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Abstract  
Context: Pediatric traumatic spinal cord injury (SCI) is an uncommon presentation in the emergency 
department. Severe injuries are associated with devastating outcomes and complications, resulting in high 
costs to both the society and the economic system.  
Evidence acquisition: The data on pediatric traumatic spinal cord injuries has been narratively reviewed.   
Results: Pediatric SCI is a life-threatening emergency leading to serious outcomes and high mortality in 
children if not managed promptly. Pediatric SCI can impose many challenges to neurosurgeons and caregivers 
because of the lack of large studies with high evidence level and specific guidelines in terms of diagnosis, initial 
management and of in-hospital treatment options. Several novel potential treatment options for SCI have been 
developed and are currently under investigation. However, research studies into this field have been limited 
by the ethical and methodological challenges.   
Conclusion: Future research is needed to investigate the safety and efficacy of the recent uprising 
neurodegenerative techniques in SCI population. Owing to the current limitations, there is a need to develop 
novel trial methodologies that can overcome the current methodological and ethical limitations. 
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CONTEXT  
Pediatric traumatic spinal cord injury (SCI) is an 
uncommon presentation in the emergency 
department. The specific anatomic features of the 
pediatric spine and vertebral column are 
associated with difficulties regarding the 
diagnostic steps and decision-making (1). Besides 
that, severe injuries are associated with 
devastating outcomes and complications, resulting 
in high costs to both the society and the economic 
system (2-4). In general, pediatric SCI can impose 
many challenges to neurosurgeons and caregivers 
because of the lack of large studies with high 
evidence level and specific guidelines in terms of 
diagnosis, initial management and of in-hospital 
treatment options.  
Rehabilitation from SCI is usually incomplete, 
especially after severe trauma, but new tools are 
under investigation to improve the outcomes after 
SCI (5). Some of these tools are being generalized 
into pediatric populations (6). This review aims to 
summarize the current practice and evidence 

regarding pediatric-onset spinal trauma and to give 
more attention to future therapies using stem cell 
and bioengineering. 

EVIDENCE ACQUISITION 
We searched Medline through PubMed for relevant 
literature about the pediatric traumatic spinal cord 
injuries using the following search query “spinal 
cord injury” AND “children [MESH]”. An expert 
review author from Zagazig University Hospitals, 
Zagazig University, Egypt, (AN) was consulted 
about relevant studies for inclusion. The data on 
traumatic spinal cord injury have been narratively 
reviewed. 

RESULTS 

Epidemiology 
Pediatric SCI is a life-threatening emergency 
leading to serious outcomes and high mortality in 
children if not managed promptly, in general, the 
incidence rate of SCI has increased gradually 
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worldwide in the last years and varied from 13.0 
per million to 163.0 per million people depending 
on the expansion of human activities among 
different regions in the world (7, 8). According to 
the WHO, there are approximately 250.000 to 
500.000 people suffering from SCI annually, and 
about 78% of new cases are male. Age distribution 
of cases follows a bimodal fashion with young 
adults occupying the first peak and adults more 
than 60 years occupying the second peak (5, 9). 
There is a variation in the injury prevalence 
between developed and developing countries (10-
12). 
In pediatric patients, Traumatic SCI is relatively 
rare, representing only about 2% to 5% of all spine 
injuries (13-17). In young people, More than 80% 
of injuries occur in the cervical spine, while the 
percentage of cervical regions in adults is only 
around 30% to 40% (18). 
It was also estimated that thoracic and lumbar 
spine injuries represent 6% to 9% of all pediatric 
spine trauma (19). After the age of 14, it was found 
that cervical injuries incidence decreased and 
resembled adult patient pattern (20). 
These epidemiologic properties may be explained 
by the interference of many factors such as large 
head size, soft elastic tissue, and supporting 
structures, and horizontal facet alignment (21, 22). 
Moreover, mortality rate in cervical spine-injured 
pediatric patients was reported to range from 16% 
to 18 %, with higher rate in upper cervical injured 
patients (23, 24). 

