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Abstract 

European Union legislation requires member states to keep national databases of all bovine animals. This allows for 
disease spread models that includes the time-varying contact network and population demographic. However, per-
forming data-driven simulations with a high degree of detail are computationally challenging. We have developed an 
efficient and flexible discrete-event simulator SimInf for stochastic disease spread modelling that divides work among 
multiple processors to accelerate the computations. The model integrates disease dynamics as continuous-time 
Markov chains and livestock data as events. In this study, all Swedish livestock data (births, movements and slaughter) 
from July 1st 2005 to December 31st 2013 were included in the simulations. Verotoxigenic Escherichia coli O157:H7 
(VTEC O157) are capable of causing serious illness in humans. Cattle are considered to be the main reservoir of the 
bacteria. A better understanding of the epidemiology in the cattle population is necessary to be able to design and 
deploy targeted measures to reduce the VTEC O157 prevalence and, subsequently, human exposure. To explore the 
spread of VTEC O157 in the entire Swedish cattle population during the period under study, a within- and between-
herd disease spread model was used. Real livestock data was incorporated to model demographics of the population. 
Cattle were moved between herds according to real movement data. The results showed that the spatial pattern in 
prevalence may be due to regional differences in livestock movements. However, the movements, births and slaugh-
ter of cattle could not explain the temporal pattern of VTEC O157 prevalence in cattle, despite their inherently distinct 
seasonality.

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Introduction
European Union legislation requires member states to 
keep a registry of all bovine animals in national databases 
[1, 2]. The registry must contain the location and date of 
birth of each animal, the date and source and destination 
holding when an animal is moved and date of death or 
slaughter of an animal [1, 2]. The use of real livestock data 
allows for disease spread models with data-driven intro-
duction of population demographics and the time-vary-
ing contact network. Mathematical models and computer 

simulations can be used to study the spread of infectious 
diseases and to evaluate intervention strategies [3–5].

Performing detailed data-driven stochastic simula-
tion is computationally challenging and requires effi-
cient algorithms. Moreover, both model selection and 
parameter inference are challenging when exploiting 
rich livestock data in infectious diseases modelling [6]. 
Computational tools need improvements to allow net-
work models to include epidemiologically relevant data 
[7]. We recently presented an efficient computational and 
flexible modelling framework for fast event-based epide-
miological simulations of infectious diseases [8, 9]. The 
framework integrates within-herd infection dynamics 
as continuous-time Markov chains and livestock data as 
scheduled events.
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Verotoxigenic Escherichia coli O157:H7 (VTEC O157) 
is a zoonotic bacterial pathogen infecting through the 
faecal-oral route. Infected humans, notably children, 
often develop bloody diarrhoea [10, 11]. Moreover, a 
severe complication, the haemolytic-uremic syndrome 
(HUS) is observed in about 10% of the cases [12, 13]. Cat-
tle are considered to be the main reservoir of the path-
ogen [14]. Infected cattle excrete the bacteria in their 
faeces, which can contaminate hides, the environment, 
water and subsequently food and recreational areas [15]. 
Implementing targeted intervention strategies to reduce 
the incidence and prevalence of VTEC O157 infections 
in the cattle population could potentially reduce the 
number of human cases.

Identifying risk factors is the basis for understand-
ing how to prevent and control disease. For VTEC O157 
infection in cattle, several risk factors are known and 
may be attributed to (i) individual factors, for example 
age [16], (ii) herd level factors, such as animal group size 
[17], introduction of animals [18], and (iii) external fac-
tors, like season [19–21], or presence of an VTEC O157 
positive farm in the proximity [22]. However, a better 
understanding of the interaction between the various risk 
factors is necessary to design efficient intervention strat-
egies for VTEC O157.

The aims of the current study were to: (i) incorporate 
real livestock data in VTEC O157 spread simulations, (ii) 
estimate parameters in a VTEC O157 spread model, and 
(iii) explore the spatio–temporal spread of VTEC O157 
on a national scale, when real livestock data are incorpo-
rated in the simulations.

Materials and methods
Disease spread model
The VTEC O157 infection dynamics was modelled in 
each holding with a stochastic within-holding model, 
coupled to other holdings through animal movements. 
The within-holding spread model was a SISE compart-
ment model with the two disease states: susceptible (S) 
and infected (I) and E representing the environmen-
tal compartment contaminated with VTEC O157 by 
infected animals. We assumed that susceptible animals 
may become infected indirectly through contact with 
pathogens in the environment and that infected ani-
mals recover and return to the susceptible state. To cap-
ture age related differences in the infection dynamics 
within the host [16, 23] and in the likelihood of being 
moved [24], the two disease states were further subdi-
vided into three age categories indexed with j; calves 
0–119 days, young stock 120–364 days and adults older 
than 364 days. The specific cut points for the age catego-
ries was chosen to match the age categories in the lon-
gitudinal observational study [25] that was used for the 

parameter estimation of the model (see below). The six 
disease compartments and the environmental compart-
ment within each holding i was represented by Si,j, Ii,j and 
Ei (Figure 1). The state transitions between the suscepti-
ble and infected compartments within each holding were 
modelled as a continuous-time discrete-state Markov 
process with the Gillespie’s Direct Method [26, 27]. We 
used the implementation of the method as described in 
[8].

