
Pathway and network embedding methods for prioritizing 
psychiatric drugs

Yash Pershad+, Margaret Guo+, Russ B. Altman
Biomedical Informatics Program, Departments of Bioengineering, Genetics, & Medicine, Stanford 
University, Stanford, CA 94305, USA

Abstract

One in five Americans experience mental illness, and roughly 75% of psychiatric prescriptions do 

not successfully treat the patient’s condition. Extensive evidence implicates genetic factors and 

signaling disruption in the pathophysiology of these diseases. Changes in transcription often 

underlie this molecular pathway dysregulation; individual patient transcriptional data can improve 

the efficacy of diagnosis and treatment. Recent large-scale genomic studies have uncovered shared 

genetic modules across multiple psychiatric disorders — providing an opportunity for an 

integrated multi-disease approach for diagnosis. Moreover, network-based models informed by 

gene expression can represent pathological biological mechanisms and suggest new genes for 

diagnosis and treatment. Here, we use patient gene expression data from multiple studies to 

classify psychiatric diseases, integrate knowledge from expert-curated databases and publicly 

available experimental data to create augmented disease-specific gene sets, and use these to 

recommend disease-relevant drugs. From Gene Expression Omnibus, we extract expression data 

from 145 cases of schizophrenia, 82 cases of bipolar disorder, 190 cases of major depressive 

disorder, and 307 shared controls. We use pathway-based approaches to predict psychiatric disease 

diagnosis with a random forest model (78% accuracy) and derive important features to augment 

available drug and disease signatures. Using protein-protein-interaction networks and embedding-

based methods, we build a pipeline to prioritize treatments for psychiatric diseases that achieves a 

3.4-fold improvement over a background model. Thus, we demonstrate that gene-expression-

derived pathway features can diagnose psychiatric diseases and that molecular insights derived 

from this classification task can inform treatment prioritization for psychiatric diseases.
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1. Introduction

450 million people suffer from mental health disorders worldwide, with approximately 20% 

of Americans experiencing a mental illness in a given year.1 Additionally, mental illness 

negatively impacts quality of life, as it accounts for 32.4% of the years lived with disability.2 

Even though most psychiatric drugs show benefits over placebo in clinical trials, nearly 75% 

of psychiatric prescriptions do not successfully treat the patient’s condition.3,4 Low drug 

efficacy for individual patients suggests a critical need to improve treatment prioritization 

for psychiatric disorders.

One reason for the low success rate is that gene-based biological mechanisms for disease are 

not routinely incorporated into clinical decision-making. Understanding the molecular basis 

of psychiatric diseases is necessary for rational drug choice. While traditional psychiatric 

diagnoses rely on feature sets composed largely of shared symptoms,5 recent research has 

identified some genetic contributions and has implicated the dysregulation of molecular 

pathways in the pathogenesis of these diseases.6,7 Gene expression levels provide 

quantitative measures to characterize these disrupted molecular pathways. For example, 

transcription studies have found that psychiatric diseases including bipolar disorder (BPD), 

major depressive disorder (MDD), and schizophrenia (SCZ) involve gene expression 

changes in neocortical regions responsible for cognitive and emotional control.8 The 

associated pathways may share some higher level characteristics, leading to similar 

symptoms, but probably also differ at a molecular level.9 Incorporation of the genetics of 

these complex diseases into clinical decision-making may allow tailored treatment options 

that more effectively modulate pathway-level disruption in the cell.

Recently gathered genomic datasets, ranging from single nucleotide polymorphisms (SNPs) 

for genome-wide association studies (GWAS) to gene expression data from RNA sequencing 

of brain tissue, provide a promising means for uncovering underlying causes of mental 

health disorders.5 Most recently, the PsychENCODE Consortium analyzed samples from 

over 2,000 individual brains and published several studies on gene expression and genomic 

regulation demonstrating shared genetic modules between multiple psychiatric disorders.
7,10,11 These shared sets of genes make defining (and diagnosing) specific psychiatric 

diseases challenging. Therefore, effective diagnosis may require integration of cellular and 

molecular data to distinguish and classify psychiatric diseases.

