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A B S T R A C T

Background: Adverse drug reactions (ADRs) are one of the leading causes of morbidity and mortality in health
care. Understanding which drug targets are linked to ADRs can lead to the development of safer medicines.
Methods: Here, we analyse in vitro secondary pharmacology of common (off) targets for 2134 marketed
drugs. To associate these drugs with human ADRs, we utilized FDA Adverse Event Reports and developed
random forest models that predict ADR occurrences from in vitro pharmacological profiles.
Findings: By evaluating Gini importance scores of model features, we identify 221 target-ADR associations,
which co-occur in PubMed abstracts to a greater extent than expected by chance. Amongst these are estab-
lished relations, such as the association of in vitro hERG binding with cardiac arrhythmias, which further vali-
date our machine learning approach. Evidence on bile acid metabolism supports our identification of
associations between the Bile Salt Export Pump and renal, thyroid, lipid metabolism, respiratory tract and
central nervous system disorders. Unexpectedly, our model suggests PDE3 is associated with 40 ADRs.
Interpretation: These associations provide a comprehensive resource to support drug development and
human biology studies.
Funding: This study was not supported by any formal funding bodies.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

Toxicity is one of the major causes of termination, withdrawal, or
labeling of a drug candidate or drug, other than lack of efficacy [1�3].
There is an urgent need to better identify toxic on- and off-target
effects on vital organ systems especially for cardiovascular, renal,
hepatic and central nervous system (CNS)-related toxicities; further-
more, there is a desire to reduce cost and labor in preclinical assays
and drug testing on non-human species [4�6]. In vitro pharmacologi-
cal assays have been widely used to screen for possible off-targets
and potential adverse effects and eliminate compounds that are not
safe enough in the drug development stage as early as possible [5,7].
However, systematic prediction of compound safety and potential
adverse events associated with a compound is still a challenge for the
pharmaceutical industry.

Machine learning has been shown to be insightful for many differ-
ent stages of drug discovery and development [4,8�15], such as pre-
clinical pharmacology [4], clinical trials [16], and basic science
research [13,15]. Previous studies have predicted efficacy [15], target
binding [4] or absorption, distribution, metabolism, and excretion
(ADME) properties [17] of small molecules based on their chemical
structure. However, the diversity of structures that interact with tar-
gets, even when they are well described like human Ether-a-go-go-
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Research in Context

Evidence before this study

Adverse reactions of marketed and approved drugs cause a sig-
nificant amount of morbidity and mortality. Previous studies
have mostly focused on identification of adverse drug reactions
from post-marketing adverse event reports in patients. How-
ever, drugs can often bind many different protein targets and it
remains unclear which of these targets cause adverse effects in
the human body. A better understanding of the links between
target engagement and the manifestation of adverse effects in
patients may offer an alternative yet still mechanistically-
grounded approach to predict and improve drug safety. Such in
silico drug screening algorithms have thus far been limited in
scope.

Added value of this study

In this work, we have leveraged adverse drug reaction events
from post-marketing identification surveys and target-based in
vitro pharmacology of over 2000 marketed drugs. Through
machine learning, we can systematically predict the drug
effects on human patient populations from their target-based
preclinical profiles. We validate our machine learning predic-
tions extensively based on chronological event reporting, com-
parison with drug labels and through systematic text mining of
scientific literature. Through our target-centric approach, we
identify 221 statistical associations between protein targets
and adverse reactions, which provide novel insight into the
molecular components underlying physiological adverse reac-
tions. Our combined analysis of these two large datasets thus
provides a significant advance in the field of drug safety predic-
tion. Furthermore, these machine learning algorithms are scal-
able and adaptable to similar datasets, and can be accessed for
download online.

Implication of all the available evidence

Taken together, we envisage that our target - adverse drug
reactions associations and predictive model may accelerate
drug discovery and development efforts as well as inform
future human biology studies. We posit that our findings have
the potential to mitigate drug safety risks already at the preclin-
ical stage. This could lead to faster and more accurate identifica-
tion of safe therapeutic candidates.
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related gene (hERG), make it challenging to produce reliable models
[18]. Several studies provide small, hand-curated databases providing
up to 70 pharmacological targets (i.e. receptors, ion channels, trans-
porters, etc.) with established links to adverse side effects based on a
scientific literature search [5,7,19�21]. Natural language processing
of scientific literature [22,23] and drug labels [24] as well as data-
bases, such as the US Food and Drug Administration (FDA) Adverse
Event Reporting System (FAERS) [25], OMOP [26] and EU-ADR [27],
further provide resources for machine learning approaches to learn
associations between drugs and adverse drug reactions (ADRs)
[4,8�11,22,28,29]. FAERS is a voluntary, post-marketing pharmacovi-
gilance tool that can be used to monitor the clinical and post-market-
ing performance of drugs. Another study highlights the importance
of predicting the likelihood of clinical trial side effects using human
genetic studies of drug-targeted proteins [16]. From a pharmacoge-
nomics perspective, predicting drug-target interactions using phar-
macological similarities of drugs and FAERS can be beneficial for drug
repositioning and repurposing [30].
In this study, we explore an alternative use of FAERS data to pre-
dict compound safety using Medical Dictionary for Regulatory Activi-
ties (MedDRAⓇ [31]) terms, which we envision to be useful for future
preclinical studies. Our machine learning approach is different from
the aforementioned approaches (Supplementary Table 1) because we
not only predict adverse drug reaction occurrences of drugs but most
importantly also extract biologically meaningful target-ADR links.
Using an in vitro secondary pharmacology dataset of more than 2000
marketed or withdrawn drugs (see Methods), we built a random for-
est model with the subset of 1329 drugs that had accompanying
adverse event reports from FAERS, to predict drug-ADR and target-
ADR associations. We validate drug-ADR predictions through system-
atic Side Effect Resource (SIDER [24]) drug label analysis and 221 tar-
get-ADR predictions through systematic literature co-occurrence
analysis. Furthermore, we find canonical target-ADR associations,
such as hERG binding causing cardiac arrhythmias. We also encoun-
tered unexpected associations which warrant further investigations,
such as a link between Phosphodiesterase 3 (PDE3) and several ADRs,
including congenital renal and urinary tract disorders. We conclude
our study with potential targets that are associated with cardiovascu-
lar and renal ADRs to demonstrate the utility and possible impact of
this method in drug development and preclinical safety sciences by
enabling prediction of ADRs from in vitro pharmacological profiles.

2. Methods

2.1. In vitro secondary pharmacology assays for marketed drugs

AC50 values of 2134 marketed drugs (Supplementary Table 2)
were measured in up to 218 different in vitro secondary pharmacol-
ogy assays. Compounds were obtained from the Novartis Institutes of
Biomedical Research (NIBR) compound library and tested in a panel
of in vitro biochemical and cell-based assays at Eurofins and at NIBR
in concentration-response (8 concentrations, half-log dilutions start-
ing at 30mM). Assay formats varied from radioligand binding to iso-
lated protein to cellular assays. Example protocols may be found at
https://www.eurofinsdiscoveryservices.com/cms/cms-content/serv
ices/in-vitro-assays/. Normalized concentration response curves
were fitted using a four parameter logistic equation with internally
developed software (Helios). The equation used is for a one site sig-
moidal dose response curve Y as a function of tested concentrations
X: Y(X)=A+(B-A)/(1+(X/C)D), with fitted parameters A=min(Y), B=max
(Y), C=AC50 and exponent D. By default, A is fixed at 0, whereas B is
not fixed.

If a drug was not tested against a specific assay, the AC50 value
was set to NA (not available). AC50 values from similar assays with
the same gene target were merged to reduce the NA data and fea-
tures in the random forest model; this procedure resulted in 184 dif-
ferent target assays (Supplementary Table 3). In case any merged
assays had multiple AC50 values for the same drug, we averaged these
geometrically to take into account variation over orders of magni-
tudes. The drugs are classified according to their annotated Anatomi-
cal Therapeutic Chemical (ATC) code [33]. In case of multiple ATC
codes, we assigned the most frequent level 1 code.

2.2. Mining adverse event reports of marketed drugs using openFDA

In this study, we utilized openFDA to acquire FAERS reports
related to the query compounds [25,34]. This Elasticsearch-based API
provides raw download access to a large volume of structured data-
sets, including adverse events reports from FAERS.

We used generic compound names (e.g. “Amoxicillin”) to query
through the openFDA interface, accessed programmatically using
Python. In order to maximize the coverage over FDA datasets, we
normalized generic names to uppercase format followed by a name
similarity metric to filter out unrelated records in our analysis. We
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included reports when the Jaro similarity between the query generic
name and reported compound name was equal or greater than 0.8.
To illustrate, to query “3alpha-Androstanediol”, we acquired reports
including “3ɑ-Androstanediol”, “Androstanediol”, “3-alpha-Andros-
tanediol” as different lexical variations of the generic name and col-
lated the resulting adverse event reports.

As the FAERS database contains information voluntarily submitted
by healthcare professionals, consumers, lawyers and manufacturers,
adverse event reports may be duplicated by multiple parties per
event, and may be more likely to contain incorrect information if sub-
mitted by a non-medical professional. To reduce reporting bias and
increase report information accuracy, we only analysed reports sub-
mitted by physicians (data field: ‘qualification’ = 1). In this subset of
adverse event reports, the data were further filtered by reported
drug characterization, which indicates how the physician character-
ized the role of the drug in the patient’s adverse event. A drug can be
characterized as a primary suspect drug, holding a primary role in
the cause of the adverse event (data field: ‘drugcharacterization’ = 1);
a concomitant drug (‘drugcharacterization’ = 2); or an interacting
drug (‘drugcharacterization’ = 3). Here, we included only primary sus-
pect drug reports. Without this restriction, model performances did
not improve. We obtained all adverse events reports corresponding
to the query compound that passed through the aforementioned
filters.

Adverse event report descriptions are coded as medical terms of
MedDRA terminology [31]. Medical observations can be reported using
5 hierarchical levels of medical terminology, ranging from a very gen-
eral System Organ Class term (e.g. gastrointestinal disorders) to a very
specific Lowest Level Term (e.g. feeling queasy). Each term is linked to
only one term on a higher level. For each report, we recorded all Med-
DRA Reaction terms (data field: “reactionmeddrapt”) at the Preferred
Term level and mapped these Preferred Terms to Higher Level Group
Term and System Organ Class level. For each (ADR term, drug) tuple,
we then calculated the ADR occurrence, defined as the following frac-
tion: number of adverse event reports containing that ADR term rela-
tive to the total number of ADR reports for that drug.