Embryology and Anatomy 
In embryogenesis of the central nervous system 
(CNS), Ectoderm is the most important initiating 
player forming the neural eCTCTctoderm, which 
gives rise to the neural tube and neural crest, and 
they subsequently give rise to the brain, spinal 
cord, and peripheral nerves. 
The spinal cord is formed from the neural plate 
which is constituted by three layers (25): The 
Ventricular layer that lines the central canal, the 
Mantle layer that contains neuronal bodies and 
forms the gray matter and the marginal layer that 
contains axons, giving rise to the white matter. The 
spinal cord is the part of the central nervous tissue 
from which the different spinal nerves arise. It is 
protected by the vertebral column which has the 
form of a curved rod containing 33 vertebrae and 
23 intervertebral discs. It is divided into five parts: 
cervical, thoracic, lumbar, sacral, and coccygeal 
regions. Each vertebra is composed of an anterior 
and a posterior part. The vertebral body involves 
the anterior part and is the weight-bearing 

structure of the vertebral column, and the neural 
arch (pedicle and posterior elements) consists in 
the posterior part. 
In imaging, understanding the various 
biomechanical properties and the developmental 
anatomy of the pediatric cervical spine plays an 
important role in interpretation. The pediatric 
cervical spine shows several particularities such as 
epiphyseal variations, unique vertebral 
architecture, and incomplete ossification of 
synchondroses and apophyses. At birth, the neural 
Arches of the Atlas (C1) are ossified, but the 
anterior arch is not (only 20%of cases). By the age 
of 3 to 4, the neural arches fuse posteriorly, and 
they fuse with the anterior arch by the age of 7 (26, 
27). 
In terms of the axis development (C2), the fusion of 
secondary ossification center (which appears at the 
apex of the dens by 6 to 8 years of age) with the 
dens fails and results in ossiculum terminal that 
may be accompanied with atlantoaxial instability in 
pediatric patients (28-31). Furthermore, the third 
to seventh cervical vertebrae share similar 
ossification features with a unique ossification 
center for the vertebral body and an ossification 
center for each neural arch, and they have five 
secondary ossification centers that may remain 
open till the adulthood (32). The ossification of 
partially ossified ring apophyses is completed 
belatedly, and they should not be confused with 
fractures (30, 33). 
A recent review also showed the knowledge of 
thoracolumbar anatomy and biomechanics is 
essential as it plays a significant role for the 
prevention of damage of spine in daily activities 
that are correlated to low back pain and tissue 
degeneration (34). 

Pathophysiology and Mechanisms of Injury 
The pathophysiology of acute SCI occurs in two 
major stages: immediate mechanical injury 
resulting in contusions of the spinal cord by 
permanent or temporary compression followed by 
secondary phase that may result in dysfunction and 
neural death after hours to weeks following 
primary injury due to destructive and biochemical 
changes in the neuronal and glial cells (35-40). In 
general, there are three main mechanisms that can 
engender pediatric SCI.  
 Acceleration / Deceleration 
Acceleration/deceleration usually result in 
occipito-atlantal and atlantoaxial injuries. These 
joints are protected against vertical distraction by 
the strong fibrous tectorial membrane, which is a 
strong fibrous ligament that fixes the axis with the 
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occiput, and so any rupture in this ligament 
requires surgical fusion (41). In young children, 
occipito-atlantal and atlantoaxial dislocation can 
occur during high-speed collisions, auto versus 
pedestrian and may be related to airbag injuries 
(42).  And even if there are any partial or absent 
neurological deficits, the lesions are worsened by 
distraction through cervical collar placement and 
traction (43). Sagittal CT images and MRI can be 
helpful to detect such lesions in pediatric patients 
as subluxation may be radiographically occult (44). 
Odontoid injuries can also occur after high-speed 
collisions or fall in children less than seven years 
and usually have a fatal outcome (45). They result 
from avulsion of the dens of the body of the axis, 
and this type of injury can be typically detected by 
lateral radiographs and reconstructed CT images 
and needs prompt immobilization with or without 
a halo (1). 
 In pediatric patients, more than eight years, 
injuries in the sub-axial ligaments that are usually 
caused motor-vehicle collisions are more common. 
They can be typically diagnosed with CT and MRI 
and usually require only conservative management 
with immobilization (46, 47). 
 Rotational Injury  
Falls or collisions can give rise to Atlantoaxial 
rotatory fixation (AARF) leading to occipito-atlanto 
dislocation regarding the axis and also functional 
fixation (44). 
There are four types of fixations. In Type I, the atlas 
is rotated on the odontoid with no anterior 
displacement. Type II, the atlas is rotated on one 
lateral articular process resulting in minimal 
anterior displacement. Type II occurs by rotation of 
the atlas on both lateral articular processes with an 
anterior displacement more than 5 mm. Finally, 
type IV is characterized by rotation and posterior 
displacement of the atlas (48). CT and MRI are used 
for diagnosis of these for types of injury and type I 
improves with a soft collar with or without 
traction, whereas the other three types require 
surgical stabilization (49). 
 Flexion/Extension 
Lateral flexion can result in cervical cord 
neurapraxia, which is a common type of injury is in 
contact sports. It is also considered as a mild form 
of SCI without radiographic abnormality 
(SCIWORA) and may be accompanied by transitory 
sensory and motor symptoms in one or all 
extremities, so it usually requires immobilization 
for two weeks as a sufficient treatment (50, 51). 