Protein-protein interaction (PPI) networks, where nodes are proteins (i.e., gene products) 

and edges represent interactions between the proteins, are a useful framework for 

understanding disease at a molecular level.12 Previous work has analyzed gene expression 

data to find novel disease-gene associations and has even predicted non-psychiatric diseases 

via PPI networks and pathway-based approaches.13 The advantage of these network 

approaches is that they maintain a higher degree of biological interpretability compared to 

models using gene expression data directly as features. The PROPS14 algorithm was initially 

developed to classify types of inflammatory bowel disease and uses patient-specific pathway 

scores from gene expression data to evaluate pathways in the Kyoto Encyclopedia of Genes 

and Genomes (KEGG) resource. We hypothesize that network-based approaches such as 

PROPS may enable us to find distinguishing pathway features across psychiatric diseases.
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Finding unique pathway features for these diseases may be useful for choosing drug 

treatments. At a molecular level, this task can consist of finding similar drug and disease 

gene signatures, on the assumption that drugs modulating disease-specific pathways may be 

more effective. In a network, a group of connected genes likely associated with the same 

disease are considered disease modules. Similarly, a group of connected genes likely known 

to be targets of a drug are drug modules. Proximity-based methods determining distance 

between drug and disease modules have been used to predict drug indications for a disease.
15 However, embedding-based machine learning methods have recently achieved great 

success.12 For example, recent work has applied node2vec methods to create embeddings of 

PPI networks, thereby representing the network as feature vectors for each gene.16,17 

Node2vec maximizes the likelihood of preserving neighborhoods of genes and structural 

features of the network. By doing so, it can capture complex relationships between nodes in 

lower dimensional space. Analyzing these feature vectors requires less computational power 

than performing expensive search and path-finding operations on the network itself. Thus, it 

has applications for multiple bioinformatics problems, such as predicting protein function, 

discovering novel protein-protein interactions, and finding new disease-associated genes.18

In this study, we use patient-specific gene expression data first to classify psychiatric 

diseases and find pathways that distinguish the diseases. Then, we use disease gene 

signatures and drug gene targets to recommend a prioritized list of disease-relevant drugs to 

patients (Fig. 1). We first create KEGG pathway scores from patient gene expression data 

and then used the pathways as features to build a classifier for psychiatric diseases. We 

define disease modules and drug modules by combining differential expression, literature-

mining, and expert-curated databases. Using node2vec PPI network embeddings to assess 

proximity between drug and disease gene modules, we generate a ranking of drug 

indications for a disease of interest. Our work establishes the feasibility of using biological 

mechanism to drive both the diagnosis of psychiatric disease and the prioritization of 

treatments using patient-specific gene expression data.

2. Methods

2.1. Collecting and processing gene expression data

In order to predict psychiatric diseases from gene expression data, we curated five datasets 

containing RNA expression data from BPD, MDD, and/or SCZ along with matched controls 

from the Gene Expression Omnibus (GEO): GSE9253819, GSE9879320, GSE2738321, 

GSE12034022, and GSE2113823. All five studies used Affymetrix microarrays to obtain 

expression data. We queried expression sets using the GEOquery package in R. Genes that 

mapped to multiple probes were averaged, as previously done.14,24 Next, using the genes 

common to all microarray platforms, we normalized the data using the affy package25 and 

corrected for batch effects using ComBat from the sva package.26 Overall, we processed 

expression data from 145 cases of SCZ, 82 cases of BPD, 190 cases of MDD, and 307 

shared controls (Table 1).
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2.2. Predicting disease from processed expression data

We evaluated the ability of unsupervised learning techniques, principal component analysis 

(PCA) and uniform manifold approximation and projection (UMAP), to distinguish samples 

by psychiatric disease using processed gene expression data. Unsupervised learning methods 

were evaluated based on visualization of feature vectors in the reduced 2-dimensional space.

Pathway importance scores for the individual samples were generated via the PROPS 

method.14 By using a random-walk-based approach, PROPS models KEGG pathways as 

Bayesian networks and returns a probabilistic pathway score that reflects pathway activity 

for each of the 268 KEGG biological pathways.* We trained decision tree, random forest, 

and support vector classifiers from scikit-learn27 to distinguish psychiatric diseases from one 

another using pathway scores as features. Performance of the models was evaluated based on 

the micro average area under the receiver operating characteristic (auROC) across the three 

diseases using an iterative cross validation approach. We performed a grid search to tune 

hyperparameters of the classifiers. We determined the most important pathway features of 

the random forest model and inferred a gene importance score based on the frequency by 

which the genes associated with high scoring pathways.

2.3. Ranking disease-relevant drugs

After we performed disease prediction and identified the most important features (i.e., 

KEGG pathways), we sought to find disease-relevant drugs for psychiatric diseases from 

gene signatures associated with psychiatric diseases and gene targets associated with 

psychiatric drugs.