For different FAERS versions (Q4_2014, Q4_2018 and Q2_2019),
we used the same query except the time parameter TO, which was
set to 12/30/2014 for the Q4_2014 query. For the other two queries,
we did not set the limit parameter which was filled with the query
time by default (query date was 10/10/2018 for Q4_2018 and 08/12/
2019 for Q2_2019).
2.3. Random forest models and statistical methods of drug - ADR
associations

To construct and train our random forest models, we used AC50
values for a panel of target assays for marketed drugs (model input;
independent variable) and ADR occurrences of the compounds
(model output/predictions; dependent variable). Since there may be
several ADRs associated with any given drug, we took a “first-order
strategy”, i.e. we assume there is no correlation between different
ADRs, and a “divide and conquer” strategy, i.e. we decompose our
learning task into n independent binary classification problems,
where n is the number of different ADR terms in our output data
(n = 26 for SOC and n = 321 for HLGT level respectively). We built a
random forest [69] binary classifier for each ADR using Binary Rele-
vance with the random forest modeling option in mldr package [70]
and utiml package in R [71].

To define the features for the random forest models, we discre-
tized and one-hot encoded our input AC50 values. Discretization was
essential to limit the number of features and enhance the predictive
power of the model. We defined 3 classes (levels) of AC50 ranges for
each target assay (reported in Supplementary Table 2 with level val-
ues 2, 1, and 0, respectively).
� Highly active class: AC50 in [0, 3mM]
� Active class: AC50 in [3mM, 30mM]
� Inactive class: AC50 greater than 30mM

If the AC50 value is NA, the values for all Classes are 0. Each drug
has AC50 values for 184 (merged) assays, so there are 184£3 = 552
binary features to represent our input data. Features consisting of
only 0 values were removed, resulting in 413 input features used for
model construction.

The observed ADR occurrences retrieved from FAERS were discre-
tized into binary dependent variables through a statistical model
based on the binomial distribution (binomial model). Intuitively, a
drug has an association with the ADR if the occurrence is higher than
through random reporting. To formalize this, first let Nd be the total
number of ADR reports for a given drug. The probability to observe
an ADR occurrence OADR = X / Nd at random is equivalent to choosing
that ADR X times out of Nd with X distributed binomially: X»bin(Nd,
p = 1/n). Here, n represents the total number of ADRs as defined
above. Under this null distribution, we calculate the p-values for all
observed ADR occurrences OADR for a given drug, and then perform a
Benjamini-Hochberg False Discovery Rate (FDR) correction (using the
Python statsmodels package). If an FDR-corrected p-value is < 0.01,
then the ADR value for that drug is 1, reflecting an association; 0 oth-
erwise. With Empirical-Bayes Regression-adjusted Arithmetic Mean
(ERAM) [8,36�38], ADRs at the HLGT level were considered an asso-
ciation with a drug if 1.5< ER05< ER95 and no association otherwise
[8,36�38]. These ERAM binary drug-ADR predictions were then com-
pared to those from our binomial model using a x2-test.

All random forest models were first trained using 5-fold cross val-
idation and each fold is selected sequentially. The training set con-
sists of 1329 drugs, which has at least one ADR report. 1063 drugs
were used for training and 266 drugs were used for testing in each
fold, and the distribution of drug classes (ATC) in our training set
(1329 drugs) is preserved in 5-fold cross validation splits (Supple-
mentary Fig. 1a), i.e. the drug classes are represented in 5-fold cross
validation splits the way they are represented in our training set. For
a given (drug) input of AC50 values and ADR, the random forest model
output, termed ADR probability, can be interpreted as the probability
that the ADR is associated with the drug. To enable direct comparison
of model predictions with binarized ADR occurrences, we binarized
these ADR probabilities with a simple threshold value of 0.5. These
binary values were used for training, cross validation and to calculate
classification performance metrics. All models have been constructed
the same way regardless of different FAERS versions.

We evaluated our models based on six metrics: accuracy, Mat-
thew’s correlation coefficient (MCC), precision, recall, area under the
receiver operating characteristic curve (AUROC) and area under the
precision recall curve (AUPRC). These metrics are calculated using
their definitions below, except 3 metrics: (1) MCC, which is calcu-
lated using mltools package in R [https://github.com/ben519/
mltools], (2) AUROC, which is calculated using the precrec package in
R [72] and (3) AUPRC, which is calculated using the PRROC package
in R [73].

� Accuracy = TPþTN
TPþTNþFPþFN

� Precision = TP
TPþFP

� Recall = TP
TPþFN

� MCC = TP�TN�FP�FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþFPÞðTPþFNÞðTNþFPÞðTNþFNÞ

p

� AUROC ¼ R1
x¼0

TPR
�
FPR�1ðxÞ

�
dx

� AUPRC =
R1

�1
Precision ðxÞdP½Y� x�

where true positive rate (TPR) is by definition equal to the recall
defined above and FPR (false positive rate = FP

FPþTN). The corresponding

https://github.com/ben519/mltools
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metrics for each individual ADR model are calculated as above. The
global model statistics were obtained through calculation over all ADR
models. For the X and Y randomization models, we first randomly per-
muted the feature rows (X randomization) or binomial model drug-ADR
associations binary class values that were used for model training (Y ran-
domization) and subsequently trained, 5x cross validated and calculated
5x CV performancemetrics as described above.

2.4. Statistical methods of target-ADR associations

To find associations between gene target assays and ADRs, we first
generated ADR probabilities specific to a given assay. As a model
input, one out of its three random forest input features’ value was set
to 1 and all others to 0. This simulates the scenario of an in silico com-
pound that is potent with an AC50 value in the range corresponding
to the positive feature only. We then utilized the ADR’s random forest
model, pre-trained on all available marketed drug data (see previous
section), to calculate the resulting ADR probability. We repeated this
procedure for each feature of all assays and each ADR.

To select the predictive features for a given ADR, we ordered the
pre-trained random forest model’s input features according to their
Gini importance score [74] and denote the top 5% as significant fea-
tures. Our criteria for a gene (target assay) - ADR pair were:

� For a given ADR: at least 2 out of 3 assay features need to be sig-
nificant in order to make a reliable comparison between the ADR
probabilities with respect to AC50 values.

� At least one of the ADR probabilities of the significant features
has to be larger than zero.

We filtered out target-ADR pairs if the ADR term maps to the fol-
lowing SOC classes, which are not specific to body parts or underlying
human biology:

� general disorders and administration site conditions
� injury, poisoning and procedural complications
� investigations
� neoplasms benign, malignant and unspecified [incl cysts and polyps]
� poisoning and procedural complications
� social circumstances
� surgical and medical procedures

To ensure the reproducibility of the target-ADR pair selection pro-
cedure, we repeated the random forest model training with different
seeds for a total of 5 times. We then took the union of the 5 sets of
target-ADR pairs and discarded pairs that were only found once out
of 5 runs. Finally, to determine if the mean ADR probabilities between
the selected AC50 classes were statistically significantly different, we
performed a two-sample t-test with sample sizes equal to the num-
ber of times a class was selected (ranging from 2 to 5 times) using the
Python scikit.stats package. In case all three AC50 classes were repre-
sented, we tested the highly active versus inactive class. We then per-
formed a Benjamini-Hochberg FDR correction. If the FDR-corrected p-
value is < 0.1, then the target-ADR pair is considered a statistically
significant association.

To evaluate the relation between the HLGT level ADR term hepatic
and hepatobiliary disorders and target assay BSEP, we also trained
and analysed two random forest models as described above to find
target-ADR pairs but with only the BSEP assay data discretized with
class boundaries [0, 30mM), [30, 300mM] and >300mM or [0,
100mM), [100, 300mM] and >300mM.

2.5. Side effect resource (SIDER) analysis

The Side Effect Resource (SIDER; version 4.1) was downloaded
(http://sideeffects.embl.de/download/; accessed on 09/16/2019). The
file meddra_all_se.tsv.gz contains drug-ADR pairs extracted from
drug labels using text mining [24]. The supplied MedDRA preferred
term (PT) was mapped to HLGT used for the random forest modeling.
The file drug_atc.txt provides mappings from drug names as used in
SIDER to Anatomical Therapeutic Chemical (ATC) codes. ATC codes
for the 805 drugs in the test set were obtained from the NIBR com-
pound database, and matched to ATC codes from SIDER. For drugs
that could not be matched via ATC codes, additional matches were
obtained by mapping the compound name, first trying the name in
its entirety (e.g. “butriptyline hydrochloride”, then on the first word
in the drug name (e.g. “butriptyline”). All matches, whether obtained
on ATC codes or by drug name, were reviewed manually for accuracy.
2.6. Systematic validation of predicted target-ADR association using
PubMed database

We built a query based on 254 unique HLGT level ADR
terms and 106 unique target genes (corresponding to the
assays), for which we could find a corresponding MeSH term,
to retrieve linked publication identifiers (PMIDs) from the
PubMed database. All PMIDs were acquired by submitting a
query for every MeSH entity separately via the PubMed API
engine, a search engine that provides access to the MEDLINE
database of references and abstracts on life sciences and bio-
medical articles. Next, we determined the PMIDs for a gene-
ADR pair as the intersection of the two PMID sets of each cor-
responding MeSH term query. Furthermore, for each possible
gene-ADR pair we determined whether it was part of the 221
predicted associations from the Random Forest model or not.
In this way, we obtained 219 unique positive gene-ADR pairs
and a total 26,705 unique negative pairs. Lastly, we generated
a set of negative pairs corresponding to all permutation pairs
from the 39 unique genes and 131 unique ADRs that are part
of the positive set, resulting in 4890 unique negative pairs in
this negative control set. To assess any statistical overrepre-
sentation, we calculated the number of pairs with at least one
co-occurrence publication for both negative and positive sets
and assessed significance with a Fisher Exact test (Python
function scipy.stats.fisher_exact). Furthermore, we calculated
the co-occurrence “lift” over the reporting probability when
assuming independence, defined as with the total number of
PMIDs in the PubMed database in 2019 (https://www.nlm.nih.
gov/bsd/licensee/2019_stats/2019_LO.html). and are respec-
tively the number of retrieved PMIDs for a unique gene-ADR
pair, ADR, or gene target separately. To assess the location dif-
ferences of the above described positive versus negative distri-
bution of lift values, we performed a Mann Whitney U test
(Python function scipy.stats.mannwhitneyu, two-sided, conti-
nuity correction=True).
2.7. OMOP benchmark comparison analysis