The environmental compartment Ei was modelled as a 
time dependent environmental infectious pressure ϕi(t) 
within each holding i. The infectious pressure ϕi(t) was 
assumed to be uniformly distributed within each hold-
ing and to depend on the amount of pathogens shed by 
infected animals. The constant α was the average shed-
ding rate per day per infected individual that contributed 
to the environmental infectious pressure. For simplicity, 
and in absence of more detailed information, the floor 
surface area was assumed to be proportional to the num-
ber of individuals in each holding. We let β(t) capture the 
rate per day of the bacterial decay and therefore reduc-
tion in the environmental infectious pressure ϕi(t). We 
have also chosen to include a small background infec-
tious pressure ε to allow for other indirect sources of 
environmental contamination (e.g. birds, rodents). The 
differential equation for the environmental infectious 
pressure in each holding was

where Ni(t) is the total number of animals in holding 
i at time t. State transitions from the susceptible to the 
infected state depend on the age dependent indirect 
transmission rate υj [28, 29] and exposure to the envi-
ronmental infectious pressure ϕi(t), i.e. the susceptible 
individual’s response to the environmental infectious 
pressure,

Infected individuals return to the susceptible com-
partment after the infection ceases. The expected time 
an infected individual stays in the infected state before 
returning to the susceptible state again depends on the 
age dependent recovery rate γj,

Specification of events
The following four types of events were defined; enter, 
internal transfer, external transfer and exit. The enter 
event handles births and imports from abroad. The inter-
nal transfer event happens the day an animal changes 

(1)
dϕi

dt
=

α
∑

j Ii,j(t)

Ni(t)
− β(t)ϕi(t)+ ε

(2)Si,j
υjϕi
→ Ii,j .

(3)Ii,j
γj
→ Si,j .
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age category from calf to young stock or young stock to 
adult. The external transfer event occurs when an ani-
mal moves from one holding to another. The exit event 
implies slaughter, euthanasia or export of the animal to 
another country. From that day, the animal will no longer 
be included in the simulation. The scheduled events are 
executed when the simulation in continuous time reaches 
the time for any of the events. The individuals are ran-
domly sampled from the compartments affected by the 
event. For example, for an external transfer event of n 
calves from holding 1 to holding 2, n calves are randomly 
selected from all susceptible and infected calves in hold-
ing 1 and placed in the same compartments in holding 2.

Individuals entering the model, i.e. born or imported, 
are assumed to be susceptible in their respective age cat-
egory. Since the aim was to explore spread in Sweden and 
not introduction from abroad, imported individuals were 
assumed to be susceptible. On average 16 cattle (range 
0–45) were imported per year during the study period 
according to information from TRACES (the Trade Con-
trol and Expert System of the European Commission). 
When an individual changes age category from calf to 

young stock or young stock to adult, it remains in its cur-
rent disease state. Moved animals will keep the same dis-
ease state in the new holding as in the previous holding. 
A flow diagram of the state transitions of the described 
model is shown in Figure 1.