Imaging 
Plain radiographs are considered the tool of choice 

in screening for pediatric patients with normal 
neurological examination while decreasing the 
dose of radiation and subsequently, the risk of 
malignancy decrease.  
The sensitivity of the lateral film is 73% in young 
children and increases to reach 93% in children 
more than eight years old (52). Therefore, the 
lateral view has the capacity of detecting around 
80% of injuries (53). The anteroposterior (AP) 
view can also be used but has a little role as well as 
the flexion/extension films. 
In children younger than nine years, the odontoid 
view also has a little role as in this age dens 
fractures can be detected by the lateral film (54). A 
retrospective study published in 2017 has reported 
that CT is superior to X-rays in detecting cervical 
spine injuries (CSI) in both clinically significant and 
insignificant injuries independent of the age of 
patient and injury location (55). However, the use 
of CT is associated with increasing doses of ionizing 
radiation and the subsequent risk of malignancy. 
MRI of cervical spine continues to be the best 
imaging modality for the diagnosis of soft tissue 
injuries as ligamentous and cord injuries when 
compared with CT (56-58). 
Applications of the Canadian C-Spine rule and 
nexus low criteria in emergency condition have 
widely spread, and this may be due to inadequate 
cervical spine radiography which reinforces the 
debate about its utility (59). The last meta-analysis 
done to evaluate the accuracy of Triage tools for 
detecting CSI in pediatric patients concluded the 
lack of enough evidence to determine the accuracy 
of Canadian C-Spine rule or nexus criteria. Only 
three cohort studies were eligible for analysis, and 
so additional studies with large sample size are 
required to determine their accuracy (60). 

SCI without radiographic abnormality 
(SCIWORA) 
SCIWORA in children was defined as the presence 
of objective signs of acute traumatic myopathy in 
the absence of spinal column injury on plain 
radiographs and CT scan (61, 62). Children usually 
develop SCIWORA from falls and pedestrian versus 
motor vehicle accidents. It is also important to note 
that most of the patients may have a significant 
injury in the spinal cord in spite of normal 
neuroimaging and normal physical examination, 
and they present with blunt trauma to the spinal 
cord with the previous history of transient 
neurologic deficits or presented by transient 
numbness, paresthesias, and paralysis that has 
resolved at the time of initial evaluation, Therefore, 
clinicians must retain a high suspicion for that and 
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a radiographic follow up is recommended for all 
patients with SCIWORA . In this regard, a case 
report presented six years old child with delayed 
clinical presentation, unusual neuroimaging, and a 
moderately uneventful clinical course that was 
diagnosed as SCIWORA (63). 
However, with the advance of MRI, the diagnosis of 
SCIWORA becomes less common. It was found that 
in cases of clinical-radiologic mismatch or 
SCIWORA, it is highly recommended to do an MRI 
of the spine (64). MRI also allows subdivision of 
SCIWORA cases into detectable intramedullary or 
extramedullary pathology and those without 
neuroimaging abnormalities (SCIWONA), but yet 
there is no implicit prognostic value of MRI findings 
to guide treatment (65, 66). 
A meta-analysis in 2015 showed that the extent of 
initial neurologic status has a significant 
association with specific MRI patterns and 
subsequent outcome. It also recommended an MRI 
for all pediatric patients experiencing SCI without 
radiographic abnormality (67). 

