraries have been
created to perform these transformation functions [8, 9].
However, the selection of themost suitable strategy remains a
trial-and-error process that depends on the experience, imag-
ination and time of the researcher [10]. There are several
studies analysing the effect of data augmentation for image
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classification tasks [11–14], but this field is not fully explored
for semantic segmentation yet [15].

Computer-assisted diagnosis (CAD) systems for early
detection of colorectal cancer have also benefited from the
application of deep learning techniques [16–18]. Publicly
available datasets range fromhundreds of imageswith aman-
ually segmented binary mask, such as CVC-EndoSceneStill
[19] or Kvasir-SEG [20], to thousands of video frames
with an approximated elliptical binary mask, such as CVC-
VideoClinicDB [21, 22]. For polyp segmentation, it is easy
to find several works in which data augmentation has been
used. Nevertheless, there is a wide variety of transforma-
tions selected as well as their ranges (for example, rotating
between − 45° and 45° instead of between − 90° and 90°).
Table 1 gathers the applied transformations and their ranges,
when available, for recent works on polyp segmentation
using deep learning. Although there are authors who do use
data augmentation, they do not describe the transformations
applied [23]. Besides, it is also important to point out that
more intense data augmentation does not necessarily yield to
increased performance [24]. The particularities of the med-
ical image type must also be taken into consideration for
selecting data augmentation transformations, as the image
might have particularities that affect image processing meth-
ods. For polyp segmentation, specular lights negatively affect
detection methods as they prominently appear, hiding colour
and textural information [25].

We hypothesize that the application of different transfor-
mations as well as different ranges for the same transfor-
mation might lead to differences in performance. Thus, the
objective of this work is to elucidate the effect of different
image transformations and their ranges used for data aug-
mentation for polyp segmentation. Therefore, this work does
not pursue to obtain the best segmentation results but to anal-
yse how the different transformations and their ranges used
in data augmentation might influence the results of polyp
segmentation in endoscopic images using deep learning.

Methods

Transformations

Different transformations have been considered in this study,
which can be classified into three categories. For each trans-
formation, a suitable range of values has been established
(Table 2). Figure 1 shows an example of the result of applying
each transformation to an image. In the case of image-based
transformations, image andmask are transformed in the same
way.

To model the specular lights, the CVC-EndoSceneStill
database [19] has been used, as it provides a manually
segmented class for specular lights in endoscopic images. Ta
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Table 2 Transformations and
ranges analysed in this study Transformation Parameter definition Ranges Total cases

Image-based
transformations

Width shift % of the image displaced to
the right or to the left

0–90%, with 10% intervals 9 cases

Height shift % of the image displaced up
or down

0–90%, with 10% intervals 9 cases

Rotation ±Degrees that the image is
rotated

0–180°, with up to 45°
intervals

8 cases

Shear ±Shear angle in
counter-clockwise
direction

0–180°, with up to 45°
intervals

8 cases

Zoom out Factor by which the image
size is multiplied

1 − x, x ∈ [0.1, 0.9], with
0.1 intervals

9 cases

Zoom in Factor by which the image
size is multiplied

1 + x, x ∈ [0.1, 1.0], with 0.1
intervals

10 cases

Flip Vertically and horizontally
flip the image

True 2 cases

Elastic deformation Parameters as indicated in
[32]

α values: 250, 500, 1000,
2000, 3000, 4000, 5000,
6000

σ value: fixed at 40

8 cases

Pixel-based transformations

Brightness ±value to be added to the
actual pixel value for all
RGB channels equally

[25, 175], with 25 intervals 7 cases

Brightness Value to be added to the
actual pixel value for each
RGB channel
independently

[25, 175], with 25 intervals 7 cases

Contrast Value to multiply the actual
pixel value for all RGB
channels equally

[1 − x, 1 + xx, x ∈ [0.2, 1.0],
in intervals of 0.2

5 cases

Contrast Value to multiply the actual
pixel value for each RGB
channel independently

[1 − x, 1 + x], x ∈ [0.2, 0.8],
in intervals of 0.2

4 cases

Application-based
transformations

Specular lights Overexposed light ellipses
simulating the effect of
bright points