Input data
The present study was based on all reports to the 
national cattle database at the Swedish Board of Agri-
culture covering the period from 2005-07-01 to 2013-
12-31. The data contained a total of 18 649 921 reports 
with information about the identifier of the reporting 
holding, the animal identification and birth date, and 
the date of the report [30]. If the report concerned a 
movement, then there should be one report from both 
the sending and receiving holding [30]. Each unique 
holding identifier in our data corresponds to a single 
geographical location where animals are kept, and could 
e.g. correspond to a farm building or pasture. Hereafter 
these are jointly referred to as a holding. A holding was 
considered as “active” if one or more animals were reg-
istered at it.
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Figure 1  Conceptual SISE compartment model for VTEC O157 in cattle. Schematic representation of a Verotoxigenic Escherichia coli O157:H7 
disease spread model in cattle with indirect transmission via the environment and with animal movements between holdings. The model is a SISE 
compartment model with the environmental infectious pressure compartment (E) and the two disease states susceptible (S) and infected (I). The 
population is divided in three age categories. *State transitions between the S and I disease states are modelled as a continuous-time discrete state 
Markov process (Gillespie’s direct method). The other arrows represent state transitions due to scheduled events from livestock data: (†) enter, (‡) 
ageing, (§) movement between holdings, and (¶) exit.
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The raw data were processed to generate events for the 
simulation as follows. First each animal was checked for 
a valid and unique birth date. Each animal was then fol-
lowed from birth through all reports, where each report 
was classified into one of the four event categories. Based 
on the animal birth date, internal transfer events, i.e. 
moving from calf to young stock or from young stock to 
adult, were inserted as the simulation reached the rele-
vant time. For movement reports with conflicting dates 
of when the movement occurred, the animal was consid-
ered moved to the next location at the first reported date. 
For movements with non-conflicting reports or only one 
report from either the sending or receiving holding, the 
animal was moved at the reported date. Finally, all indi-
vidual animal events were aggregated by holding, day 
and age category. The final data set used for the simula-
tion contained 37 221 unique holdings and the following 
number of events and the mean number of individuals 
affected by each event: enter (n = 3 479 000, mean = 1.3), 
internal transfer (n  =  6 593 921, mean  =  1.2), exter-
nal transfer (n  =  732 292, mean  =  4.2) and exit  
(n = 1 438 506, mean = 3.2).

To enable spatial analysis, holdings were classified 
according to their NUTS level 2 region (Nomenclature 
of territorial units for statistics) [31] based on their 
coordinates. There are eight NUTS level 2 regions in 
Sweden, see Figure  6 for the location of each region. 
Exact coordinates were found for 83.8% (n = 31 187) of 
the holdings. Other holdings were checked for a valid 
5-digit postal code, and then randomly sampled for a 
coordinate within the postal code (n =  4748). Finally, 
remaining holdings were checked for a valid postal area 
(contains several postal codes), and randomly sam-
pled within the postal area (n = 1283). For two holding 
identifiers, no coordinate could be assigned. These two 
holdings were kept in the simulations since the event 
data was based on the holding identifier and not on the 
coordinate.

To explore seasonality in the input data, time series 
with the number of events, the number of holdings with 
at least one animal and number of animals per age cat-
egory were produced. A smoother, using local polyno-
mial regression fitting (loess) [32], was added to the time 
series. Moreover, a time series with the proportion of 
holdings, per day of the year, connected to at least one 
other holding was determined. A generalised additive 
model [33] (GAM) of the proportion against the day 
of the year was fitted. A smooth term with cyclic cubic 
regression splines was used for the GAM model.

Computational simulation framework
The disease spread model was implemented in SimInf [9, 
34]. SimInf is an R [35] package for data-driven stochastic 

disease spread simulations, developed by us. The over-
all design was inspired and partly adapted from the 
Unstructured Mesh Reaction–Diffusion Master Equation 
(URDME) framework [36, 37]. The SimInf package uses 
object oriented programming in R. We defined objects 
with logical layers connected by well-defined interfaces 
for different modelling scenarios. The package also uses 
the ability to interface high performance compiled code 
from R. We implemented the core algorithm of the simu-
lator in the compiled language C [38]. To improve perfor-
mance further, we used OpenMP in the core simulation 
algorithm to divide work over multiple processors and 
perform computations in parallel. A detailed description 
of the implementation and data structures of the simula-
tion algorithm are presented in [8, 9].

The disease spread simulations in the present paper 
were performed with the model named SISe3 in the 
SimInf package version 2.0.0 using R version 3.2.3. The 
simulation was initiated by supplying the initial state in 
every holding (see below) together with all events.

Initialisation
The geographical distribution of the VTEC O157 herd 
prevalence in Sweden was reported by [39]. In south-
ern Sweden, the herd prevalence varied between 3.3 and 
23.3% while no farms were found positive in northern 
Sweden. The expected number of infected holdings in 
each county was estimated from the reported geographi-
cal distribution of the herd prevalence. Initially infected 
holdings were identified through random sampling of all 
herds, without replacement, where each holding had a 
probability weight equal to its county prevalence.

A Swedish nationwide abattoir survey was conducted 
during 2005–2006 [40] to determine the prevalence of 
cattle carrying VTEC O157. In initially infected holdings, 
the within holding prevalence was calculated to meet 
three requirements from that study; (i) an overall preva-
lence of 3.4%, (ii) a prevalence of 15.7% in cattle younger 
than 1 year and, (iii) a prevalence of 2.6% in cattle older 
than one year.