Management 
Steps in the management of patients with acute 
traumatic SCI are divided into pre-hospital and in-
hospital measurements (68). 
 Pre-hospital Management of Pediatric spinal 

cord injuries 
For pediatric patients, the evidence needed to 
make recommendations is insufficient. 
Management of the injured pediatrics needs 
certain skills and may differ from adults’ treatment 
(69). 

 Proper immobilization 
Immobilization is one of the most important pre-
hospital procedures. It helps prevent more spinal 
cord injuries and neurological deficit. Traditionally, 
cervical injuries immobilization is done as in adults 
by placing the patient over a spinal board and 
applying cervical collar with bags on both sides of 
the head (70). However, children may be in severe 
pain, so, application of collar will be dangerous and 
difficult. The suitable approach for such cases is 
pragmatic, allowing the child to find his position 
then providing manual stabilization. 

 Pediatric respiration and airway 
Airway control is more important in pediatrics 
than adults as the major cause of cardiac arrest in 
them is due to hypoxia secondary to respiratory 
failure compared to cardiac troubles in adults (71). 
For this reason, early management of respiration is 
recommended, but unfortunately, pre-hospital 
providers usually have limited experience in 
managing the airway in pediatrics. 

 Pediatric metabolism 
The pediatric metabolism differs from that of the 
adults, and O2 consumption is higher due to the 
increased surface area to size ratio in children. 
After SCI, hypothermia is frequently seen. It may 
lead to higher O2 consumption resulting in lactic 
acidosis and affecting the coagulation system. 
Avoiding such complications and maintaining 
euthermia are essential for life-support (69). 

 Pediatric cardiovascular system 
Controlling blood pressure and maintenance of 
blood volume by the administration of IV fluid are 
lifesaving steps. The first fluid bolus, as reported in 
Pediatric Advanced Life Support guidelines, 
recommended being up to 60 mL/kg of isotonic 
crystalloid for initial resuscitation (72). The fluid 
should be warmed to prevent hypothermia. 
Crystalloids should be administered carefully; 
excessive fluids may enhance bleeding and 
coagulopathy. 
 Hospital Resuscitation 

 Initial hospital evaluation 
After arrival and while maintaining Advanced 
Trauma Life Support guidelines and spinal 
precautions, the patient state should be evaluated 
by emergency, surgery, and neurointensive 
departments. After ABC stability, the team 
proceeds with a rapid neurologic evaluation. Then 
attention is given to the spinal cord. The patient 
entire spinal cord is assessed. At this time, the 
backboard is removed because of problems 
associated with prolonged use. There are several 
tools have been developed to provide a rapid and 
accurate assessment of the severity of SCI (73). The 
American Spinal Injury Association (ASIA) scoring 
system and the ASIA Impairment Scale (AIS) are 
the most valid and the most widely used (74). The 
ASIA score form aims at assessing the level of injury 
and its severity. Certain confounding factors may 
influence the accuracy of the ASIA scale, such as 
age, level of consciousness, and other injuries (75). 

 Initial radiographic analysis 
After resuscitation of acute SCI patients, further 
diagnosis and radiographic evaluation of the spine 
is needed. Patients should be placed on the spinal 
board and immobilized until the establishment of 
the radiographic evaluation; then the patient must 
be taken off the board to prevent ulcers. This 
evaluation provides essential information and is 
needed for decision-making regarding the 
treatment options.  

 Respiratory management 
Respiratory problems are one of the most frequent 
causes of morbidity and mortality in children with 
SCI trauma (76). Pediatrics have smaller lungs and 
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higher metabolism than the adults so pediatrics 
can tolerate apnea for 2-3 minutes then hypoxia 
occurs, but the adults can tolerate apnea for a 
longer duration up to 5 minutes before developing 
of hypoxia (77). Rapid airway management is a key 
element in managing patients, and it follows the 
next steps 

 Positioning 
The injured child is positioned at the sniffing 
position that can be established by a simple 
extension of the neck, rolling the shoulder, adding 
headrest, glabella and chin are horizontally aligned. 
Also, the mouth and oropharynx should be cleared 
from any debris or secretions.  

 Ventilation and Breathing 
If the spontaneous ventilation by the positioning is 
not adequate, hence the child needs assistance. Bag 
valve mask (BVM) can be a successful procedure. 
It’s a hand device used for manual resuscitation by 
providing positive pressure, which helps in the 
breathing. If there is airway obstruction, BMV will 
be un-useful till re-opening of the airway either by 
jaw thrust or chin lift. 