True 1 case

Blurry images Window size of a mean filter [1, 15], only even integers 7 cases

Specular lights are modelled as ellipses of variable size and
orientation. Size of major and minor axes are obtained from
the specular lights in CVC-EndoSceneStill database, corre-
sponding to a mean major axis of 7.77±10.36 pixels (range
0–259.81) and ameanminor axis of 3.82±4.29 pixels (range
0–137.39). The number of specular lights per image is mod-
elled as a positive left-skewed distribution, with mean 18.20
and standard deviation 16.97, according to the distribution
of CVC-EndoSceneStill. In the image, pixel values are set
to 255 in all channels to create the ellipses according to the
previously described distributions, with random locations on
the image.

Datasets, architecture and training process

Two publicly available datasets have been used in this work.
CVC-EndoSceneStill [19] contains 912 images obtained
from44 video sequences collected from36 patients. It explic-
itly indicates the images belonging to the training, validations
and test sets. In this work, this division has been used. This
way, all experiments use the same images, which allows for a
fair comparison of performance. The training, validation and
test sets comprise 547, 183 and 182 images, respectively. The
second dataset is Kvasir-SEG [20]. It provides 1000 polyp
images. The dataset has been divided into training, valida-

123



1978 International Journal of Computer Assisted Radiology and Surgery (2020) 15:1975–1988

Fig. 1 Original and transformed images
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Table 3 Details for the datasets
used in this study CVC-EndoSceneStill Kvasir-SEG

Void area (%) 23.73±5.57 (27.83–14.62) 15.23±4.82 (28.44–6.16)

Polyp area relative to the valid area (%) 12.50±11.49 (66.15–0.75) 17.36±15.65 (83.66–0.61)

Mean value of brightness channel in HSV
[34]

0.560±0.006 (1.000–0.000) 0.622±0.003 (1.000–0.000)

Histogram flatness measure [35] 0.858±0.121 (0.959–0.000) 0.419±0.443 (0.962–0.000)

Histogram spread [35] 0.252±0.088 (0.520–0.076) 0.218±0.070 (0.432–0.075)

Results are reported as mean± standard deviation. Minimum and maximum values are indicated between
brackets. The void area refers to the black area in the images, while the remaining area is considered as valid
area

tion and test sets (800, 200 and 200 images, respectively),
as this division is not provided by the dataset’s owners. Both
datasets provide binary masks for each polyp image, where
pixels corresponding to the class are labelled with 1, and 0
otherwise. Each dataset is used on its own to replicate the
same experiments for further comparison of results. Table 3
shows some characteristics of the images included in the test
sets of the datasets. Kvasir-SEG presents bigger polyps than
CVC-EndoSceneStill, with images that are brighter and with
more contrast and where the void area is smaller.

Our network architecture (Fig. 2) is based on a U-Net
architecture [36]. The down-sampling path transforms the
input image of size 256×256×3 to a feature map of 16×
16×1024 by applying five convolutional blocks. These
blocks consist of two 3×3 convolutional layers, each one
with a rectified linear unit, and a 2×2 max pool layer,
except for the last block. The up-sampling path includes four
blocks that produce a 256×256×1 probability map. Each
block starts with a 2×2 up-sampling layer followed by a
3×3 convolutional layer, to whose result the corresponding
feature map from the down-sampling path is concatenated.
Zero padding preserves sizes along convolutional layers. We
included batch normalization both in down- and up-sampling
paths.

The network has been implemented using Keras [37] and
Tensorflow [38] as backend. Experiments were run on a
NVIDIA GTX 1080 GPU with 8 GB memory. The net-
work has been pretrained using CVC-VideoClinicDB [21,
22], whose polyp masks are not precise but approximated to
elliptical shapes. The datasets in “Transformations” section
are then used to finetune this pretrained model with fixed
parameters for all experiments:

• Adam optimizer, with default parameters in Keras: ams-
grad � false; beta_1 � 0.9 and beta_2 � 0.999

• Learning rate: starting at 10–4, decreasing to half each
epoch and recovering to 10–4 each 5 epochs

• 15 epochs
• Batch size: 4
• Image input size: 256×256×3
• Dropout: 0.5

Each experiment has been repeated ten times to minimize
the effect of randomly applying transformations. Results are
shown in terms of mean± standard deviation of the mean. A
baseline level has been established by finetuning the model
without applying any data augmentation.