The initial environmental infectious pressure, ϕi(0), 
was set to

To evaluate if the outcome of the spread on national 
scale (see below) was a result of the initial state, initialisa-
tion was also performed with a uniform geographical dis-
tribution. In these simulations, initially infected holdings 
were identified through random sampling of all herds, 
without replacement, where each holding had a prob-
ability weight equal to a national prevalence of 20%. The 
within holding prevalence was 100% in initially infected 

(4)ϕi(0) =
α
∑

j Ii,j(0)

Ni(0)
.
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holdings and the initial environmental infectious pres-
sure, ϕi(0), was calculated from Equation. 4.

Parameter estimation
A previous longitudinal observational study over 
38  months in 126 cattle holdings located in southern 
Sweden in the two NUTS 2 regions “SE21: Småland med 
öarna” and “SE23: Västsverige” [25] was used to estimate 
the parameters in the model. To determine the status that 
could have been found if simulated holdings had been 
sampled, the sampling strategy was replicated. In this pre-
vious study, environmental samples were repeatedly col-
lected from 126 Swedish cattle holdings during the period 
October 2009 to December 2012 to determine the VTEC 
O157 herd status at multiple time points (n = 2009). The 
environmental sampling strategy used in the longitudinal 
study [25] has previously been evaluated against pooled 
individual faecal samples (pool size  =  3), showing that 
the sensitivity depended upon the prevalence of positive 
pools [41]. Moreover, the sensitivity to detect VTEC O157 
in pooled samples has been shown to depend upon the 
proportion of positive samples in the pool [42].

The environmental sampling was simulated at each 
sample point as follows. First, pools (pool size = 3) were 
randomly created within each age category from the 
number of susceptible and infected individuals at the 
time for the sample point in the simulation. Then each 
pool was randomly classified as positive or negative, with 
P (positive) equal to the test sensitivity from [42], given 
the proportion of infected individuals in the pool. Simi-
larly, using the estimated pool prevalence, the holding 

status was randomly classified as positive or negative 
given the sensitivity of the environmental sampling pro-
tocol from [41].

In total, there were 12 parameters in the SISE model 
(Table  1). To maintain model parsimony, the recovery 
rate γj was assigned equal values in all age categories and 
the shed rate α, was fixed at 1.0 per day, thus defining the 
unit of the environmental infectious pressure variable 
ϕi(t). The duration of infection in cattle excreting VTEC 
O157 was studied in a longitudinal study [43] and the 
recovery rate γj was estimated from the mean duration.

The parameters β, υj and ε were estimated by evaluat-
ing the agreement between observed statuses, obtained 
from results of the longitudinal study [25], and the sim-
ulated statuses. The two time-series with observed and 
simulated statuses was defined as Y (t) and Y ∗(t, θ) where 
θ was the vector of model parameters in the simulation. 
A GAM model of the status against the day of the year 
was fitted to Y (t) and Y ∗(t, θ) with binomial distribution, 
logit link function and day of the year as a smoothing 
term with cyclic cubic regression splines. We let ηk and 
ηk

*(θ) be the coefficients from the fitted GAM model of 
Y (t) and Y ∗(t, θ), respectively, with k ∈ {1, 2, . . . , 9}.

The parameter estimation was approached as an opti-
misation problem to find the values of θ that minimised 
the difference between the coefficients ηk and ηk

*(θ) under 
the constraint that all parameters θ ≥0. Using the sto-
chastic simulator SimInf, each outcome provided a meas-
urement of the system with process noise. Accordingly, 
the average coefficient η∗k(θ) was estimated from N = 40 
trajectories

Table 1  Parameters in a SISE VTEC O157 model

Parameters in a stochastic simulation to explore the spread of Verotoxigenic Escherichia coli O157:H7 (VTEC O157) in the entire Swedish cattle population based 
on data reported to the Swedish Board of Agriculture during the period 2005-07- 01 to 2013-12-31. The within-herd disease spread was modelled with a SISE 
compartment model the two disease states: susceptible (S) and infected (I) and E representing the environmental compartment contaminated with VTEC O157 by 
infected animals. The decay of the environmental infectious pressure was varied in each of the four quarters of the year. Individuals were divided into the following 
three age categories; calves 0–119 days, young stock 120–364 days and adults older than 364 days.

Parameter Description (unit) Value

α Rate of shedding from infected individuals (units per day) 1.00 × 100

βq1 Decay of environmental infectious pressure in quarter 1 (per day) 1.75 × 10−1

βq2 Decay of environmental infectious pressure in quarter 2 (per day) 1.19 × 10−1

βq3 Decay of environmental infectious pressure in quarter 3 (per day) 0.80 × 10−1

βq4 Decay of environmental infectious pressure in quarter 4 (per day) 1.58 × 10−1

υc Indirect transmission rate of the environmental infectious pressure in calves (per animal per day) 3.83 × 10−2

υy Indirect transmission rate of the environmental infectious pressure in young stock (per animal per day) 3.83 × 10−2