 Laryngoscope Blades 
There are two types of blades, straight and curved. 
Straight blades insertion into the child's mouth is 
easier, but the thinness of this blade makes the 
manipulation of a large tongue difficult. The curved 
blade is large and bulky so, it retracts the tongue 
easily and may be useful in certain pediatric 
populations when the tongue is larger or bulkier 
than usual. 

 Endotracheal Intubation 
In endotracheal intubation, a flexible plastic tube is 
placed in the superior airways through the mouth 
or nose and usually used in respiratory failure. 
Rapid sequence intubation (RSI) is the use of some 
steps including sedatives and neuromuscular 
blocking agents to facilitate successful intubation 
and decrease risks of aspiration; Some studies 
concluded that intubation without some steps of 
RSI has a lower success rate and higher 
complication in children and adults (78, 79). 

 Cardiovascular system management 
SCI patients can suffer from different degrees of 
shock. Differentiating between neurogenic shock 
(NS) from hemorrhagic shock is a crucial step for 
adapted management. The incidence of NS depends 
on the severity of the injury (80). It results in 
hypotension without tachycardia, and patients 
respond to intravenous fluid and vasoactive 
support. Pharmacological support, in this case, is 
based on α agonists to treat hypotension and β 
agonists for managing bradycardia. Some patients 
may have persistent bradycardia due to the loss of 

sympathetic. Impairment of supra-spinal 
sympathetic reflex may also occur (81, 82). 
Postural hypotension may persist after 
hemodynamic instability resolves. These patients 
are characterized by reduced catecholamine level 
(83). Spinal cord recovery can improve postural 
hypotension, and the adaptation of the renin-
aldosterone system can solve the problem (84). On 
the other hand, hemorrhagic shock requires 
primary control of the source of hemorrhage and 
aggressive fluid administration, including colloid 
and crystalloid. 
SCI and immobilization may increase the risk of 
venous thromboembolism (VTE) with a higher 
incidence in adults than in young people. There is 
no evidence about VTE prophylaxis and the use of 
mechanical or pharmacological prophylaxis 
depending on the clinical presentation of each 
patient (85).  

 Autonomic nervous system management 
SCI patients suffer from autonomic dysfunction due 
to unopposed afferent nerve stimulation distal to 
the injury level leading to hypertension and 
headache (84). Autonomic dysfunction can occur 
repetitively and may be asymptomatic. Some SCI 
patients may experience adrenal insufficiency and 
must be supplied with hydrocortisone. 
 Current pharmacological treatments for SCI 
Some medications are used in SCI in adult patients, 
but there is no clear evidence on the use of these 
drugs in pediatrics so, further trials targeting this 
population are necessary. A list of the commonly 
used drugs in the management of SCI is shown in 
table 1 (86-102).  
 Rehabilitation 
Rehabilitation after pediatric SCI is becoming a 
major step in patients’ care. It requires the 
collaboration of professionals from many 
disciplines. Its main goal is to decrease the 
dependency and to improve the quality of life of the 
patient. Rehabilitation usually includes inpatient 
measurements such as wheelchair skills and bed 
motility and outpatient measurements, which are 
also called post-discharge measurements (103, 
104). 
The concept of neuroplasticity has improved SCI 
management in both adult and pediatric 
populations by encouraging more scientists and 
clinicians to investigate the different tools of 
rehabilitation (105). Excessive research generated 
one of the most important rehabilitation processes, 
which are Activity-Based Therapy (ABT). Thanks to 
the NeuroRecovery Network, 7 ABT centers were 
implemented in the United States (106). The 
primary rehabilitation tools for pediatric  
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populations are not thought to provide “natural 
recovery” because stabilizing the patients in the 
same position and restricting their movements 
makes them dependent to the different devices and 
adds to their paralysis (103, 107). The application 
of ABT resulted had a positive impact on the 
improvement of adults’ mobility functions after 
spinal cord injuries. It is based on the activation of 
the nervous system with many tools such as 
intense task-specific practice (108). Collaboration 
between caregivers and scientists in this field 
contributed to the extension of activity-based 
therapy into the pediatric population. They showed 

up that motor training leads to a significant change 
in the motility abilities and participation in home 
and community activities — function outcomes. 
Function outcomes after rehabilitation can be 
influenced by many factors such as age, sex, the 
severity of the injury, and socioeconomic factors. 
As a consequence, many scaling systems have been 
developed to predict functional outcomes (ICF and 
FIM) (6, 104, 109, 110). These scores and scales 
aim to measure the assistance needed for each 
patient to improve his performance. NRS is an 
outcome measure designed for ABT. It has a high 
psychometric level in adults, and its pediatric 