2.3.1. Curating disease gene signatures—Initial disease signatures, defined as gene 

sets associated with psychiatric diseases, were procured from the Psychiatric disorders and 

Genes association NETwork (PsyGeNET), a database curated by domain experts which 

integrates genes from DisGeNET and literature-mining.28 The disease classes that we 

obtained from PsyGeNET were BPD, MDD, and SCZ, the three most common psychiatric 

disorders. Subsequently, we augmented these gene sets with genes linked to significant 

SNPs from GWAS Catalog for each respective disease.29 GWAS Catalog returned 444 SNPs 

for bipolar disorder, 892 SNPs for major depressive disorder, and 1261 SNPs for 

schizophrenia.

In order to validate these gene sets and potentially compare the genes associated with 

different psychiatric diseases, we performed functional analysis on the disease gene clusters. 

We characterized these gene sets for each disease by finding enrichment of the gene sets 

compared to all genes for specific molecular functions in the Gene Ontology (GO) database 

and Reactome pathway database with the clusterProfileR package.30 Reactome was chosen 

as an orthogonal pathway information source to validate findings based on KEGG-derived 

pathway scores. We visualized enrichment scores for each significant molecular function 

and disease to identify potential disease specific molecular mechanisms.

*The PROPS algorithm takes in batch-corrected “disease” gene expression data and “control” gene expression data in order to find 
pathways enriched in the patients with disease. Therefore, KEGG pathway scores are calculated for each disease sample.
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2.3.2. Curating drug gene targets—We created a list of 275 pertinent psychiatric 

drugs through the Anatomical Therapeutic Chemical Classification (ATC) system, a 

hierarchical drug classification system which classifies drugs by tissue-specific therapeutic 

effects.31 To generate a list of drugs potentially relevant to BPD, MDD, and/or SCZ, we 

included all drugs classified as nervous system drugs (class N). The classes of these drugs 

included psycholeptics, psychoanaleptics, anti-Parkinson’s drugs, antiepileptics, analgesics, 

anesthetics, muscle relaxants, and other nervous system drugs.

For each potential psychiatric drug, we found gene targets based on expertly curated lists, 

literature-mining, and gene expression signatures. Databases from DrugCentral32 and the 

Drug-Gene Interaction Database (DGIdb)33 contain lists of target genes by drug. The global 

network of biomedical relationships (GNBR34), a knowledge graph derived from PubMed 

abstracts, contains chemical-gene relationships. Connectivity Map (CMap) from the Broad 

Institute35 includes expression data of multiple cell lines before and after treatment with 

small-molecule compounds. We used CMap to extract differentially expressed genes for 

each relevant perturbagen (abs(score) > 8) and added these genes to the sets of drug targets 

for each gene. Each drug has a median of 134 related genes with an interquartile range of 26.

2.3.3. Recommending drugs for a disease—We used our curated drug and disease 

gene signatures to create a method that recommends disease-relevant drugs in a ranked 

manner. For each disease-specific recommendation, we operate under a common 

assumption36 that drugs indicated for a disease will modulate the disrupted pathways of the 

disease. We compared seven methods of evaluating disease-drug “similarity”:

(1) “random” method: While not technically a method, we report the proportion of drug 

indications present in our overall list indicated for a particular disease of interest.

(2) “simple overlap” method: We determined the fraction of genes intersecting and the 

Jaccard similarity between each drug and disease module. For each disease, we ranked drugs 

by the fraction of intersecting genes and Jaccard similarity. This method is the simplest 

method of comparison and does not account for any pathways or interactions between 

proteins. Subsequent methods used PPI networks to attempt to capture these interactions.

(3) “connected components” method: We calculated the shortest path between each pair of 

genes in the disease module in the STRING v10 PPI network (String)37 and included the 

genes along each path in a larger disease module. We then computed the Jaccard similarity 

between the expanded disease module and the drug target module.

(4) “mean path length” method: We found the shortest path length in String between every 

pair of genes with one from the disease module and one from drug module and then 

averaged each path length for a drug. A smaller path length indicates that the genes are 

closer in the PPI network and that it is more likely for changes in one gene to affect the 

other.

(5-7) network embeddings methods: Along with these simpler methods, we used node2vec 

embeddings to capture structural features of the PPI networks and to inform our drug 

ranking lists by disease. We performed node2vec embeddings on String and GNBR. (5) 
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“String 32D” uses the node2vec embedding of String into 32-dimensions, and (6) 

“String64D” into 64-dimensions. (7) “GNBR32D” uses the node2vec embedding of GNBR 

in 32-dimensions. After generating feature vectors for each gene node, we found the mean 

cosine similarity of each pairwise combination of genes from disease module and the drug 

module.