The OMOP benchmark consists of 399 drug-ADR pairs with a
binary ground truth (association or no association) for 4 different
ADRs at the Preferred Term (PT) level [26]. For our benchmarking, we
mapped these PT ADRs to their HLGT parent term to enable compari-
son with our model predictions. ERAM and binomial model binary
drug-ADR association predictions (both dependent on the availability
of FAERS adverse event reports) were generated as described above.
RF Train and RF Test indicate the performance of the RF ADR models,
after training as described above, using the in vitro profiles of drugs
from the overlap of drugs present in OMOP with the drugs that were
also present in RF training (n = 1329 drugs) and test (n = 805 drugs)
sets, respectively. Performance metrics were calculated as described
above.
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https://www.nlm.nih.gov/bsd/licensee/2019_stats/2019_LO.html
https://www.nlm.nih.gov/bsd/licensee/2019_stats/2019_LO.html


R. Ietswaart et al. / EBioMedicine 57 (2020) 102837 5
3. Results

3.1. Systematic in vitro pharmacology of marketed and withdrawn
drugs

To link gene targets to ADR occurrence, we utilized in vitro phar-
macology assay data for 2134 marketed or withdrawn drugs, gener-
ated by Novartis, and ADR reports from FAERS (Fig. 1a,
Supplementary Table 2). Withdrawn drugs and their assay data are
also included due to the fact that they are associated with a plethora
of ADRs, and thereby constitute an important resource for our predic-
tive approach. Fig. 1b summarizes the top 50% of frequently occurring
primary indications, classified by the Anatomical Therapeutic Chemi-
cal (ATC) codes, of the 2134 drugs using a word cloud. The categories
that have the highest number of compounds are antibacterial, oph-
thalmological, and antineoplastic drugs. The in vitro pharmacology
assay data includes AC50 values for each drug at up to 218 different
assays for 184 gene targets (see Supplementary Table 3). There are 6
classes of these 184 gene targets, with the majority [47%] of targets
falling into G protein-coupled receptors (GPCRs) (Fig. 1c), which is a
dominant, widely studied drug target family, broadly represented by
marketed drugs [32]. Fig. 1d is a heatmap visualization of the in vitro
pharmacology assay data, where each row is a drug, grouped by their
ATC anatomical main group terms [33]; each column is a target assay,
grouped by target class; and each value is the AC50 of drugs for target
assays. Even though 70% of drug-assay combinations have not been
tested, i.e. these combinations have NA value for AC50, our data indi-
cate relatively uniform assaying with respect to the different drug
classes.
3.2. Analysis of adverse event reports from FAERS connects drugs with
human ADRs

We queried FAERS [25] using openFDA [34] for 2134 marketed or
withdrawn drugs in October 2018 (FAERS Q4_2018 version; covering
all reports from January 2004 to October 2018) and retrieved 671,143
adverse event reports using our data extraction criteria (Fig. 2a). We
only included reports which were submitted by physicians and were
annotated as the primary suspect drug [35]. There are 464 drugs that
did not have a matching name in FAERS, 341 drugs that did not have
any adverse event reports, and 1329 drugs with at least 1 adverse
event report. Intuitively, a drug is associated with a particular ADR if
its reporting occurrence is higher than reports with randomly
selected ADRs. To formalize this, we developed a significance test
based on a binomial null distribution and false discovery rate (FDR)
multiple testing correction to determine if the observed ADR occur-
rence was significantly high to be classified as an association (or
alternatively no association) between ADR and drug (see Methods for
detail). The resulting drug-ADR associations corresponded strongly
(odds ratio = 11, x2-test, p-value < 10�16) with those identified with
ERAM (Empirical-Bayes Regression-adjusted Arithmetic Mean), an
established Bayesian method based on the proportional reporting
ratio adjusted for covariates (age group, sex and reporting year) and
concomitant drugs [8,36�38]. Overall, we observe a positive trend
between the number of adverse event reports and the number of
ADR associations (Fig. 2b). Antineoplastic and immunomodulatory
drugs (Fig. 2b, blue, N = 155) have many ADR associations while the
extent of ADR association for antihypertensive drugs (Fig. 2b, red,
N = 35) varies more widely. As an example, we visualized our drug-
ADR associations (Fig. 2c), in which ADRs are grouped by MedDRA
System Organ Class (SOC) level terms and drugs are grouped by ATC
anatomical main group terms [33], revealing that ADRs are wide-
spread across organs caused by antineoplastic and immunomodulat-
ing agents (Fig. 2c, label L), as well as nervous system drugs (Fig. 2c,
label N).
3.3. Random forest model learns relationship between in vitro
pharmacology and reported ADRs in humans

We deployed a machine learning approach to predict ADRs for a
given drug from their in vitro secondary pharmacology profiles
(Fig. 3a). We consider this a binary classification problem for each
ADR independently because a given drug can cause multiple ADRs
based on its possible engagement with multiple targets and because
a single target may be associated with multiple ADRs. We discretized
and one-hot encoded our “input” in vitro pharmacology assay data
(AC50 values) into 3 classes: highly active (AC50 < 3mM), active
(3mM � AC50 � 30mM) and inactive (AC50 > 30mM), which are in
accordance with the dynamic range of all our assays (30mM, except
for BSEP as described below) and reflect commonly used ranges in
the field [4]. Out of the 184 assays x 3 classes = 552 binary features to
represent our assay information input data, those consisting of only 0
values were removed, resulting in 413 input features. These were
used to predict 321 High Level Group Term (HLGT) ADRs or 26 Sys-
tem Organ Class (SOC) ADRs for each drug. The observed drug-ADR
associations from FAERS, as described above, constitute the depen-
dent variable that the model is learning. We constructed a unifying
binary relevance random forest model, which consists of 321 random
forest HLGT ADR models. The models were first trained and tested,
using 5-fold cross validation where each fold is selected sequentially
(Fig. 3b). We used 1329 drugs for model construction because these
drugs had at least 1 adverse event report in FAERS Q4_2018. The
remaining 805 drugs, which did not have any ADR reports, were
excluded from training and cross validation. We confirmed that the
distribution of drug classes in our training set (1329 drugs) is compa-
rable to the distribution of drug classes in each 5-fold cross validation
split (1063 drugs for training and 226 drugs for testing; Supplemen-
tary Fig. 1a, x2-test: p-value > 0.99). Likewise, the observed drug-
ADR associations forming the binary dependent variable of the ran-
dom forest were also stratified between training and cross validation
splits (Supplementary Fig. 1b). The model predictions are in probabil-
ity format, which is used later for target-ADR predictions, and in
boolean format (Fig. 3a), to enable assessment of model performance
via the area under the receiver operating characteristic curve
(macro-AUROC); the area under the precision-recall curve (macro-
AUPRC); accuracy; macro-precision; macro-recall and Matthew’s cor-
relation coefficient (MCC), a performance measure that takes class
imbalance into account (Fig. 3b). The unifying random forest model
performance of SOC ADRs and HLGT ADRs using the full training set
(1329 drugs) and the 5-fold cross validation sets (266 drugs, aver-
aged) are depicted in Fig. 3b. Accuracy ranges from 0.82 to 0.98,
macro-precision ranges from 0.5 to 0.85, macro-recall ranges from
0.29 to 0.74, MCC ranges from 0.37 to 0.83, and macro-AUROC ranges
from 0.80 to 0.96. These model performances are higher than nega-
tive control random forest models trained and cross validated on ran-
domized input (X) or output (Y) data, further confirming the
predictive power of our models (Fig. 3b, Supplementary Table 4).
Compared to SOC level (21 ADR terms), the finer grain HLGT level
(321 ADR terms) had proportionally fewer drug-ADR associations;
additionally, the performance of the HLGT and SOC models are com-
parable. We therefore proceeded with the HLGT level models for fur-
ther investigation.

For 55 of the 321 HLGT ADRs, the corresponding random forest
models simply predicted zero for all drugs as mostly none (and at
most 4) of the 1329 drugs with adverse event reports were associated
with those ADRs (Supplementary Table 5, all ADRs with preci-
sion = NA). Intuitively, if too few drugs are reported to cause an ADR
in FAERS, insufficient training data is available for our random forest
to learn whether in vitro pharmacology drug profile could predict
that particular ADR. Since these 55 models were not predictive, we
did not consider them for further analyses. For the remaining 266
ADRs, we could determine performance metrics (Fig. 3c). Accuracy
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and precision were high, ranging between 0.9 and 1, whilst the recall
and MCC range more widely (Fig. 3c). This variability occurs for ADRs
that have only a few drugs associated with them (Fig. 3d). This indi-
cates further that sparse positive training data, which causes a large
class imbalance, generally results in reduced predictive power of the
random forest model. As the number of associated drugs increases,
the models learn to better distinguish true positives from false nega-
tives, subsequently leading to an increase in recall and MCC values
(Fig. 3d).

3.4. Predictive power of the random forest model for multiple FAERS
reporting time periods

To test if our random forest model framework is sensitively
dependent on the FAERS reporting period, we constructed new ran-
dom forest models and performed 5-fold cross validations for both
SOC and HLGT levels using FAERS data from 2 different time points:
Q4_2014 (including all reports from January 2004 to December 2014)
and Q2_2019 (including all reports from January 2004 to June 2019).
For proper comparison, the model constructions and cross validations
were identical to our above described “main” model based on FAERS
Q4_2018. Overall, the performance metrics (accuracy, MCC, macro-
precision, macro-recall, macro-AUROC) of both SOC and HLGT level
models are comparable between Q4_2014, Q4_2018 and Q2_2019
(Supplementary Table 4). This analysis demonstrates that our ran-
dom forest modeling framework has a comparable predictive power
despite changes in the FAERS reporting time period; therefore, it is
not sensitive to different versions of FAERS.