υa Indirect transmission rate of the environmental infectious pressure in adults (per animal per day) 5.88 × 10−3

γc The recovery rate of infection in calves (per day) 1.00 × 10−1

γy The recovery rate of infection in young stock (per day) 1.00 × 10−1

γa The recovery rate of infection in adults (per day) 1.00 × 10−1

ε Background environmental infectious pressure (units per day) 6.89 × 10−5
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The objective function to measure the agreement was 
defined as

The parameter combination θ that minimized G(θ) 
was obtained with the Nelder-Mead algorithm [44] 
using a linearly constrained optimisation method in 
R. The parameter estimation was first performed with 
the decay of the environmental infectious pressure, β, 
fixed at a decimal reduction rate (the time required at a 
given temperature to kill 90% of the exposed microor-
ganisms) of 16 days for VTEC O157 [45–47]. The state 
transition rate υj from susceptible to infected state was 
assumed to be equal in the calves and young stock age 
categories. To improve model fit, the parameter estima-
tion was refitted with the decay of the environmental 
infectious pressure, β, allowed to vary in each quarter 
of the year.

Exploring spread on a national scale
The following simulation experiment was conducted 
to explore the VTEC O157 spread model on a national 
scale. In each of the eight NUTS level 2 regions in Swe-
den, a set of 126 holdings were randomly selected. In 
each region, each selected holding was mapped to rep-
resent one herd in the longitudinal observational study 
[25]. These eight new sets of holdings represent what 
may have been found if the observational study [25] 
had been conducted in each of the regions. One thou-
sand trajectories were simulated over the time period 
2005-07-01 to 2013-12-31 with the initial prevalence 
according to [39, 40] (see above). For every trajectory, 
simulated environmental samples were generated for 
all selected holdings in each region at the time points 
each herd was sampled in the longitudinal obser-
vational study [25] during the time period October 
2009 to December 2012. A GAM model, as previously 
described, was fitted to the sample points in each region 
for every trajectory. Using the GAM model, the pre-
dicted proportion selected holdings that were infected 
in each NUTS 2 region the first day in each quarter of 
the year were calculated for each trajectory and visual-
ized with a boxplot. A multivariable linear regression 
model was used to assess the relationship between the 
proportion infected holdings and the NUTS 2 region 
and the quarter of the year. The simulation experiment 
was repeated with an initial holding prevalence of 20% 
and all individuals infected in the infected holdings (see 
above).

(5)η∗k(θ) =
1

N

∑

N

η∗k(θ).

(6)G(θ) =
∑

k

(

η∗k(θ)− ηk
)2
.

Sensitivity analysis
Sensitivity analysis was performed to explore how vari-
ation in the model parameters would influence the out-
come of the simulation experiment on national scale. The 
variation was done with a scaling factor for α, βq1, βq2, 
βq3, βq4, γj and υj that varied from 0.95 to 1.05 in steps of 
0.01 and a scaling factor for ε that varied from 0.0 to 2.0 
in steps of 0.2. The simulation experiment was repeated 
for each combination of the scaled values of β against 
the scaled values of ε, for each combination of the scaled 
values of β against the scaled values of υj and for each 
combination of the scaled values of α against the scaled 
values of γj. For every combination, the average propor-
tion positive holdings in each NUTS 2 region at the first 
day in quarter 1, 2, 3 and 4 was determined from 100 
trajectories.

Results
Cattle population and events
The number of holdings decreased in the population dur-
ing the 8.5  year study period with an evident seasonal 
pattern with more active holdings during the pasture sea-
son (Figure 2). The total cattle population in Sweden was 
about 1.6 million individuals with a slightly decreasing 
trend during the study period (Figure 2). There was a sea-
sonal pattern in the number of animals within each age 
category. The externally scheduled events based on regis-
ter data had an evident seasonal variation (Figure 3). The 
enter events, representing births and imports, peaked 
during spring each year. Both the movement data, exter-
nal transfer events, (Figure 3) and the proportion of con-
nected holdings (Figure  4) had one peak during spring 
and one peak during autumn. Slaughter and export 
events, represented by exit, had a bimodal shape with a 
sharp decline at the end of each year.

Parameter estimation
The parameters estimated for the SISE model are shown 
in Table  1. The simulated outcome showed no seasonal 
variation in the proportion positive holdings unless the 
decay of the environmental infectious pressure β was 
allowed to vary in each quarter of the year. A comparison 
of the results from the longitudinal observational study 
[25] and the simulated outcome from the constant and 
the time-varying β is presented in Figure 5.