Each of these methods produces a ranked list of drugs for a given disease. We evaluate these 

methods by extracting the top 25 scoring drugs, roughly 10% of the possible drugs, and 

determined whether they were indicated for the disease of interest. Indications were derived 

from the Side Effect Resource (SIDER)38, a database built by from natural language 

processing of drug package inserts. We reported the percentage of drugs in the top 25 

indicated for each disease and presented the top 5 drugs for disease in a table.

2.3.4. Augmenting disease modules with disease pathways important for 
diagnosis—We used patient-specific gene expression information to improve disease 

signatures for improving treatment prioritization. From the 20 most important KEGG 

pathways from our random forest models (as described in 2.2) for distinguishing BPD, 

MDD, or SCZ, we extracted genes belonging to these pathways and added them to our 

initial disease signatures. Genes were added to the disease signature if they were not used to 

diagnose other diseases. To test these augmented modules, we generated a prioritized list of 

drugs using this augmented module and compared the percentage of drugs indicated in the 

top 25 of the ranked list. To ensure that simply adding more genes does not increase the 

percent indicated, we added 250 random nodes from String to the disease sets and evaluated 

the top 25 drugs for these new randomly enlarged gene sets. We derived biological insight 

about our recommendations by measuring functional enrichment of Reactome pathways for 

the augmented disease modules, as described in 2.3.1.

3. Results

3.1. Predicting disease from processed expression data

To provide molecular insights into psychiatric disease, we created a method to predict 

disease from gene expression data. Because we combined data from multiple sources, we 

assessed tissue-source-specific or batch effects using sequential dimensionality reduction 

techniques, PCA and UMAP, to create two-dimensional vectors representing each sample.39 

When we visualized these vectors, the samples did not form any clusters by batch or tissue-

type, confirming that the batch correction was successful. However, when we used UMAP to 

visualize expression data by disease, we did not observe any clustering. This finding 

demonstrates the challenge of distinguishing psychiatric diseases from expression data.

Pathway-informed classification approaches can overcome the noisiness in raw gene 

expression by aggregating signal as biologically meaningful features. We used the PROPS 

algorithm to generate new features (significant pathways), as opposed to raw expression 

values, for classifying the psychiatric diseases and providing insight into drug 

reprioritization. Fig. 2A shows ROC curves for the classification task for each disease, along 

with the micro and macro average ROC curves. We noted that the ROC curves for each 

disease are roughly similar indicating that our method is able to capture distinguishing 
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features for all classes. After optimizing classifier parameters using via grid-search, we 

evaluated each multi-disease classifier using iterative cross-validation and report the auROC 

for the three methods (Fig. 2B). The random forest classifier performed the best, with an 

accuracy of 0.78 +/− 0.02. The support vector classifier performed second-best, followed by 

the decision tree classifier. For downstream feature selection, we used the random forest 

model because it performed the best. To minimize overfitting, we retrained on the classifier 

on the 50 most common features and observed no reduction in model performance. 

Therefore, using probabilistic KEGG pathway scores as features rather than raw expression 

data itself enables distinguishing of psychiatric diseases with accuracy.

Additionally, probabilistic Bayesian methods can provide increased biological 

interpretability. For instance, KEGG pathways found to be important for schizophrenia 

according to our model include not only direct neurological disruption of GABA, 

cholinergic, and glutamatergic neurotransmitter signaling pathways, but also disruptions in 

folate metabolism. Folate deficiency has recently been shown in literature to be a risk factor 

for schizophrenia and its associated negative symptoms.40 Thus, pathway-based disease 

classification models can provide novel insights about the pathogenesis of these selected 

psychiatric diseases.

3.2. Ranking disease-relevant drugs

A synthesis of expert-curated sources (PsyGeNET, ATC, Drug Central, DGIdb), literature-

mining databases (GNBR), and evidence from experiments (GWAS catalog, CMap) 

provided disease and drug modules for drug treatment prioritization. The integration of 

knowledge from multiple data sources may lead to valuable insight for therapeutic 

applications.