Since semantic segmentation is performed through a
pixel-wise classification, we face an unbalanced dataset
where the negative class (no polyp) is more present than the
positive one (polyp) in each image. Therefore, the selected
loss function combines the binary cross-entropy and the Jac-
card index as in [39]:

Loss � − 1

n

∑

i, j

(
yi, j log ŷi, j +

(
1 + ŷi, j

))
log

(
1 − ŷi, j

) − log J ,

where the first term corresponds to the binary cross-entropy,
being yi,j the ground truth class for pixel (i, j) and ŷi, j the
predicted class; and J is the Jaccard index or Intersection
over Union (IoU) defined as a similarity measure between
sets A and B as:

J � I oU (A, B) � |A ∩ B|
|A ∪ B| � |A ∩ B|

|A| + |B| − |A ∩ B| ,

where |X | � ∑
i xi being xi is the i-th element of set X;∩ is

the intersection of sets and∪ is the union of sets.

Statistical analysis

Results of the ten repetitions have been statistically anal-
ysed to identify differences between distributions, using R
(version 3.6.1) and RStudio (version 1.2.5033). Permutation
test [40] is selected as no assumption on the distributions is
required. In the permutation test, firstly the “observed mean”
is calculated as the difference between means for the base-
line and the group under study. Data are then shuffled and
randomly assigned to each group and the corresponding “cal-
culated mean” is obtained as the difference between means
of the two groups. After 10000 repetitions, the p value is
determined as the percentage of calculated means which are
greater than the observedmean. Significance is evaluated at p
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Fig. 2 Network architecture. Figure based on [36]

value<0.05, p value<0.01 and p value<0.001. This analysis
is performed for each dataset independently.

Results

For both datasets, Table 4 shows the results for the baseline
and all transformations and ranges, together with the results
of the permutation test to establish statistically significant
differences between baseline and transformations.

Figures 3, 4 and 5 show the rangewith the highestmean for
each transformation for the CVC-EndosceneStill andKvasir-
SEG. Figures for all transformations and ranges can be found
in the Supplementary material 1 for CVC-EndoSceneStill
dataset and Supplementary material 2 for Kvasir-SEG. All
figures show boxplots combined with violin plots, represent-
ing the distribution of the results. In these violin plots, the
ideal outcome is that the distribution presents a peak at 1.
Therefore, the more the distribution looks alike this peak,
the better the performance is.

Image-based transformations have different behaviours
depending on the dataset, transformation and range. In first
place, width and height shift transformations are dependent
on the range to either improve or hinder performance of the
network in both cases. Only ranges over 40% produce a posi-
tive effect, up to 6.59 points, although statistical significance
is not achieved in CVC-EndoSceneStill. If Kvasir-SEG is

considered, these transformations improve the baseline if
small ranges are used, but not significantly. Secondly, rota-
tion and shear results are in all cases under the baseline
threshold, reaching 4.43 points decrement in the performance
for CVC-EndoSceneStill. On the contrary, these transforms
improve performance on Kvasir-SEG in up to 3.41 points,
being the greatest improvement in this dataset. Zooming the
image has different results depending on whether it is zoom
in or out in CVC-EndoSceneStill. Zooming in decreases
the performance more than 3.5 points, while zooming out
can improve results up to almost 5 points, but significance
is not achieved. On the contrary, some ranges from both
transforms improve performance in Kvasir-SEG although
not significantly. In relation to flipping the image, when
CVC-EndoSceneStill is considered, horizontally flipping the
image hinders the performance but if flipping is vertical,
then performance is increased. In both cases, changes are not
significant. On the contrary, both transforms improve perfor-
mance in Kvasir-SEG, also without statistical significance.
Lastly, elastic deformation of the image leads to deterioration
of performance of up to 4.45 points in CVC-EndoSceneStill,
but improve performance in 1.72 points in Kvasir-SEG.