3.5. Chronological validation of predicted drug-ADR associations

To validate the predictive power of our random forest modeling
framework further, we performed a chronological validation analysis,
through identification of initial false predictions (false positives and
false negatives) from the random forest model trained on FAERS
Q4_2014 which was then validated using a dataset from the
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subsequent time period, 2015�2019. The random forest model
trained on Q4_2014 data has 421 (0.1% of a total of N = 433,671 model
predictions) false positive drug - ADR associations, i.e. based on a
drug’s pharmacology profile, the model predicted a probability > 0.5
(Fig. 3a) for an ADR even though there was no association observed
from the adverse event reports up until 2014. However, when com-
pared to the observed Q2_2019 FAERS data, which also include
adverse event reports from the time period 2014�2019, 3.1% (13) of
the false positives turned into observed drug-ADR associations (true
positive), which is 4.4-fold more than expected by chance (x2-test:
p-value = 2£10�5). Similarly, the Q4_2014 random forest model
made 8519 false negative predictions, of which 2.2% (184), 40-fold
more than expected by chance (x2-test: p-value < 10�16), turned
into true negative predictions when compared to the Q2_2019
observed drug-ADR associations. Furthermore, the overall model per-
formance metrics had also improved over time as compared to 5x
cross validation on Q4_2014 (Supplementary Table 4) and Q4_2018
observations (Fig. 3b). This analysis indicates that significant propor-
tions of our model predictions on drug-ADR associations that were
initially “false predictions” became “true predictions” through accu-
mulation of new adverse events reports over time.
3.6. Random forest model predicts expected ADR profiles for anti-
hypertensive drugs

As another demonstration of model validation, we analysed the
ADR profiles of 6 subclasses of antihypertensive drugs: adrenergic
alpha, adrenergic beta, ACE inhibitors, angiotensin AT2 inhibitors,
calcium channel blockers and diuretics (Supplementary Table 6). The
signature of the anti-hypertensive drug subclass represents a set of
ADRs that were common to all drugs in this subclass. Each antihyper-
tensive drug subclass has a unique ADR fingerprint in the Q4_2018
FAERS version which was closely predicted by our random forest
model (Fig. 3e). The accuracy ranged from 0.984 to 1, with perfect
specificity and precision (Supplementary Table 7). The sensitivity
ranged from 0.882 to 1, except for the diuretics sub-class, which had
a sensitivity of 0.167. This may be because diuretics target the kidney,
and not the cardiovascular system as the rest of the anti-hypertensive
drugs do. Of note, the adrenergic alpha and adrenergic beta receptor
subclasses maintain distinct profiles in the predicted data. Specifi-
cally, the model correctly predicts that adrenergic alpha receptor
drugs are associated with suicidal and self injurious behaviors, which
has been reported in the literature [39,40].
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3.7. Random forest model validation through comparison with drug
label ADRs

To demonstrate the predictive power of our random forest model
on a test set of drugs that were not used for model construction, we
utilized the model to predict drug-ADR associations for 805 drugs
that did not have any reported ADRs in the FAERS Q4_2018 version,
either because there was no match with the drug name or there were
no ADR reports for that drug submitted to FAERS by October 2018.
For validation, we queried the Side Effect Resource (SIDER) database
[24], which contains drug-ADR pairs extracted from FDA drug labels
by text mining [24]. Drug labels are generally informed by FAERS and
other sources. For these 805 drugs without evidence from FAERS, we
obtained 95 drug matches in SIDER, which were further reduced to
75 drugs that did not share active ingredients with drugs in the train-
ing set. Overall, 57% of positive drug-ADR pairs (i.e. drugs where the
model predicts ADRs) were reported in SIDER, compared to 9% of
negative pairs (N = 24,075; x2-test: p-value < 10�16; Supplementary
Table 8). For instance, methysergide, a 5-HT receptor antagonist used
to treat migraine and cluster headaches, has predicted ADRs from 6
HLGT categories, all of which are supported by specific ADRs from
SIDER (Fig. 3f). “Cardiovascular disorders with murmurs” appears in
the Warnings and Precautions section of the label. Other adverse
events under gastrointestinal symptoms and CNS symptoms from
SIDER were confirmed in the Adverse Events section. Oxprenolol, a
lipophilic beta blocker used for treating angina pectoris, abnormal
heart rhythms and high blood pressure, has predicted ADRs from 3
HLGT categories. The specific SIDER ADRs of bradycardia, dizziness
and asthenia were also confirmed in the label from the Electronic
Medicines Compendium (https://www.medicines.org.uk/emc/prod
uct/3235; accessed 09/11/2019). Overall, our random forest model
proves to be a powerful tool to predict both on- and off-target related
drug-ADR associations from in vitro pharmacological drug profiles.
3.8. Random forest performance and validation on OMOP benchmark

To assess the predictive power of our random forest model fur-
ther, we compared our drug-ADR associations against the OMOP
benchmark [26], which consists of 399 drug-ADR pairs with a binary
ground truth (association or no association) as determined through
evaluation of different information sources (including FAERS) by
domain experts [26]. We mapped the 4 ADRs represented in OMOP
(acute myocardial infarction, renal failure acute, liver disorder and
gastrointestinal haemorrhage) to their respective HLGT parent clas-
ses. For evaluation, we included all drug-ADR pairs that were present
in OMOP and also had available model predictions (Supplementary
Fig. 2, Supplementary Table 9). For comparison, we also applied this
a. Schematic representation of the machine learning approach. Using input data, which
model for each adverse drug reaction (ADR) that predicts the probability of a drug causing
adverse event reports (Ndrugs = 1329).

b. Summary statistics of overall model performance. We developed two unified random
level group term (HLGT; blue) unified random forest model consists of 321 ADR random for
consists of 26 ADR random forest models. The performance of the HLGT and SOC models is s
Matthew’s correlation coefficient, AUROC: area under receiver operating characteristic, AUPR
on all 1329 drugs (see A). 5-fold cross validation results are averaged over each fold (all metri
the performance of the HLGT level random forest models trained on FAERS reports up to Q4
cross validation performance of negative control HLGT level random forest models trained on

c. Box plots indicating the distributions of the training performance metrics (as in B) for a
boxlimits, 1st and 3rd quartiles; whiskers, minimal and maximal value; points represent all d

d. Scatter plot of the random forest models’ recall (all metrics as in C) as a function of nu
model precision and circle size reflects the MCC.

e. ADR predictions for anti-hypertensive drugs with different pharmacological targets. F
and HLGT-level ADRs (left). Using the ADR random forest models, we predicted the difference
logical targets (right; overall 36 of the HLGT terms are visualized). True negative predictions

f. Examples of model validation using methysergide and oxprenolol. The random forest m
validated by comparison of ADRs from its drug label (grey) using the SIDER database. One o
label. .
benchmark procedure to drug-ADR association predictions from
ERAM [8,36�38) and our above described binomial model, which
both rely on the FAERS adverse event reports to determine the statis-
tical significance of drug-ADR pairs (see Methods for details). As
described above, the binomial model drug-ADR associations were
used as output training data for our random forest model. Consis-
tently, our trained random forest evaluated on the RF training set
drugs performed largely on par with our binomial model and ERAM
[8,36�38]. Interestingly, for the smaller test set of drugs without
FAERS reports, but nevertheless present in the OMOP benchmark,
our RF model predicted the ground truth for 22 drug-ADR pairs with
a high AUROC and AUPRC of 0.98 and 0.80, respectively (Supplemen-
tary Fig. 2). These results indicate that our trained RF model can gen-
eralize to predict ADR associations based on only a drug’s in vitro
profile. This is of particular interest to efforts toward the safety
assessment of preclinical drug candidates during the drug discovery
process.
3.9. Random forest model predicts 221 target-ADR associations

To predict which target genes are associated with which ADRs, we
utilized the Gini importance score to rank features for their impor-
tance in random forest models for each ADR (Fig. 4a). For a given
ADR, we selected assays that had multiple AC50 features represented
in the top 5% of Gini scores ranking (see Methods for detail). We then
generated ADR probability predictions for an in silico compound that
is assumed to target only the selected assay with an AC50 value corre-
sponding to a represented feature. We also assumed no available
data for all other assays. Using this in silico AC50 profile as an input to
the ADR model, we could generate the ADR probability. By assessing
differences in ADR probabilities (two sample t-test, FDR corrected p-
value < 0.1) between different AC50 classes, e.g. highly active
(0�3mM) vs inactive (>30mM), we predict positive or negative cor-
relations, collectively termed associations, between the selected tar-
get assay and ADR. Unsurprisingly, some ADRs did not generate any
target associations.

To find biologically meaningful associations, we first filtered out
HLGT terms belonging to SOC classes that are not specific to human
body parts or only procedural or intervention related (see Methods
for detail). Secondly, we filtered out terms that fall under the SOC
class neoplasms, since genes are often severely misregulated in can-
cers and therefore not representative of neoplasm-related ADRs in
the organ where the tumour resides. After filtering, we found 221 sta-
tistically significant target-ADR associations (Fig. 4b, full details
including p-values in Supplementary Table 10); 51 out of 184 target
assays and 132 out of 321 ADRs are represented (Fig. 4b). The assay
class distribution of these 51 targets, represented among the 221
is a discretized AC50 in vitro pharmacological profile, we built a separate random forest
that ADR. For training we used all drugs for which we could retrieve FAERS Q4_2018

forest models based on two hierarchical levels of organ class specifications. The high
est models whereas the system organ class (SOC; yellow) unified random forest model
imilar, except in a few cases when the HLGT model outperforms the SOC model. (MCC:
C: area under precision recall curve). Training reflects performance after model training
cs for each fold are detailed in Supplementary Table 4). Chronological validation reflects
_2014 and tested on the observations up to Q2_2019. Random X and Y indicate the 5x
randomly permuted input and output data, respectively.
ll random forest models of each individual HLGT ADR (NADRs = 266; center line, median;
ata).
mber of associated ADRs, which served as positive training examples. Colours indicate

or a set of 22 antihypertensive drugs, we visualized the association between the drugs
s in ADR associations between antihypertensive drugs representing various pharmaco-
(285 HLGT-level ADRs) were omitted from this visualization.
odel predicted associations of methysergide with 6 of 321 HLGTs (yellow) which were
r more of the ADRs corresponding to each HLGT category were confirmed in the drug

https://www.medicines.org.uk/emc/product/3235
https://www.medicines.org.uk/emc/product/3235