Our drug prioritization approach assumes that drugs should be more effective if their module 

has a greater degree of overlap with the corresponding disease module. Using the seven 

methods described in section 2.3.3, we show that the genetic overlap between drug and 

disease modules is significantly greater than random chance (Fig. 3A). We also note that 

embedding methods performed better than other methods such as “simple overlap” (21% 

were indicated in the top 25 drugs) or “mean path length” (27%). “String 32D” had an 

average accuracy across the three diseases of 48%, “String 64D” had an average of 45%, and 

“GNBR 32D” had an accuracy of 37%. The average indication for “random” was 15%. 

Embedding methods may better capture drug indications because they capture latent 

neighborhood structural features of the networks.

One potential limitation of network embedding methods is that performance is dependent on 

the underlying network structure. Thus, they can be susceptible to incomplete data. For 

instance, most networks are unsigned and undirected, and thus the difference between a 

contraindication linkage and a treatment linkage is difficult to discern. As biological network 

data improves and our knowledge representation of biological mechanisms grows more 

complete, our embedding method will need to model these more complex genetic 

mechanisms.
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We find that separating different psychiatric disorders is important for the prioritization of 

treatment options. Disease signatures augmented with pathway relevant genes perform 

disease diagnosis performed better than the initial disease signatures (Fig 3B). Given the 

accuracy of the pathway-based classification of psychiatric disease, this result is not 

necessarily surprising. However, it does emphasize the importance of pathway level 

dysregulation, as opposed to gene-level dysregulation in the treatment of psychiatric 

disorders.

We also note that adding additional genes to a curated gene set can affect performance in 

different ways. BPD had a large increase in capturing drug reprioritization targets, while the 

change for MDD was negligible. This is likely due to disease module for SCZ and BPD 

increased by approximately 200 genes each, while the MDD module changed by fewer than 

20 genes. The increase in percentage indicated in the top 25 was not solely a result of adding 

any genes. When we added 250 random genes to the disease sets, the percentage indicated 

dropped to approximately 24% from over 50%. Even though there is a lack of novel genetic 

contributions, given that embedding methods for MDD performed well on the initial disease 

signature suggests that the expertly curated and literature derived gene sets may already be 

quite comprehensive.

While our drug indication labels represent only known drug-disease treatment pairs, we still 

can capture potentially novel targets. For example, niflumic acid is a pain reliever that was 

not present in the top indications list based on the original disease signatures but received a 

high score after the addition of 20 genes. While niflumic acid is not indicated for depression, 

it is believed, like other recently approved MDD treatments such as ketamine, to have 

antagonistic effects on the N-methyl-D-aspartate (NMDA) receptor.41,42 Thus, niflumic acid 

may serve as a promising MDD treatment candidate. Another repurposing example, 

chlorzoxazone, traditionally used as a muscle relaxant, was suggested as a drug relevant for 

schizophrenia. Recent research has implicated low activity of calcium-activated potassium 

(SK) channels as a potential pathway causing schizophrenia, and chlorzoxazone has 

demonstrated the ability to activate SK channels in mice.43 Thus, our method, with 

experimental validation, may provide a means to suggest repurposable drugs with 

therapeutic effects. The top five drugs for each disease are shown (Table 2).

Along with evaluating the performance of the new ranked list, we also used functional 

analysis to find enriched Reactome pathways and characterize the original and the 

augmented disease gene sets in order to elucidate differences between the psychiatric 

diseases. The original disease signatures showed extensive overlap in significantly enriched 

Reactome pathways, suggesting common mechanisms shared across the diseases (Fig. 4). 

On the other hand, the enriched Reactome pathways for the augmented disease sets differed 

for some Reactome pathways.

The differences can be attributed to the additional genes from the pathway-based diagnosis 

method, which emphasized distinct molecular pathways for the diseases. Namely, we 

observed that that Class C3 metabotropic glutamate/pheromone receptors distinguish SCZ 

from the other diseases and senescence-associated secretory phenotype (SASP) 

distinguished BPD from the others. Recent literature has implicated glutamate in SCZ 
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pathogenesis in NMDA receptor hypofunction hypothesis, and some studies have discussed 

SASP as a marker of BPD.44,45 Thus, the Reactome enrichment demonstrated that the 

addition of modules from the pathway-based diagnosis method enabled easier disease 

delineation and drug prioritization.

4. Conclusion

Psychiatric diseases are highly prevalent, and treatments are often unsuccessful. Lack of 

biological understanding of psychiatric disease pathogenesis, along with symptom-based, 

ambiguous diagnoses contribute to the low psychiatric drug efficacy. To address these 

challenges, we explored the use of gene expression data to classify the three main classes of 

psychiatric disorders: bipolar disorder, major depressive disorder, and schizophrenia. We 

used PPI networks and functional pathways to predict disease-relevant drugs and uncover 

molecular pathway distinctions between the three diseases. These enabled us to choose 

therapies focused on disease-specific pathways.