The second group of transformations modified the pixel-
value. On one hand, changes in brightness in CVC-
EndoSceneStill, regardless ofmodifying all channels equally
or each channel independently, yield to a better performance
of the model of more than 12 points, obtaining significant
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Table 4 Mean and standard deviation of the mean for transformations
and ranges analysed in both datasets

Transformation Range IoU on test set
CVC-
EndoSceneStill

IoU on test set
Kvasir-SEG

None N/A 59.10±9.35 66.45±8.08

Image-based
transforma-
tions

Width Shift ±10% 60.78±8.99 67.09±7.96

±20% 59.45±9.80 67.34±8.06

±30% 59.31±9.08 66.28±8.22

±40% 62.70±8.57 65.94±8.22

±50% 62.80±8.84 66.23±8.09

±60% 63.02±8.78 66.90±7.86

±70% 63.03±8.67 66.82±7.87

±80% 61.34±8.62 65.41±7.92

±90% 65.68±8.12* 65.82±7.72

Height shift ±10% 58.82±8.97 67.00±7.98

±20% 58.94±8.80 67.12±8.08

±30% 61.81±8.74 67.26±7.87

±40% 62.03±8.57 67.23±7.80

±50% 61.78±8.42 67.17±7.89

±60% 60.21±8.64 66.97±7.94

±70% 61.55±8.46 66.69±7.98

±80% 60.42±8.19 66.26±7.94

±90% 61.52±8.27 67.06±7.58

Rotation ±3° 57.74±9.37 66.41±8.09

±6° 59.97±9.06 65.61±8.16

±10° 55.40±9.75 65.74±8.15

±15° 55.50±9.65 67.03±8.10

±45° 54.66±9.62 68.38±8.00

±90° 57.62±9.37 69.86±7.79

±135° 58.60±9.49 68.22±8.07

±180° 58.19±9.35 68.78±8.10

Shear ±3° 59.62±9.05 66.24±8.11

±6° 61.66±8.98 67.00±8.02

±10° 59.42±9.00 67.32±7.90

±15° 57.91±9.10 67.11±7.97

±45° 59.07±9.80 68.88±7.74

±90° 56.38±9.3 67.84±7.85

±135° 55.22±9.37 67.53±7.91

±180° 57.09±8.89 67.67±7.90

Zoom in 0.9, 1 60.19±8.54 66.71±8.08

0.8, 1 59.98±8.53 67.45±8.01

0.7, 1 57.01±9.46 67.56±8.24

0.6, 1 55.57±10.07 68.54±8.14

0.5, 1 57.37±10.30 68.80±8.25

0.4, 1 58.58±10.18 67.26±8.29

Table 4 continued

Transformation Range IoU on test set
CVC-
EndoSceneStill

IoU on test set
Kvasir-SEG

0.3, 1 58.41±10.40 66.54±8.30

0.2, 1 57.71±10.34 65.54±8.37

0.1, 1 57.56±10.06 64.05±8.51

Zoom out 1, 1.1 58.70±9.12 65.48±8.17

1, 1.2 61.64±8.26 66.25±8.09

1, 1.3 58.99±8.50 65.88±8.03

1, 1.4 62.21±8.04 66.13±7.98

1, 1.5 61.83±8.39 66.56±7.86

1, 1.6 64.03±8.26 67.38±7.80

1, 1.7 60.67±7.90 67.38±7.83

1, 1.8 62.01±8.20 67.97±7.63

1, 1.9 62.73±8.00 67.91±7.57

1, 2.0 64.00±8.13 67.97±7.64

Horizontal flip True 55.89±9.22 67.57±8.11

Vertical flip True 59.54±8.90 67.23±8.08

Elastic
deformation

250, 40 60.26±8.79 65.92±8.19

500, 40 59.17±9.31 65.86±8.18

1000, 40 57.93±9.12 66.97±8.00

2000, 40 57.83±8.86 67.88±8.02

3000, 40 55.89±9.14 68.17±8.00

4000, 40 54.65±9.12 66.96±8.20

5000, 40 56.55±9.13 65.17±8.36

6000, 40 55.90±9.37 65.02±8.28

Pixel-based
transforma-
tions

Brightness, all
channels
equally

±25 59.89±84 66.87±7.66

±50 63.27±8.41 66.22±7.74

±75 66.79±8.28** 65.17±7.76

±100 67.99±8.23** 64.55±7.86

±125 68.98±7.90*** 63.95±7.87

±150 70.07±7.75*** 67.25±7.86

±175 68.32±7.74** 67.70±7.88

Brightness,
each channel
independently

±25 71.21±7.69*** 67.85±7.84

±50 70.90±7.81*** 68.28±7.78

±75 69.26±8.19*** 68.91±7.60

±100 69.07±8.26*** 69.21±7.51

±125 67.86±8.27** 69.36±7.46

±150 67.86±7.77** 67.07±8.05

±175 66.15±8.16* 68.39±7.65
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Table 4 continued