Exploring spread on a national scale
Figure 6 shows the result from the simulation experiment 
where 126 holdings were randomly sampled in each of 
the eight NUTS level 2 regions in Sweden to explore the 
spread on a national scale. The coefficients for the mul-
tivariable linear regression model to assess the relation-
ship between the proportion infected holdings based on 
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the NUTS 2 region and the quarter of the year are shown 
in Table  2. The proportion infected holdings was sig-
nificantly higher in the southern region SE22 (Sydsver-
ige) compared to the other regions. Furthermore, it was 
significantly lower in quarter two and three and higher 
in quarter four compared to quarter one. The highest 
proportion of positive holdings were observed in SE22 
(Sydsverige), on average between 8–10%. In contrast, 
the lowest proportion of positive holdings, on average 
between 2–3% was observed in SE32 (Mellersta Norr-
land). The same pattern was found when the simulation 

was initialised at a 20% holding prevalence and 100% 
infected individuals in infected holdings.

Sensitivity analysis
Figures 7 and 8 show the result from the sensitivity analy-
sis in quarter 4 of the simulation experiment on national 
scale when varying βq1, βq2, βq3, βq4 against ε and βq1, 
βq2, βq3, βq4 against υj, respectively. The overall pattern 
from the sensitivity analysis in quarter 1, 2 and 3 is simi-
lar, however, with a lower proportion positive holdings 
(data not shown). The proportion of positive holdings 
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Figure 2  The number of holdings and cattle. The number of active holdings (having at least one animal) and the number of cattle in Sweden 
during the period 2005-07-01 to 2013-12-31. Data is from the national cattle database managed by the Swedish Board of Agriculture. The number 
of cattle is grouped by age category; Calves 0–119 days, Young stock 120–364 days and Adults older than 364 days. The dashed line is a loess 
smoother. The data was used in a simulation to explore the spread of VTEC O157 in the complete Swedish cattle population.
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decreased in all regions and all quarters of the year when 
ε and υj was decreased and when β was increased. In all 
regions except SE22 (Sydsverige) the average propor-
tion of positive holdings was below 0.03 in quarter 1, 2, 3 
and 4 when ε was zero, regardless of β in the investigated 
range of values. In contrast, in SE22 (Sydsverige) the 
average proportion of positive holdings was above 0.04. 
When varying β against υj, the average proportion posi-
tive holdings was above 0.01 in all regions and quarters 

of the year. Figure 9 shows the result from the sensitiv-
ity analysis in quarter 4 of the simulation experiment on 
national scale when varying α against γj. The overall pat-
tern from the sensitivity analysis in quarter 1, 2 and 3 was 
similar, although with a lower proportion positive hold-
ings (data not shown). The proportion of positive hold-
ings decreased in all regions and all quarters of the year 
when α was decreased and when γj was increased. When 
varying α against γj, the average proportion positive 
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holdings was above 0.01 in all regions and quarters of the 
year.

Discussion
The present study used real livestock data (births, move-
ments and slaughter) over 8.5  years (2005-07-01–2013-
12-31) to explore the spatio-temporal spread of VTEC 
O157 in the entire Swedish cattle population. This 
approach allows for disease spread modelling that natu-
rally incorporates the time-varying contact network and 
the population demographic. The results show that the 

data-driven simulation captures previously observed 
spatial trends in disease occurrence, with higher preva-
lence of VTEC O157 in southern Sweden [48, 49]. This 
was regardless of whether the simulations were initial-
ised from observed data [39, 40] or from a uniform dis-
tribution. In this study, the parameters of the stochastic 
within-herd disease spread model were the same for all 
herds, irrespective of geographic location, and therefore 
the regional differences from the simulation depends 
solely on properties intrinsic to the livestock data. 
Characteristics of a time-varying contact network are 
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at least one connection to another holding in a simulation of VTEC O157 in the complete Swedish cattle population. The graph is based on cattle 
movements reported to the Swedish Board of Agriculture during the period 2005-07-01 to 2013-12-31. The solid line is a smoother based on a 
generalised additive model (GAM) with cyclic cubic regression splines.
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important for the spread of disease [50–52] and has been 
reported to influence the spread of other cattle diseases, 
for example foot-and-mouth disease [53, 54], bovine viral 
diarrhoea virus [55] and paratuberculosis [56]. This high-
lights the importance of including available and detailed 
network data in simulation studies since it has implica-
tions for the spread of several infectious diseases in a 
population of interacting farms.