0 500 1000 1500 2000 2500
Number of drugs tested

0

1

2

4

8

16

32

64

N
um

be
r o

f a
ss

oc
ia

te
d 

AD
R

s

hERG

Al1A AdTBSEP

r BZD

5HT3

GR

Ad3

AR ERa

PR

COX-2 MAO A

PDE3

PDE4D

b

Feature 
Importance

RFi

Model ADR Probability
(output)

highly active

inactive

Simulated 
Pharmacology Profile 

(input)

ADRi
[0,1]

Gini score

{

a b

Target - ADR Association
No Association

coagulopathies and bleeding diatheses  excl thrombocytopenic 
haematological disorders nec

haemolyses and related conditions
red blood cell disorders

cardiac arrhythmias
cardiac valve disorders

heart failures
myocardial disorders
pericardial disorders

blood and lymphatic system disorders congenital
cardiac and vascular disorders congenital
gastrointestinal tract disorders congenital

musculoskeletal and connective tissue disorders congenital
neurological disorders congenital

renal and urinary tract disorders congenital
respiratory disorders congenital

aural disorders nec
external ear disorders  excl congenital 

inner ear and viiith cranial nerve disorders
middle ear disorders  excl congenital 

adrenal gland disorders
endocrine disorders of gonadal function

parathyroid gland disorders
thyroid gland disorders

anterior eye structural change  deposit and degeneration
eye disorders nec

glaucoma and ocular hypertension
ocular infections  irritations and inflammations

ocular neuromuscular disorders
ocular sensory symptoms nec

ocular structural change  deposit and degeneration nec
vision disorders

abdominal hernias and other abdominal wall conditions
benign neoplasms gastrointestinal

dental and gingival conditions
diverticular disorders

gastrointestinal stenosis and obstruction
gastrointestinal ulceration and perforation

gastrointestinal vascular conditions
malabsorption conditions

peritoneal and retroperitoneal conditions
salivary gland conditions

tongue conditions

bile duct disorders
gallbladder disorders

hepatic and hepatobiliary disorders
hepatobiliary neoplasms

allergic conditions
immune disorders nec

immunodeficiency syndromes

bacterial infectious disorders
fungal infectious disorders

infections   pathogen class unspecified
mycobacterial infectious disorders

protozoal infectious disorders

acid base disorders
bone  calcium  magnesium and phosphorus metabolism disorders

diabetic complications
food intolerance syndromes

glucose metabolism disorders  incl diabetes mellitus 
lipid metabolism disorders

protein and amino acid metabolism disorders nec
vitamin related disorders

bone disorders  excl congenital and fractures 
connective tissue disorders  excl congenital 
fractures
muscle disorders
musculoskeletal and connective tissue deformities  incl intervertebral disc disorders 

central nervous system infections and inflammations
central nervous system vascular disorders
increased intracranial pressure and hydrocephalus
mental impairment disorders
movement disorders  incl parkinsonism 
neurological disorders nec
neuromuscular disorders
peripheral neuropathies
sleep disturbances  incl subtypes 
spinal cord and nerve root disorders
structural brain disorders

abortions and stillbirth
foetal complications
maternal complications of labour and delivery
maternal complications of pregnancy
neonatal and perinatal conditions
placental  amniotic and cavity disorders  excl haemorrhages 
pregnancy  labour  delivery and postpartum conditions

changes in physical activity
cognitive and attention disorders and disturbances
communication disorders and disturbances
depressed mood disorders and disturbances
disturbances in thinking and perception
impulse control disorders nec
mood disorders and disturbances nec
personality disorders and disturbances in behaviour
psychiatric and behavioural symptoms nec
psychiatric disorders nec
sleep disorders and disturbances
suicidal and self injurious behaviours nec

bladder and bladder neck disorders  excl calculi 
nephropathies
renal disorders  excl nephropathies 
urolithiases

breast disorders
cervix disorders  excl infections and inflammations 
male reproductive tract infections and inflammations
menopause and related conditions
menstrual cycle and uterine bleeding disorders
ovarian and fallopian tube disorders
penile and scrotal disorders  excl infections and inflammations 
reproductive tract disorders nec
sexual function and fertility disorders
uterine  pelvic and broad ligament disorders
vulvovaginal disorders  excl infections and inflammations 

bronchial disorders  excl neoplasms 
lower respiratory tract disorders  excl obstruction and infection 
neonatal respiratory disorders
pulmonary vascular disorders
upper respiratory tract disorders  excl infections 

angioedema and urticaria
cornification and dystrophic skin disorders
cutaneous neoplasms benign
epidermal and dermal conditions
pigmentation disorders
skin and subcutaneous tissue disorders nec
skin appendage conditions

arteriosclerosis  stenosis  vascular insufficiency and necrosis
decreased and nonspecific blood pressure disorders and shock
embolism and thrombosis
lymphatic vessel disorders
vascular haemorrhagic disorders
vascular inflammations
venous varices
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Fig. 4. Random forest model predicts target-ADR associations.

10 R. Ietswaart et al. / EBioMedicine 57 (2020) 102837



R. Ietswaart et al. / EBioMedicine 57 (2020) 102837 11
predicted target-ADR associations, is similar to the class distribution
of all target assays (Supplementary Fig. 1b, x2-test: p-value = 0.09).
This demonstrates that our algorithm does not bias towards certain
target classes. In the following sections, we investigate these 221 tar-
get-ADR associations in more detail.
3.10. Systematic literature validation of target-ADR associations

To validate our ADR-target predictions, we performed a system-
atic literature co-occurrence analysis. First, we mapped all genes cor-
responding to the assays and HLGT level ADRs to their respective
MeSH terms (Supplementary Table 11). Next, we queried PubMed for
the publication identifiers linked to these MeSH terms and deter-
mined the number of publications that corresponded to both a gene
and HLGT term (i.e. co-occurrence). We found at least one co-occur-
rence publication for 66% (145) of 219 predicted unique gene-HLGT
MeSH pairs, which was higher (Fisher Exact test: odds ratio=1.8, p-
value=6£10�5) than for all possible negative unique gene-HLGT pairs
(N = 26,705). In order to control for the fact that some ADRs and genes
are studied more intensively than others, we also compared our set of
positive predictions to a negative control set (N = 4890) formed by
permuted pairs from the positive set and obtained similar results
(Fisher Exact test: odds ratio=1.5, p-value=3£10�3). Furthermore, as
quantified by the co-occurrence “lift” over the reporting probability
when assuming independence, (see Methods for details), we found
4-fold higher co-occurrence median lift values for our predictions
compared to all negative pairs (Mann Whitney U test: p-val-
ue=2£10�5), and 3-fold higher lift than permuted negative pairs
(Mann Whitney U test: p-value=3£10�4). We conclude that our tar-
get-ADR identification method provides association predictions that
are supported by the literature in higher proportion than random
selection of target-ADR pairs.
3.11. Evidence for targets that are predicted to cause cardiovascular-
related ADRs

To further validate our model’s ability to predict target-ADR asso-
ciations, we investigated a group of cardiovascular ADRs. We found
that hERG binding was associated with cardiac arrhythmias and heart
failure (Table 1). hERG encodes for a subunit of the cardiac potassium
ion channel and contributes to cardiac electrical activity, which is
necessary to regulate the heartbeat. The mechanism of action for
drug-induced arrhythmias by blocking hERG has been described in
a. Schematic outline of the in silico ADR-target predictions. For an ADR of interest, we d
ranked according to their Gini importance scores, which measures their contribution to the
and inactive) from the same target assay are within that top 5%, we determined the ADR pro
AC50 classes only. The ADR probabilities of those simulated cases can then be compared to
correlation between AC50 values and ADR probabilities, we conclude that there is an associat

b. Heatmap showing the resulting 221 predicted target-ADR associations (blue). Target (
grouped according to their parent SOC level (as detailed in Fig. 2c). For a full description of al

c. Scatter plot of each target (assay, N = 184) showing the number of ADR associations as

Table 1
Predicted associations between targets and cardiac ADRs. High Level Group
tion (ADR) probability in three concentration ranges (third column). Evidence
(fourth column). The number of publications linked to both an HLGT ADR and t
(fifth column). hERG: human Ether-a-go-go-Related Gene associated potassium
tor; AdT: Adenosine transporter; COX-2: cyclooxygenase enzyme, type 2.

Cardiac Disorder HLGT Target ADR Probability

0�3mM 3�30mM >30

cardiac arrhythmias hERG (Binding) � 0.03 0.00
cardiac valve disorders PDE3 0.05 � 0
heart failures hERG (Binding) � 0.005 0
myocardial disorders GR (Binding) 0.02 � 0.00
pericardial disorders AdT � 0.01 0
numerous human [41] and animal studies [42], as well as structural
modeling [43] studies (Table 1). Consistently, our systematic PubMed
queries found 753 co-occurrence publications in support of this pre-
dicted association and 6 co-occurrences for hERG binding increasing
the risk of heart failure. We did not find an ADR probability associ-
ated within the range of 0�3mM AC50 of hERG binding, likely
because such strong binding to hERG is a common reason for
deprioritizing drug candidates in development [44].

The model predictions also suggest that PDE3 inhibition is associ-
ated with cardiac valve disorders (Table 1, 3 co-occurrence publica-
tions). PDE3 inhibition is used clinically to treat dilated
cardiomyopathy [45], which encapsulates valvular heart disorder.
However, the PDE3 therapeutic window is narrow, partially due to
complex signaling networks [46], and careful dosing is required to
avoid increased mortality in response to treatment.

Furthermore, our model predicts that adenosine transporter (AdT)
inhibition increases the risk of pericardial disorders (Table 1). For this
scenario, we did not find direct supporting evidence in the literature,
however there is evidence that disturbed adenosine homoeostasis in
pathological cardiac conditions could result in pericardial effusion or
pericarditis [47].

The model suggests that glucocorticoid receptor (GR) binding is
more likely to lead to myocardial disorders if the drug has high affin-
ity for GR (Table 1, 8 co-occurrence publications). This is supported
by the finding that glucocorticoid treatment of patients with rheuma-
toid arthritis increased the risk of myocardial infarction [48]. Further-
more, it is known that dysregulation of glucocorticoids can give rise
to cardiotoxicity [49].