Transformation Range IoU on test set
CVC-
EndoSceneStill

IoU on test set
Kvasir-SEG

Contrast, all
channels
equally

0.8, 1.2 58.11±9.35 66.89±7.98

0.6, 1.4 61.55±8.76 67.31±7.85

0.4, 1.6 66.17±8.37* 67.92±7.56

0.2, 1.8 68.38±8.06** 68.16±7.63

0.0, 2.0 60.54±9.43 66.29±8.14

Contrast, each
channel
independently

0.8, 1.2 71.80±7.61*** 67.68±7.95

0.6, 1.4 71.70±7.62*** 66.58±7.79

0.4, 1.6 72.34±7.81*** 66.45±7.63

0.2, 1.8 70.54±7.97*** 66.83±7.46

Application-
based
transforma-
tions

Specular lights True 59.64±9.06 67.52±7.59

Blurry image 3 60.32±8.67 66.14±8.01

5 58.94±9.37 65.54±8.01

7 53.61±9.33 64.86±8.05

9 50.39±9.84** 66.81±7.93

11 51.24±10.02* 64.78±8.12

13 52.21±9.75* 65.85±8.13

15 48.41±10.32** 64.91±8.13

Best value for each transformation is indicated in bold
Statistical differences between baseline and the particular case are iden-
tified with permutation test
***p value<0.001; **p value<0.01; *p value<0.05

differences in all cases but two. Similarly, modifying the con-
trast reached an increment of 13.25 points with respect to the
baseline, being this the greatest improvement in all trans-
formations and ranges, and obtaining statistically significant
differences for all ranges if channels are modified indepen-
dently and two out of four if they are equally modified. This
behaviour is not so strong in the Kvasir-SEG, while chang-
ing brightness and contrast do improve performance in some
ranges, significance is not achieved.

Lastly, we analysed transformations based on specific
problems of colonoscopy images: adding specular lights and
blurring frames. In the first case, including specular lights
increased performance in half point and one point regard-
ing the baseline for each dataset, although significance is
not achieved in any dataset. On the second case, blurring
the image resulted on a significant decrement of up to 10.69

points when compared to the baseline in the case of CVC-
EndoScenestill, but only 1.59 points and no significance in
Kvasir-SEG.

Based on these results, we have also analysed combina-
tions of transformation for the different datasets. Results
are included in Table 5 and Fig. 6. In all cases for CVC-
EndoSceneStill, the mean of these combinations is similar to
the transformationwith highermean, but the distributions are
improved as the 25quartile is increased and the standard devi-
ation is minimized. On the other hand, the combination of all
image-based transformations hinders the performance, prov-
ing that more data augmentation is not always better [24], as
only the two image-based transformations with higher mean
obtain the best results.

Discussion and conclusion

Data augmentation is a useful tool to increase the number of
training samples when the available dataset is scarce, a sit-
uation that is well-known when using medical images. The
effect of different transformations usually applied in data
augmentation for polyp segmentation has yet to be rigor-
ously analysed. In this work, we have found that although
image-based transformations are usually applied in the state
of the art, pixel-based transformations produce better results
for CVC-EndoSceneStill. These transformations modify the
particular value of the pixel, so the model is invariant to
colour information, which improves its generalization capac-
ity. On the other hand,Kvasir-SEGbenefits to a greater extent
from the image-based transformations.

In the light of the results, four new groups of transforma-
tions can be established:

1. Transformations that always improve the performance
in CVC-EndoScenStill and Kvasir-SEG: vertical flip,
changes on brightness for each channel independently,
changes on contrast (all channels equally and each chan-
nel independently) and inclusion of specular lights. All
these transformations improve the performance over
the baseline, although statistical significance is mainly
found in changes of brightness and contrast in CVC-
EndoSceneStill.