The seasonality of the livestock movements in Swe-
den has been demonstrated in previous studies [24, 30] 
and has also been reported from other European coun-
tries, such as Italy [57] and France [50]. We observed 
a slightly increasing trend in the number of moved 
animals during the extended study period, compared 
to the earlier Swedish studies. In addition, there was 
a seasonal pattern in the number of active holdings, 
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VTEC O157 in the complete Swedish cattle population during 2005-07-01 to 2013-12-31. The within-herd disease spread was modelled with a SISE 
compartment model with the two disease states: susceptible (S) and infected (I) and E representing the environmental compartment contaminated 
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of the VTEC O157 status [25] with simulated status. The simulated status is based on a SISE compartment model. Each figure shows a generalised 
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Top one trajectory with a constant decay of the environmental infectious pressure throughout the year. Bottom one trajectory where the decay is 
varied in each of the four quarters of the year.
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the number of animals and the proportion of holdings 
connected with movements. Furthermore, the average 
herd size has increased over time, which could have 
implications for local disease transmission as herd size 
has been identified as a risk factor for VTEC O157 [17, 
22, 25].

There was a better agreement between the observed 
seasonality in the longitudinal study of the VTEC O157 
herd status [25] and simulated results, when the decay 
and removal of the environmental infectious pressure β 
was allowed to vary by quarters of the year. This suggests 
that the seasonality in population demographic, move-
ment data and contact network in itself are not enough 

to explain the observed seasonal pattern. A similar result 
may be achieved by introducing an influence of season-
ality on other model parameters. It has been hypothe-
sised that day length may explain the seasonal shedding 
of VTEC O157 [58] which could be represented in the 
model with a seasonal shedding parameter α. Alterna-
tively, the background infectious pressure ε could vary 
over season. Another approach could be to model the 
growth rate of the bacteria by ambient temperature 
[59, 60]. However, to keep the model parsimonious and 
because good data on α and ε are difficult to find, we 
chose to only vary the decay of the environmental infec-
tious pressure β.

Quarter 1 Quarter 2

Quarter 3 Quarter 4

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
NUTS 2 region

P
ro

po
rt

io
n 

po
si

tiv
e 

ho
ld

in
gs

Initialisation from data Uniform initialisation

1

2

3

4 5

6

7

8

0 200 km

NUTS 2 region

1) SE22: Sydsverige
2) SE21: Småland med öarna
3) SE23: Västsverige
4) SE12: Östra Mellansverige
5) SE11: Stockholm
6) SE31: Norra Mellansverige
7) SE32: Mellersta Norrland
8) SE33: Övre Norrland

Figure 6  Distribution of the regional proportion of holdings positive for VTEC O157. The proportion holdings positive for VTEC O157 the 
first day in each quarter of the year in each of the eight NUTS level 2 regions in Sweden. Each boxplot represents data from simulations of VTEC 
O157 spread in the complete Swedish cattle population during the period 2005-07-01 to 2013-12-31. The simulations are initialised both from a 
prevalence according to observed data [39, 40] and from a uniform initial holding prevalence of 20% and all individuals infected in the infected 
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The model seemingly overestimated the prevalence of 
VTEC O157 in the two most northern regions in Sweden, 
SE32 (Mellersta Norrland) and SE33 (Övre Norrland). 
There are several plausible reasons for this outcome and 
the results from the sensitivity analysis suggests direc-
tions for improvements. The length of the four seasons 
in Sweden differs by region, and the model might have 
a better fit if the decay of the environmental infectious 
pressure β is also varied by region. A limitation of the 
disease spread model used in the present paper is that ε 
is stationary and that the model does not allow the envi-
ronmental infectious pressure to influence neighbouring 
herds. Recent research has highlighted the relevance of 
local spread of VTEC O157 between cattle farms [22, 25] 
and ε could be split into two parts, one part for random 
introduction and one part that is local spread. We sug-
gest future research to explore the spatial dependence in 
model parameters and local spread between neighbour-
ing cattle farms. Our conclusion is that the spatial com-
ponents in the population demographic and the contact 
network gives a partial explanation of the observed dis-
tribution of VTEC O157 in the Swedish cattle popula-
tion, but that there are other factors that likely should be 
included in order to reach a more comprehensive under-
standing of the observed pattern.

The disease dynamics in the most southern region 
SE22 (Sydsverige) appear unique among the investigated 
regions in the study. After removing introduction of 
infection from other sources than animal movements, by 
assigning the background infectious pressure ε to zero, 
the proportion infected holdings was higher than in the 
other regions. It is unrealistic to assume that ε could be 
zero, even though appropriate biosecurity measures most 
likely could reduce ε. To maintain model parsimony, both 
the shedding rate α and the recovery rate γ were kept at 
equal values between the age categories. However, it has 
been reported that the magnitude of shedding is greater 
and the duration longer in calves compared to adult cat-
tle [29] and that a small proportion of infected animals 
shed at much higher levels [61]. The results show that 
varying these two model parameters influences the pro-
portion of infected holdings. Increasing the number of 
parameters in the model would also increase the com-
plexity and the computational challenge of the parameter 
estimation. Nevertheless, a more complex disease spread 
model could further enhance the understanding of the 
transmission dynamics among interacting farms.