Table 1: The list of the commonly used drugs in the management of spinal cord injuries 

Riluzole 

It is a glutamate receptor agonist that acts by blocking sodium channels. FDA did not approve its use in 

SCI, but ongoing trials (NCT01597518, NCT00876889, and NCT02859792) are testing its usage in 

humans. In a pre-clinical trial, Riluzole had promising results in terms of damaged neurons repair (86). 

Ketorolac 
It is a non-steroidal anti-inflammatory drug (NSAID) that inhibits the cyclooxygenases (COX1 and COX2). 

Ketorolac can exert a neuroprotective function as it reduces neuronal death at the site of ischemia (87).  

Minocycline 

This antibiotic can have a neuroprotective effect by providing some anti-inflammatory properties and by 

regulating cytokines metabolism in the central nervous system tissue. Three ongoing trials 

(NCT00559494, NCT01828203, and NCT01813240) test its usage in SCI, and one published trial 

(NCT00559494) proved its feasibility in SCI. 

Fingolimod 

(FTY720) 

This drug is a sphingosine receptor agonist. A study illustrated its efficacy in SCI model and showed that 

its use was associated with motor function improvement (88). 

Magnesium 

Magnesium is a neuroprotective agent that acts as an antagonist for N-methyl D-aspartate (NMDA) 

receptor and as a calcium channel blocker (89). A study has reported that Mg improves motor function 

on spinal cord rodent models (90). 

Methylprednisolone 
This corticosteroid has anti-inflammatory and antioxidant properties. Methylprednisolone can increase 

the blood flow to the spinal cord but has no role in reversing the problem of neuronal death (91). 

Gacyclidine (GK-11) 

This molecule has the role of an N-methyl-d-aspartate receptor antagonist. It had a neuroprotective 

function in rodent models and improved motor and sensory performance in some model studies (92, 93). 

Further clinical trials are needed to determine its efficacy. 

GM-1 
It is a ganglioside found in the neuronal cell membrane. Some trials showed up an improvement in ASIA 

motor score after its usage (94, 95). 

Baclofen 

It is γ-aminobutyric acid agonist that inhibits both monosynaptic and polysynaptic reflexes at the spinal 

level. It can decrease excitatory neurotransmitter release from afferent terminal nerves. Intrathecal 

baclofen can be used for treating SCI associated spasticity (96, 97). 

Dantrolene 
It is a peripheral skeletal muscle relaxant used in muscle spasticity that may have neuroprotective effects 

after SCI (98, 99). 

Botox 
It is made from a neurotoxin secreted by Clostridium botulinum bacteria. Botox is safe and effective in 

reducing neuropathic pain associated with SCI (100). 

Tizanidine 

It is an alpha 2-adrenergic agonist usually used for the treatment of muscle spasticity associated with SCI 

(101). A study found that Tizanidine is effective in improving walking in higher functioning patients 