Taken together, this investigation of genes associated with cardio-
vascular ADRs confirms the well-known association of hERG with
cardiac arrhythmia, and also highlights ADR associations that would
merit further experimental investigation.
3.12. COX-2, PDE3, and hERG associations with kidney related ADRs

Another important class of ADRs involve the kidney (Fig. 4b, label:
renal). We found COX-2 associated with nephropathies (Table 2),
which has been well recognized (398 co-occurrence publications)
and evidenced previously [50�52]. Interestingly, another model pre-
diction is PDE3 sensitivity correlating with congenital renal and uri-
nary tract disorders (Table 2). According to a mouse model study
[53], PDE3 inhibition could be a contributing factor in Polycystic Kid-
ney Disease (PKD), as PDE3 protein levels are downregulated in PKD
etermined the top 5% of features from the corresponding trained random forest model,
predictive power of the model. If at least two features (e.g. as depicted: highly active

babilities for the simulated cases where an in silico compound would target those assay
determine the concentration dependence of the ADR probability. If there is a non-zero
ion between the respective ADR and target. For full details, see the Methods.
gene symbol) assays are listed alphabetically (horizontal), and HLGT ADRs (vertical) are
l target-ADR associations and their ADR probabilities, see Supplementary Table 10.
a function of number of assayed drugs.

Terms (HLGT; MedDRA) associations with targets and Adverse Drug Reac-
of the ADR-target pairs were obtained from peer reviewed publications

arget gene was obtained via a systematic literature co-occurrence analysis
channel; PDE3: phosphodiesterase-3 enzyme; GR: glucocorticoid recep-

Literature evidence Co�occurrence (number)

mM human (h), animal (a), in vitro (v)

2 h [41] a [42] v [43] 753
h [45,46] 3
h [75] 6

5 h [48,49] 8
a [47] 0



Table 2
Predicted renal ADR - target associations (detailed legend in Table 1).

Renal Disorder HLGT Target ADR Probability Literature evidence Co�occurrence (number)

0�3mM 3�30mM >30mM human (h); animal (a), in vitro (v)

nephropathies COX-2 0.003 � 0 h [50] a [51,52] 398
renal and urinary tract disorders congenital PDE3 0.004 � 0 h [66,76] a [53,77] 0
renal disorders excl nephropathies hERG (Binding) � 0.01 0.0007 h [54] a [78] 2
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compared to healthy control kidneys. Lastly, we found an unexpected
association between hERG and renal disorders (excluding nephropa-
thy) (Table 2). One study has found a loss of hERG function in renal
cell carcinoma [54]. In humans, hERG expression in the kidney is
much lower than in the heart [55]. Therefore, we conclude that a link
between hERG and renal disorders remains a prediction that war-
rants further investigation.
3.13. PDE3 and nuclear hormone receptors AR, ERa, and PR are
overrepresented in ADR associations

To investigate if the number of different drugs tested for a target
assay is predictive to the number of ADRs associated with that target
(Fig. 4c), we calculated their Spearman correlation coefficient and
found a moderate correlation (r=0.5; Fig. 4c). However, some targets
had considerably more associated ADRs than other targets that were
tested a similar number of times, indicating that more frequently per-
formed assays do not necessarily result in a higher number of associ-
ated ADRs (Fig. 4c). Out of all target assays, PDE3 was associated with
the most ADRs (40, Fig. 4c), falling in a wide range of SOC classes
(Fig. 4b, Supplementary Table 10). Furthermore, nuclear hormone
receptors for androgen (AR), oestrogen (ERa) and progesterone (PR)
binding assays also have disproportionately many ADR associations,
compared to their frequency of testing (Fig. 4c). As expected, AR (7/
14 ADRs), ERa (9/10 ADRs) but not PR (0/17 ADRs) are associated
with sexual reproductive organ- and pregnancy-related ADRs
(Fig. 4b, Supplementary Table 10). Androgen is produced in the adre-
nal gland [56] and we predict a link between AR with adrenal gland
disorders, with evidence in mouse studies [57]. Interestingly, the
model predicted 6 ocular ADRs associated to PR, including vision dis-
orders, anterior eye structural change (deposit and degeneration),
infections, irritations and inflammations and structural changes
(Fig. 4b, Supplementary Table 10), for which we could find support-
ing evidence [58].
3.14. GABAA receptor associations with psychoactive ADRs

GABAA receptor is the primary target of benzodiazepines (BZD), a
drug class known to be psychoactive with potential of addiction [59].
Consistently, our model predicts that this ligand-gated chloride ion
channel assay is associated with 14 ADRs, 13 of which are neurologi-
cally and psychiatrically related, including disturbances in thinking
Table 3
Predicted ADR associations with inhibition of the Bile Salt Export Pump (BSEP) transp

HLGT Target ADR Pro

0�3mM 3�30m

central nervous system vascular disorders BSEP � 0.09
foetal complications BSEP 0.01 �
pregnancy labor delivery and postpartum conditions BSEP � 0.1
lipid metabolism disorders BSEP � 0.2
thyroid gland disorders BSEP � 0.07
upper respiratory tract disorders excl infections BSEP 0.1 �
urolithiases BSEP � 0.07

0�30mM 30�30
hepatic and hepatobiliary disorders BSEP � 0.2
and perception, sleep disorders, depression and suicidal behaviors
(Fig. 4b, Supplementary Table 9).
3.15. Bile salt export pump BSEP associations with ADRs in various
organs

BSEP, encoded by ABCB11 and a member of the superfamily of
ATP-binding cassette transporters, is most highly expressed in the
liver [55]. Drugs that target BSEP are often associated with hepato-
toxicity [60]. However, initially, we did not find a BSEP association
with hepatic and hepatobiliary disorders. To investigate this false
negative prediction, we note that the dynamic range of all our assays
extend to 30 uM, except for the BSEP assay, which specifically
extends up to 300mM because the first pass effect for orally delivered
drugs results in high concentrations in the liver [61]. As a result, with
our default class boundaries, most of our BSEP data falls into the
‘inactive’ (>30 uM class). Consistently, the BSEP inactive feature had
the highest Gini score for this HLGT term, while its two active fea-
tures had much lower Gini scores, falling outside of the top 5%. To
take the extended dynamic range into account, we altered the BSEP
assay class boundaries to 0�30mM, 30�300mM and >300mM and
retrained the random forest model. In this case, we did find BSEP
associated with hepatic and hepatobiliary disorders (Table 3, 354
publication co-occurrences), according to our association criteria
(Fig. 4a). We repeated this procedure whilst replacing the first class
boundary (30mM) with 100mM and found the same association
again, indicating the robustness of our results. Interestingly, with our
original AC50 discretisations (Fig. 1d), we found BSEP associated with
7 other ADRs from various organ classes (Table 3), much more than
other targets that were assayed at a similar frequency (Fig. 4c). This
suggests that compounds potent against BSEP (AC50 < 30mM) could
cause adverse effects in addition to hepatotoxicity, which already
occurs at lower potency. We found BSEP associated with urolithiasis
and with disorders of the thyroid gland, upper respiratory tract disor-
ders (excl infections), lipid metabolism and central nervous system
(Table 3). Since BSEP expression is much lower in these organs [55],
we searched the literature for evidence including a substrate of BSEP,
bile acid. We could find previous studies linking bile acid to these dis-
orders (Table 3), which suggests an indirect relation between BSEP
and these ADRs through bile acid metabolism. Lastly, we found BSEP
associated with foetal complications and pregnancy conditions
(Table 3), both supported through prior studies that link BSEP with
orter (detailed legend in Table 1).

bability Literature evidence Co�occurrence (number)

M >30mM human (h); animal (a)

0.008 (for BSEP and bile acid) a [79] 2
0 h [62] 7
0 h [63] 0
0 h [80,81] 5
0 a [82,83] 1
0 h [84] a [85] 0
0 h [86] 0

0 mM >300 mM
0.09 h [60] 354
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transient neonatal cholestasis and intrahepatic cholestasis of preg-
nancy, respectively [62,63].

4. Discussion

In this study we have taken a machine learning approach to pre-
dict human ADRs from the in vitro secondary pharmacology profiles
of a large number of marketed and withdrawn drugs. Several prior
studies focus on predicting ADRs directly from chemical drug struc-
ture [64,65]. However, under the common assumption that our in
vitro pharmacology adequately reflects the in vivo activity of com-
pounds, utilizing this functional information on targeting of common
(off) targets represents a viable alternative to bridge the complex
relationship between drugs and their effects in the human body [4].

Our random forest model performance metrics are good consider-
ing the sparse coverage (2134 drugs) over a large input space (3184

possibilities) and partial overlap with ADR reporting for these drugs,
making ADR occurrence prediction effectively a one shot learning
task. Importantly, our model performances were strong enough to
discover drug-ADR and biologically meaningful target-ADR associa-
tions. To determine the target-ADR associations, we utilized all avail-
able input data for model training and made use of Gini scores to
robustly select relevant features for ADR probability predictions. We
rigorously validated our model predictions with multiple indepen-
dent analyses (e.g. chronological validation on drug-ADR associations
and systematic literature validation on target-ADR associations). Our
novel method for target-ADR associations was able to recapitulate
well recognized causal relations, such as hERG with cardiac arrhyth-
mias. For others, we were able to find literature evidence in animal or
in vitro studies but our study is, to our knowledge, a first in human
report. Another fraction of target-ADR associations represents predic-
tions of novel, unexpected or little known associations, such as Aden-
osine Transporter (AdT) and pericardial disorders, for which we
could find little evidence other than our analysis of adverse event
reports. Similar to genome-wide association studies (GWAS), our
quantitative methodology extracts statistically significant relations
from human population data. With this framework in mind, our 221
associations form a rich resource that can be used for further mecha-
nistic studies in the drug discovery process.

Our random forest model is agnostic to molecular mechanisms;
therefore, resulting associations could arise from indirect regulation.
A likely example is the bile transporter BSEP, which is associated
with numerous ADRs, although it is most highly expressed in the
liver and kidney. We have related our findings to evidence that mis-
regulation of its substrate, bile acid, could result in disorders related
to kidney stones, lipid metabolism, thyroid gland, respiratory system,
and central nervous system. This also indicates the strength of our
approach, which can relate genes to physiological processes unbias-
edly in humans, without any interventions or costly large scale popu-
lation studies, but solely with voluntary adverse event reporting.