It has been suggested that characteristics of the spa-
tio–temporal network of livestock movements can be 
used to improve surveillance and control spread of dis-
ease on a regional and national scale [50, 57, 62]. There 
are several challenges to develop models that make use 
of detailed livestock data, e.g. combining it with disease 
data from surveillance programmes and field studies [6]. 
Moreover, it is computationally challenging to model 
disease transmission over large dynamic networks [7]. 
Using the design of URDME [36], as a starting point in 
the development of SimInf, provided a logical separa-
tion between the core simulator and the model specifica-
tion. The use of sophisticated parallel algorithms enabled 
computationally efficient national scale simulations of 
within-herd infection dynamics combined with realistic 
data-driven modelling of the time varying contact net-
work and the population demographic. Furthermore, 
SimInf, being an R package, provided an environment for 
pre- and post-processing of data, statistical analysis and 
visualisation, all of which are important components in 
simulation. It also provides an infrastructure to share and 
extend knowledge on various operating systems through 
CRAN (The Comprehensive R Archive Network). Our 
goal is that SimInf [9] will grow by including new model 
specifications through contributions from the scientific 
community.

Table 2  The results of the multivariable linear regression

The coefficients to assess the relationship between the proportion infected 
holdings and the NUTS 2 region and quarter of the year. The multivariable 
regression is calculated from the outcome in a stochastic simulation to explore 
the spread of Verotoxigenic Escherichia coli O157:H7 (VTEC O157) in the entire 
Swedish cattle population based on data reported to the Swedish Board of 
Agriculture during the period 2005-07- 01 to 2013-12-31.

Covariate Estimate Standard error P

Intercept 0.090 1.9 × 10−4 <0.001

SE22 (Sydsverige) Baseline

SE21 (Småland med öarna) −0.039 2.3 × 10−4 <0.001

SE23 (Västsverige) −0.037 2.3 × 10−4 <0.001

SE12 (Östra Mellansverige) −0.021 2.3 × 10−4 <0.001

SE11 (Stockholm) −0.054 2.3 × 10−4 <0.001

SE31 (Norra Mellansverige) −0.053 2.3 × 10−4 <0.001

SE32 (Mellersta Norrland) −0.064 2.3 × 10−4 <0.001

SE33 (Övre Norrland) −0.047 2.3 × 10−4 <0.001

Quarter 1 Baseline

Quarter 2 −0.011 1.6 × 10−4 <0.001

Quarter 3 −0.002 1.6 × 10−4 <0.001

Quarter 4 0.011 1.6 × 10−4 <0.001
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This paper explored the spread of VTEC O157 in 
the complete Swedish cattle population. Real livestock 
data was used to incorporate the time varying contact 

network and the population demographic. The results 
showed that regional differences in prevalence may be 
due to regional differences in livestock movements. 
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Figure 7  Sensitivity analysis of β and ε on the proportion of positive holdings. The proportion holdings positive for VTEC O157 the 
first day in quarter four of the year in each of the eight NUTS level 2 regions in Sweden when varying the model parameters. The parameters 
β0
q1,β

0
q2,β

0
q3,β

0
q4 and ɛ0 are the values from the parameter estimation (Table 1) that are scaled with a range of x and y values before running simula-

tions of VTEC O157 spread in the complete Swedish cattle population during the period 2005-07-01 to 2013-12-31. For each combination of x and 
y, the average proportion positive holdings from a random set of 126 holdings in each NUTS 2 region was calculated from 100 trajectories.
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Furthermore, although movements, births and slaughter 
of cattle also have distinct seasonal patterns, these fac-
tors could not by themselves explain the seasonal pattern 

of VTEC O157 prevalence in cattle. With this work, we 
describe how an efficient and freely available software 
can contribute to development of realistic large-scale 
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Figure 8  Sensitivity analysis of β and υ on the proportion of positive holdings. The proportion holdings positive for VTEC O157 the 
first day in quarter four of the year in each of the eight NUTS level 2 regions in Sweden when varying the model parameters. The parameters 
β0
q1,β

0
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q4, υ

0
c , υ

0
y  and υ0

c  are the values from the parameter estimation (Table 1) that are scaled with a range of x and y values before running 
simulations of VTEC O157 spread in the complete Swedish cattle population during the period 2005-07-01 to 2013-12-31. For each combination of 
x and y, the average proportion positive holdings from a random set of 126 holdings in each NUTS 2 region was calculated from 100 trajectories.
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epidemiological models. Future research will encompass 
studies of more complex disease spread models and the 
effects of various intervention strategies.
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