(102). 
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version is under development (111).  
 Surgical treatment 
The surgical interventions in adult traumatic spinal 
injuries in adults are well detailed and 
standardized by surgical societies. The spine 
injuries in young patients must be distinguished 
from those in adults because of anatomical 
considerations. However, in a cohort of 75 
pediatric patients, the surgical methods and 
modalities did not differ (112).  Pediatric spinal 
injuries are managed conservatively in most cases. 
They are useful in stable fractures without 
neurological lesion and even isolated ligamentous 
injuries (113, 114). Conservative treatment of the 
cervical spine may include external stabilization 
with a soft cervical, a semi-rigid collar, or a halo 
fixation device (44). 
Surgical treatment is mainly indicated in unstable 
injuries, irreducible fractures or dislocations, 
progressive neurological deficits resulting from 
compression, progressive deformity, and in 
patients aged more than eight years (115, 116). 
Early surgery may be mandatory in unstable 
lesions (15). But as a general rule, the indication of 
surgical therapy for pediatric spinal trauma, 
particularly in small children with injuries of the 
cervical spine, remains strictly individual (117). 
 Stem Cell Therapy 
Mesenchymal stem cells are characterized by their 
rapid division and high differentiation potency.  
They exceptionally engender immunoreactive 
responses after their transplantation. However, the 
mechanism in which stem cell therapy enhances 
synapse formation has not been determined yet 
(118). Researchers think that they provide 
neurotrophic support and some autocrine and 
paracrine effects by their secretome. For example, 
these cells can give an anti-inflammatory power by 
secreting multiple anti-inflammatory cytokines, 
including neurotrophin 3 factor (NT-3), IL-10, IL-
13, and IL-17E. They can also inhibit the release of 
pro-inflammatory cytokines by the host or increase 
the level of IL-10 and promote the polarization of 
macrophages to an anti-inflammatory 
phenotype. The anti-inflammatory potential of 
MSCs, added to their neuroprotection effect, help 
prevent neural degeneration, and promote 
neurogenesis and remyelination (119-121). 
Since the first attempts of stem cell transplantation 
SCI, scientists and lab investigators multiplied their 
efforts in this field (118). A variety of cells were 
used, such as bone marrow and umbilical cord 
mesenchymal cells (122, 123). Cellular populations 
obtained from the cord blood or the umbilical cord 
resulted in neurotrophic properties in SCI animals 

(124, 125). The intrathecal transplantation is being 
tested in a multicenter randomized trial 
(NCT03521336). Furthermore, Amniotic Fetal 
mesenchymal stem cells and Adipose-derived 
mesenchymal stem cells showed limited effects in 
animal models (126-129). To sum up, Stem cell 
technologies promote neuronal repair processes 
with minimal side effects. However, financial and 
ethical issues can form a real burden against their 
general application (118).  

DISCUSSION  
 Future directions for treating SCI 
Many promising neuroregeneration interventions 
have been designed to restore the normal functions 
after brain and spinal injuries (130). The 
administration of chondroitinase, which is a 
bacterial enzyme metabolizing CSPGs, with neural 
precursor cells, can enhance the axonal 
remyelination process (131, 132). This 
remyelination potential has been shown to 
improve sensorimotor functions in rats (133). 
Furthermore, the use of NOGO receptor 
antagonists to block the action of myelin protein 
NOGOA improved axonal regeneration in animals 
with spine injury (134, 135). Scientists examined 
its safety and efficacy in SLA patients (136, 137). 
Transplant hydrogel polymers constitute a modern 
method of neurodegeneration. Many molecules 
have been tested in SCI such as collagen, agarose, 
fibrin, and hyaluronan (138-142). The use of 
hydrogel polymers showed a promising result, 
especially when it was combined with the 
administration of biological molecules such as 
growth factors and immunomodulatory factors 
(143, 144). The results can be explained by the fact 
that the biomechanical properties of hydrogels 
delivery systems can promote cellular migration in 
the spinal cord tissue (145). They can also enhance 
cell differentiation and stop the immune response 
after SCI (130).  

 Limitations of recent research into SCI 
treatment 

Recent research into SCI is a bit limited by several 
ethical and methodological challenges. The small 
sample size of the published studies as well as the 
lack of comparison against a control group, make it 
difficult to draw informative conclusions to guide 
the clinical practice. Withholding a beneficial 
intervention in SCI patients to test a novel 
regenerative treatment might be challenging from 
ethical and methodological points of view. Future 
researchers should solve this problem by 
suggesting novel trial methodologies that can 
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overcome the current methodological and ethical 
limitations. Future research is needed to 
investigate the safety and efficacy of the recent 
uprising neuroregenerative techniques in SCI 
population. 

CONCLUSIONS 
The management of pediatric traumatic spinal cord 
injuries have been challenged by the lack of class-
one evidence about the safety and efficacy of the 
present treatment options. In addition, the uprising 
neurodegenerative techniques might hold a 
promise for treating traumatic SCI in children. 
Owing to the current limitations, there is a need to 
develop novel trial methodologies that can 
overcome the current methodological and ethical 

limitations.  
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