2. Transformations that always hinder the performance in
CVC-EndoScenStill and Kvasir-SEG: elastic deforma-
tion and blurry frames (mean filter). While blurry frames
could be expected to minimize the performance as they
reduce the details in the image, elastic deformationmight
have been expected to improve performance. Although
blurry frames are a common situation during a live
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Fig. 3 Results for image-based transformations. Ranges with highest
mean are shown for each transformation and dataset. Baselines of each
dataset are included. Their median and quartiles are prolongated on the
background for reference. For the CVC-EndoSceneStill:±90% width

shift;±40% height shift;±6° rotation,±45° shear; 0.9 zoom in; 0.4
zoom out; (250,40) elastic deformation. For the Kvasir-SEG:±20%
width shift;±30% height shift;±90° rotation,±45° shear; 0.5 zoom
in; 0.2 zoom out; (3000,40) elastic deformation

Fig. 4 Results for image-based transformations. Ranges with highest
mean are shown for each transformation and dataset. Baselines of each
dataset are included. Their median and quartiles are prolongated on
the background for reference. For the CVC-EndoSceneStill:±150 for
brightness in all channels equally;±25 for brightness in each chan-

nel independently; (0.2–1.8) for contrast in all channels equally; and
(0.4–1.6) for brightness in each channel independently. For the Kvasir-
SEG:±175 for brightness in all channels equally;±125 for brightness
in each channel independently; (0.2–1.8) for contrast in all channels
equally; and (0.8–1.2) for brightness in each channel independently
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Fig. 5 Results for
problem-based transformations.
Ranges with highest mean are
shown for each transformation
and dataset. Baselines of each
dataset are included. Their
median and quartiles are
prolongated on the background
for reference. For the
CVC-EndoSceneStill: 3 for
blurry images. For the
Kvasir-SEG: 9 for blurry images

colonoscopy, the inclusion of mean filter as transforma-
tion for data augmentation does not improve the final
performance of the model. This is probably explained
by the use of databases, where frames are previously
selected and not blurry frames are included.

3. Transformations whose effect on performance depends
on the selected range in CVC-EndoScenStill and Kvasir-
SEG: height and width shifts, as well as zoom in and out.
In the first two cases, ranges over 40% do contribute
to improve performance, while under the threshold
either the transformation does not add improvement or
decrement the performance. On the other hand, zoom
behaviour also depends on the range. Smaller ranges
of zoom in and larger ranges of zoom out improve the
performance over the baseline, although not always sig-
nificantly. One reason for the performance of the zoom
in might be grounded on the low quality of the original
images, resulting in blurry zoomed images. Therefore,
when using them for data augmentation, it is recom-
mended to carefully check whether the range is suitable
or not.

4. Transformations whose effect on performance depends
on the dataset, CVC-EndoScenStill or Kvasir-SEG: This
relates mainly to rotation, shear and changes on bright-

ness for all channels equally, and, to a lesser extent,
horizontal flip. This might be due to differences in polyp
size, void area, brightness and contrast in the images of
the two datasets.

In summary, CVC-EndoSceneStill is more prone to ben-
efits of data augmentation if pixel-based transformations are
used, as the histogram is flatter, and images are darker than
in Kvasir-SEG. On the contrary, image-based transforma-
tions appear to be more suitable in Kvasir-SEG, where the
void area is smaller, and the polyp occupy a greater area
of the valid image. Lastly, problem-based transformations
behave similarly in both datasets, as they are rooted on the
endoscopic image acquisition. It is also important to mention
that the baseline of Kvasir-Seg showed already a better per-
formance than CVC-EndosSceneStill, giving less room for
improvement to data augmentation.