In our work, we linked diagnostic separation with therapeutic prioritization. Specifically, we 

demonstrated that probabilistic pathway scores derived from gene expression data can find 

pathway differences between psychiatric diseases, enabling pathway-based analysis as a 

promising approach for both diagnostic and therapeutic exploration. We further refined the 

genetic linkages between drugs and psychiatric disease by curating drug and disease 

modules from a heterogeneous array of literature, expert, and experimental sources. Even 

with these curated gene sets, the informatic question of finding similarity between drug and 

disease modules is a complex task.

After comparing multiple methods, we found that node2vec embeddings of PPI networks 

best prioritized disease-relevant drugs from gene sets; these findings corroborate the idea 

that unsupervised embeddings capture latent structural features in networks. These structural 

features are not directly observable from the network itself. Additionally, when we 

augmented the baseline disease gene sets with genes from the most important KEGG 

pathways from our classifier for each disease, we observed an improvement in drug 

prioritization by disease. Functional analysis of these augmented disease gene signatures 

with orthogonal Reactome pathways demonstrated that these augmented disease signatures 

provide molecular pathway distinctions between the three psychiatric disorders studied here.
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Figure 1: 
Integrated approach towards drug prioritization for psychiatric disease treatment. We 

partition our methods as expression-based analysis of transcriptome data from GEO 

database integration of expert and experimentally derived disease and drug gene signatures, 

and network-based inference techniques.
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Figure 2: 
(A) ROC curve for a representative multi-class random forest (RF) model. (B) Micro auROC 

average +/− standard deviation shown for each classifier type across 100 cross-validation 

trials.
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Figure 3: 
Evaluation of disease-relevant drug ranking methods clustered by disease and colored by 

method. (A) Original methods by disease. (B) Embedding methods with and without disease 

gene set augmentation. Numbers on the x-axis represent the embedding method used, 5 = 

String 32D, 6 = String 64D, and 7 = GNBR 32D.
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Figure 4: 
Dot plot of enriched Reactome pathways for original gene sets for bipolar disorder (BPD), 

major depressive disorder (MDD), and schizophrenia (SCZ) and augmented (+) gene sets 

from disease differentiating KEGG pathways (p > 0.05). We note the similarity of functional 

annotations and disease-specific differences in SASP and glutamate/pheromone receptors for 

the augmented gene sets.
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Table 1:

Summary of GEO studies queried for analysis. Information includes tissue of origin for each study 

(WB=whole blood, PFC=prefrontal cortex), along with number of cases and controls (SCZ=schizophrenia, 

BPD=bipolar disorder, MDD=major depressive disorder).

Study Tissue Type # Control # SCZ # BPD # MDD

GSE92538 PFC 175 62 62 62

GSE98793 WB 64 0 0 128

GSE27383 WB 29 43 0 0

GSE120340 PFC 10 10 20 0

GSE21138 WB 29 30 0 0

Totals PFC + WB 307 145 82 190
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Table 2.

Top 5 drugs suggested by disease with augmented disease sets for (A) bipolar disorder, (B) major depressive 

disorder, and (C) schizophrenia.

 A  B  C

Drug Indication(s) Mechanism of 
Action

Drug Indication(s) Mechanism 
of Action

Drug Indication(s) Mechanism 
of Action

Maprotiline BPD, MDD Norepinephrine 
reuptake 
inhibitor

Buspirone MDD Serotonin 
receptor 
agonist

Aripiprazole BPD, MDD, 
SCZ

Atypical anti-
psychotic

Carbamazepine BPD Na channel 
blocker

Olanzapine BPD, MDD, 
SCZ

Serotonin 
receptor 
agonist

Penfluridol SCZ First-
generation 
anti-psychotic

Lamotrigine SCZ Na channel 
blocker

Dothiepin MDD Tricyclic 
antidepressant

Mesoridazine SCZ Neuroleptic 
anti-psychotic

Olanzapine BPD, MDD, 
SCZ

Atypical 
antipsychotic

Lorazepam MDD GABA 
receptor 
agonist

Varenicline SCZ Acetylcholine 
receptor 
agonist

Benperidol BPD, MDD, 
SCZ

Antipsychotic Bifemelane MDD Monoamine 
oxidase 
inhibitor

Doxepin MDD Tricyclic 
antidepressant
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