Some of the predicted target-ADR associations could be hard to
validate, such as the PDE3 enzyme association with congenital renal
disorders association. While the association is valid, the modality has
to be clarified: PDE3 inhibitors are proposed to ameliorate certain
forms of chronic kidney disease [66], instead of causing it. Thus, pre-
dictions of congenital disorders should be considered but confirmed
by checking the modality of the effects.

While we recommend this approach to find target-ADR associa-
tions to impact safety awareness in drug discovery, we are also aware
of the limitations. Firstly, targets in the in vitro pharmacology panel
cover a fraction of the biological target space and not all drugs were
tested in all assays. We recognize that 47% of all targets belong to the
GPCR target family with limited representation of other therapeutic
or ADR-associated targets such as ion channels and kinases. However,
our model predictions are not biased towards the GPCR target family;
the target classes of 51 targets in 221 target-ADR association
predictions have a similar distribution compared to all target classes
in our input data (Supplementary Fig. 3). Also, data are influenced by
prior knowledge; for example, more than 87% of all drugs in the set
were tested for hERG activity. High affinity (lower AC50 value) for
hERG is associated with higher probability for QT prolongation for
human and non-human preclinical species [41,42]. As discussed ear-
lier, there are not many drugs with a hERG AC50 value in the highly
active class (0�3mM), which is a commonly encountered roadblock
for drug candidates to progress towards clinical trials [44]. Only about
10% of all drugs fall into the highly active class in our assay data. To
limit feature engineering, our AC50 discretization into three classes
(Fig. 1d) was kept uniform across all assays. Notably for the BSEP
assay only, the dynamic range extends up to 300mM and as a result
most of our data falls into the ‘inactive’ (>30mM) class. Conse-
quently, we initially did not find the expected association with hepa-
totoxicity. We rectified this by reclassifying the BSEP assay data
according to levels required for hepatotoxicity of BSEP inhibition
[67,68] and indeed recovered the expected association.

Secondly, in vitro potency is an initial marker of clinical effect, and
does not take into account prolonged dosing, comorbidity or pharma-
cokinetic/pharmacodynamic (PK/PD) relationships (e.g. therapeutic
window). For 9 of 184 assays, non-human proteins were assayed (e.g.
rat brain was used as a source for the benzodiazepine receptor)
which may not be a direct correlate of the human protein. One way
of further improvement of our approach is to include additional occu-
pancy parameters and PK/PD components for higher precision and
enhanced predictive value.

Lastly, in the FAERS database, drug-ADR associations may be mis-
labeled, e.g. anti-hypertensives are often reported as associated with
hypertension as an ADR, rather than as the indication. Additionally,
the FAERS database does not contain information on the total number
of patients exposed to a particular drug, nor is it necessarily a reflec-
tion of the true incidence or frequency of ADRs. These and other limi-
tations are discussed by Maciejewski et al. [35] with suggestions and
methodology for further refinement of the FAERS database curation
and maintenance. We modeled ADRs at the MedDRA HLGT level
instead of the finer grain Preferred Term level, because this reduces
the sparsity of drug-ADR associations and enables the random forest
model to learn. The HLGT level ADRs provide sufficient physiological
detail to advance human biology and drug discovery, in particular
during the lead optimization phase of drug discovery, where off-tar-
get mitigation is possible and should be a priority. This can contribute
to the generation of safer clinical candidates and accelerate the drug
development process, also acknowledged by the FDA.

We investigated one-to-one associations between targets and
ADRs because these relationships are biologically meaningful and
have a high utility in preclinical drug development. Given this objec-
tive, we considered each ADR to be independent from one another.
However, in some cases, a given ADR can be a prerequisite for others
(e.g. hypotension leading to reflex tachycardia), as considered previ-
ously in the context of drug-drug interaction predictions [10]. We
leave a model extension to incorporate ADR dependencies as future
work. For target-ADR associations, we utilized our random forest
model for a single drug at a time. Our model can be repurposed to
predict possible ADRs from combination drug therapies and likeli-
hood of drug-drug interactions. In principle, this can be extended for
combination therapies by merging the in vitro data from the individ-
ual compounds and the predictions can be validated by querying Off-
side and Twosides databases [9]. Similarly, our model can be utilized
for drug repositioning and repurposing, using similar drug-ADR and
target-ADR profiles. To a certain extent, our gene target-ADR associa-
tions resemble GWAS results, but for adverse reactions manifesting
in patients (ADRs) instead of quantitative traits. These associations
could help (de)prioritize drug candidates in the preclinical develop-
ment stage based on their predicted side effects. This preclinical
computational assessment may enable a cost effective approach to
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reduce the high clinical drug failure rate, which is predominantly
caused by safety issues and poses a large financial burden. Secondly,
our target-ADR associations could help advance human biology, as
they predict the human in vivo effects of perturbing a protein target.
Such experiments are often infeasible in humans due to ethical rea-
sons, whilst equivalent experiments in animal models do not always
mirror the human response. Our approach provides an alternative
source of information for the targets we have investigated. In conclu-
sion, our random forest model and the target-ADR associations pro-
vide a validated, comprehensive resource to support drug discovery
and development as well as future human biology studies.

Declaration of Competing Interest

None.

Data availability

Data is made available in Supplementary Tables 1�11 and on
GitHub (https://github.com/samanfrm/ADRtarget).

Code availability

Code to query FAERS and PubMed, to construct the random forest
models and identify the target-ADR associations is made available on
GitHub (https://github.com/samanfrm/ADRtarget).

Acknowledgments

We are grateful to Mirjam Trame and Andy Stein for giving us the
opportunity to participate in the 2018 Novartis Quantitative Sciences
Academia-to-Industry Hackathon organized at the Novartis Institutes
for Biomedical Research. We also thank Changchang Liu and Xinrui
(Sandy) Zou for their contributions to the project at the Hackathon.

Role of the funding source

This study was not supported by any formal funding bodies.

Author contributions

R.I., S.A., A.X.C., S.F., B.K., D.A. and L.U. conceived the study. D.A., A.
F. and L.U. provided the Novartis in vitro pharmacology data, advice
and mentorship. S.A., R.I., A.X.C., S.F., B.K., W.D.M. and J.S. performed
data analysis. S.A. developed the random forest modeling. R.I. devel-
oped the formalism for target-ADR association inference. S.F., R.I. and
A.X.C. developed the query of OpenFDA. J.S. performed the SIDER
analysis. S.F., J.S. and R.I. performed the systematic PubMed query.
R.I., S.A. and A.X.C. wrote the paper and designed the figures with
input from all the authors.

Supplementary materials

Supplementary material associated with this article can be found
in the online version at doi:10.1016/j.ebiom.2020.102837.

References

[1] Institute of medicine, committee on quality of health care in America. To err is
human: building a safer health system. Washington (DC): National Academies
Press; 2000.

[2] Lazarou J, Pomeranz BH, Corey PN. Incidence of adverse drug reactions in hospi-
talized patients: a meta-analysis of prospective studies. JAMA 1998;279
(15):1200–5.

[3] Weiss AJ, FreemanWJ, Heslin KC, Barrett ML. Adverse drug events in US hospitals,
2010 versus 2014. HCUP Stat Brief 2018;234. https://www.hcup-us.ahrq.gov/
reports/statbriefs/sb234-Adverse-Drug-Events.jsp.
[4] Lounkine E, Keiser MJ, Whitebread S, Mikhailov D, Hamon J, Jenkins JL, et al.
Large-scale prediction and testing of drug activity on side-effect targets. Nature
2012;486(7403):361–7.

[5] Bowes J, Brown AJ, Hamon J, Jarolimek W, Sridhar A, Waldron G, et al. Reducing
safety-related drug attrition: the use of in vitro pharmacological profiling. Nat
Rev Drug Discov 2012;11(12):909–22.

[6] Witek RP, Bonzo JA. Perspective on in vitro liver toxicity models. Appl In Vitro
Toxicol 2018;4(3):229–31.

[7] Whitebread S, Hamon J, Bojanic D, Urban L. Keynote review: in vitro safety phar-
macology profiling: an essential tool for successful drug development. Drug Dis-
cov Today 2005;10(21):1421–33.

[8] Dumouchel W. Bayesian data mining in large frequency tables, with an applica-
tion to the FDA spontaneous reporting system. Am Stat 1999;53(3):177–90.

[9] Tatonetti NP, Ye PP, Daneshjou R, Altman RB. Data-driven prediction of drug
effects and interactions. Sci Transl Med 2012;4(125):125ra31.

[10] Zitnik M, Agrawal M, Leskovec J. Modeling polypharmacy side effects with graph
convolutional networks. Bioinformatics 2018;34(13):i457–66.

[11] Portanova J, Murray N, Mower J, Subramanian D, Cohen T. aer2vec: distributed
representations of adverse event reporting system data as a means to identify
drug/side-effect associations. AMIA Annu Symp Proc 2019;2019:717–26.

[12] Basile AO, Yahi A, Tatonetti NP. Artificial intelligence for drug toxicity and safety.
Trends Pharmacol Sci 2019;40(9):624–35.

[13] Ietswaart R., Gyori B.M., Bachman J.A., Sorger P.K., Churchman L.S. GeneWalk
identifies relevant gene functions for a biological context using network repre-
sentation learning. bioRxiv. 2019; Available from: https://www.biorxiv.org/con-
tent/10.1101/755579v2

[14] Noorbakhsh J., Farahmand S., Pour A.F., Namburi S., Caruana D., Rimm D., et al.
Deep learning-based cross-classifications reveal conserved spatial behaviors
within tumor histological images. bioRxiv. 2020. Available from: https://www.
biorxiv.org/content/10.1101/715656v2

[15] Stokes JM, Yang K, Swanson K, Jin W, Cubillos-Ruiz A, Donghia NM, et al. A deep
learning approach to antibiotic discovery. Cell 2020;180(4):688–702.e13.

[16] Nguyen PA, Born DA, Deaton AM, Nioi P, Ward LD. Phenotypes associated with
genes encoding drug targets are predictive of clinical trial side effects. Nat Com-
mun 2019;10(1):1579.

[17] Liu K, Sun X, Jia L, Ma J, Xing H, Wu J, et al. Chemi-net: a molecular graph convolu-
tional network for accurate drug property prediction. Int J Mol Sci 2019;20:3389.

[18] Ekins S. Predicting undesirable drug interactions with promiscuous proteins in
silico. Drug Discov Today 2004;9(6):276–85.