There are different approaches to overcome the scarce
labelled datasets in medical imaging. On the one side, and in
order to increase the size of the training set, a first approach
would be to increase the number of annotated samples by
experts. In this regard, efforts are been focused on develop-
ing tools which facilitates the manual annotation of images,
such as GTCreatorTool [22], which is a flexible annotation
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Table 5 Mean and standard deviation of combinations analysed

CVC-EndoSceneStill Kvasir-SEG

Transformations IoU on test set Transformations IoU on test set

Baseline None 59.10±9.35 None 66.45±8.08

Transformation and range with
highest mean for each one of
the three types of transforms

Width at±90% 72.30±7.26*** 90° rotation 65.53±7.98

Change of contrast: each channel
independently, with range [0.4,
1.6]

Change of brightness: each
channel independently, with
range±125

Inclusion of specular lights Inclusion of specular lights

Range with highest mean of the
image-based transformations,
provided that they improve the
baseline result

Width at±90% 65.19±7.81* Width at±20% 57.97±9.21**

Height at±40% Height at±30%

Zoom with range [1, 1.6] 90° rotation

Vertical flip 45° shear

Zoom with range [0.5, 1]

Vertical flip

Horizontal flip

Elastic deformation, with values
(3000,40)

The two transformations with
higher mean

Change of contrast: each channel
independently, with range [0.4,
1.6]

70.50±7.69*** 90° rotation 69.24±7.85

Change of brightness: each
channel independently, with
range±25

45° shear

Statistical differences between baseline and combination are identified with permutation test
***p value<0.001; **p value<0.01; *p value<0.05

tool which minimizes annotation time and allows for sharing
annotations amongexperts.Beyond the transformations anal-
ysed in this paper, other alternatives would be to add polyps
in nonpolypoid samples [41] or more advances approaches
such as emulating data augmentation during learning by the
image generation through a hetero-encoder [42]. On the other
hand, it would be possible to explore alternatives to super-
vised training, which already seems to provide good results
with self-supervised learning [43] or similarity-based active
Learning [44].

There are limitations in this study that must be acknowl-
edged. Ideally, it would be necessary to independently
analyse all combinations. Since that would mean almost 6
million experiments, alternatives such as AutoAugment [7]
or Smart Augmentation [10]would bemore suitable for iden-
tification of the best combination of transformations.Another
possibility could be the application of Bayesian methods
[45] or coordinate ascent optimization [46, 47] taking the
optimal setting of each transform to identify the best combi-
nation. Future work should place emphasis on applying any
of these alternatives to the particular field of polyp segmenta-
tion. Another limitation is the fact that the experiments have

not pursued the bestmodel, so training has been stopped at 15
epochs. It might be possible that with a more extensive train-
ing some of the transformations could have showed better
results. Nevertheless, 15 epochs is enough training to estab-
lish the tendency of the model performance when finetuning
it with a small database.

Further research is also possible in this line ofwork. Future
works might focus on the effect of data augmentation on
other segmentation approaches, such as the fuzzy C-mean
clustering, which has shown good preliminary results on the
Kvasir-SEG database [20].

In conclusion, this study shows that different transforma-
tions and ranges lead to differences in model performance.
Despite not being so frequent as the other types, pixel-based
transformations show a great potential to improve polyp seg-
mentation. Augmenting colour variability when training the
model allows for a better generalization of the model result-
ing in better prediction. On the other hand, image-based
transformations and their ranges should be carefully selected
to not hinder the model performance and obtain the expected
benefits of data augmentation.
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Fig. 6 Results for combination of transformations. Baselines of each
dataset are included. Their median and quartiles are prolongated on
the background for reference. Combination of the transformation and
rangewith highestmean for each one of the three types of transforms for
each dataset. For CVC-EndoSceneStill: width at±90%, change of con-
trast: each channel independently, with range [0.4, 1.6], and inclusion
of specular lights. For Kvasir-SEG: 90° rotation, change of brightness:
each channel independently,with range±125, and inclusion of specular
lights. Combination of the range with highest mean of the image-

based transformations, provided that they improve the baseline result.
For CVC-EndoSceneStill: width at±90%, height at±40%, zoom with
range [1, 1.6], and vertical flip. For Kvasir-SEG: width at±20%, height
at±30%, 90° rotation, 45° shear, zoom with range [0.5, 1], vertical
flip, horizontal flip, and elastic deformation, with values (3000,40).
Combination of the two transformations with higher mean. For CVC-
EndoSceneStill: change of contrast: each channel independently, with
range [0.4, 1.6] and change of brightness: each channel independently,
with range±25. For Kvasir-SEG: 90° rotation and 45° shear
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