[19] 3rd Lynch JJ, TR Van Vleet, Mittelstadt SW, Blomme EAG. Potential functional and
pathological side effects related to off-target pharmacological activity. J Pharma-
col Toxicol Methods 2017;87:108–26.

[20] Hamon J, Whitebread S, Techer-Etienne V, Le Coq H, Azzaoui K, Urban L. In vitro
safety pharmacology profiling: what else beyond hERG? Future Med Chem
2009;1(4):645–65.

[21] Mirams GR, Cui Y, Sher A, Fink M, Cooper J, Heath BM, et al. Simulation of multiple
ion channel block provides improved early prediction of compounds’ clinical tor-
sadogenic risk. Cardiovasc Res 2011;91(1):53–61.

[22] Huang Ll-H, He Q-S, Liu K, Cheng J, Zhong M-D, Chen Ll-S, et al. ADReCS-target:
target profiles for aiding drug safety research and application. Nucleic Acids Res
2018;46(D1):D911–7.

[23] Farahmand S, Riley T, Zarringhalam K. ModEx: a text mining system for extracting
mode of regulation of transcription factor-gene regulatory interaction. J Biomed
Inform 2020;102:103353.

[24] Kuhn M, Letunic I, Jensen LJ, Bork P. The SIDER database of drugs and side effects.
Nucleic Acids Res 2016;44(D1):D1075–9.

[25] U.S. Food and Drug Administration (FDA). Questions and answers on FDA’s
adverse event reporting system (FAERS). Available from: https://www.fda.gov/
drugs/surveillance/fda-adverse-event-reporting-system-faers

[26] Stang PE, Ryan PB, Racoosin JA, Overhage JM, Hartzema AG, Reich C, et al. Advanc-
ing the science for active surveillance: rationale and design for the observational
medical outcomes partnership. Ann Intern Med 2010;153(9):600–6.

[27] Oliveira JL, Lopes P, Nunes T, Campos D, Boyer S, Ahlberg E, et al. The EU-ADRWeb
Platform: delivering advanced pharmacovigilance tools. Pharmacoepidemiol
Drug Saf 2013;22(5):459–67.

[28] Chen AW. Predicting adverse drug reaction outcomes with machine learning. Int J
Commun Med Public Health 2018;5(3):901–4.

[29] Canham S.M., Wang Y., Cornett A., Auld D.S., Baeschlin D.K., Patoor M., et al. Sys-
tematic chemogenetic library assembly. bioRxiv. 2020. Available from: https://
www.biorxiv.org/content/10.1101/2020.03.30.017244v1

[30] Takarabe M, Kotera M, Nishimura Y, Goto S, Yamanishi Y. Drug target prediction
using adverse event report systems: a pharmacogenomic approach. Bioinformat-
ics 2012;28(18):i611–8.

[31] Mozzicato P. MedDRA. Pharm Med 2009;23(2):65–75.
[32] Hauser AS, Attwood MM, Rask-Andersen M, Schi€oth HB, Gloriam DE. Trends in

GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov
2017;16(12):829–42.

[33] for Drug Statistics Methodology WCC. Guidelines for ATC classification and DDD
assignment. Who Oslo; 2005.

[34] U.S. Food and Drug Administration (FDA). openFDA. Available from: https://open.
fda.gov

[35] Maciejewski M, Lounkine E, Whitebread S, Farmer P, DuMouchel W, Shoichet BK,
et al. Reverse translation of adverse event reports paves the way for de-risking
preclinical off-targets. Elife 2017;6:e25818.

[36] Fram DM, Almenoff JS, DuMouchel W. Empirical Bayesian data mining for discov-
ering patterns in post-marketing drug safety. In: Proceedings of the ninth ACM

https://github.com/samanfrm/ADRtarget
https://github.com/samanfrm/ADRtarget
https://doi.org/10.1016/j.ebiom.2020.102837
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0001
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0001
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0001
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0002
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0002
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0002
https://www.hcup-us.ahrq.gov/reports/statbriefs/sb234-Adverse-Drug-Events.jsp
https://www.hcup-us.ahrq.gov/reports/statbriefs/sb234-Adverse-Drug-Events.jsp
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0004
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0004
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0004
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0005
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0005
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0005
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0006
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0006
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0007
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0007
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0007
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0008
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0008
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0009
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0009
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0010
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0010
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0011
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0011
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0011
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0012
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0012
https://www.biorxiv.org/content/10.1101/755579v2
https://www.biorxiv.org/content/10.1101/755579v2
https://www.biorxiv.org/content/10.1101/715656v2
https://www.biorxiv.org/content/10.1101/715656v2
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0013
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0013
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0014
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0014
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0014
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0015z
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0015z
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0016
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0016
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0017
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0017
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0017
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0018
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0018
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0018
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0019
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0019
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0019
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0020
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0020
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0020
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0021
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0021
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0021
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0022
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0022
https://www.fda.gov/drugs/surveillance/fda-adverse-event-reporting-system-faers
https://www.fda.gov/drugs/surveillance/fda-adverse-event-reporting-system-faers
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0023
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0023
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0023
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0024
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0024
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0024
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0025
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0025
https://www.biorxiv.org/content/10.1101/2020.03.30.017244v1
https://www.biorxiv.org/content/10.1101/2020.03.30.017244v1
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0026
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0026
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0026
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0027
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0028
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0028
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0028
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0028
https://open.fda.gov
https://open.fda.gov
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0029
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0029
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0029
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0030
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0030


R. Ietswaart et al. / EBioMedicine 57 (2020) 102837 15
SIGKDD international conference on knowledge discovery and data mining, KDD.
New York, NY, USA: ACM; 2003. p. 359–68.

[37] Almenoff JS, LaCroix KK, YuenNA, FramD, DuMouchelW. Comparative performance of
two quantitative safety signallingmethods. Drug Saf 2006;29(10):875–87.

[38] DuMouchel W, Harpaz R. Regression-adjusted GPS algorithm (RGPS). Oracle
Health Sci 2015(April).

[39] Sequeira A, Mamdani F, Lalovic A, Anguelova M, Lesage A, Seguin M, et al. Alpha
2A adrenergic receptor gene and suicide. Psychiatry Res 2004;125(2):87–93.

[40] Cottingham C, Wang Q. a2 adrenergic receptor dysregulation in depressive disor-
ders: implications for the neurobiology of depression and antidepressant therapy.
Neurosci Biobehav Rev 2012;36(10):2214–25.

[41] Curran ME, Splawski I, Timothy KW, Vincent GM, Green ED, Keating MT. A molec-
ular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell
1995;80(5):795–803.

[42] Wen D, Liu A, Chen F, Yang J, Dai R. Validation of visualized transgenic zebrafish as
a high throughput model to assay bradycardia related cardio toxicity risk candi-
dates. J Appl Toxicol 2012;32(10):834–42.

[43] Mitcheson JS. hERG potassium channels and the structural basis of drug-induced
arrhythmias. Chem Res Toxicol 2008;21(5):1005–10.

[44] Yusof I, Shah F, Hashimoto T, Segall MD, Greene N. Finding the rules for successful
drug optimisation. Drug Discov Today 2014;19(5):680–7.

[45] Movsesian M, Wever-Pinzon O, Vandeput F. PDE3 inhibition in dilated cardiomy-
opathy. Curr Opin Pharmacol 2011;11(6):707–13.

[46] Knight W, Yan C. Therapeutic potential of PDE modulation in treating heart dis-
ease. Future Med Chem 2013;5(14):1607–20.

[47] Ely SW, Matherne GP, Coleman SD, Berne RM. Inhibition of adenosine metabolism
increases myocardial interstitial adenosine concentrations and coronary flow. J
Mol Cell Cardiol 1992;24(11):1321–32.

[48] Avi~na-Zubieta JA, Abrahamowicz M, De Vera MA, Choi HK, Sayre EC, Rahman MM,
et al. Immediate and past cumulative effects of oral glucocorticoids on the risk of
acute myocardial infarction in rheumatoid arthritis: a population-based study.
Rheumatology 2013;52(1):68–75.

[49] Oakley RH, Cidlowski JA. Glucocorticoid signaling in the heart: a cardiomyocyte
perspective. J Steroid BiochemMol Biol 2015;153:27–34.

[50] Huerta C, Castellsague J, Varas-Lorenzo C, García Rodríguez LA. Nonsteroidal anti-
inflammatory drugs and risk of ARF in the general population. Am J Kidney Dis
2005;45(3):531–9.

[51] Wang L, Sha Y, Bai J, Eisner W, Sparks MA, Buckley AF, et al. Podocyte-specific
knockout of cyclooxygenase 2 exacerbates diabetic kidney disease. Am J Physiol
Renal Physiol 2017;313(2):F430–9.

[52] Slattery P, Fr€olich S, Schreiber Y, N€using RM. COX-2 gene dosage-dependent defects in
kidney development. Am J Physiol Renal Physiol 2016;310(10):F1113–22.

[53] Ye H, Wang X, Sussman CR, Hopp K, Irazabal MV, Bakeberg JL, et al. Modulation of
polycystic kidney disease severity by phosphodiesterase 1 and 3 subfamilies. J
Am Soc Nephrol 2016;27(5):1312–20.

[54] Wadhwa S, Wadhwa P, Dinda AK, Gupta NP. Differential expression of potassium
ion channels in human renal cell carcinoma. Int Urol Nephrol 2009;41(2):251–7.

[55] Fagerberg L, Hallstr€om BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, et al.
Analysis of the human tissue-specific expression by genome-wide integration of
transcriptomics and antibody-based proteomics. Mol Cell Proteomics 2014;13
(2):397–406.

[56] Nussey SS, Whitehead SA. Endocrinology: an integrated approach. CRC Press;
2013.

[57] Miyamoto J, Matsumoto T, Shiina H, Inoue K, Takada I, Ito S, et al. The pituitary
function of androgen receptor constitutes a glucocorticoid production circuit. Mol
Cell Biol 2007;27(13):4807–14.

[58] Nuzzi R, Scalabrin S, Becco A, Panzica G. Gonadal hormones and retinal disorders:
a review. Front Endocrinol 2018;9:66.

[59] Ashton H. Guidelines for the rational use of benzodiazepines. Drugs 1994;48
(1):25–40.

[60] Kubitz R, Dr€oge C, Stindt J, Weissenberger K, H€aussinger D. The bile salt export
pump (BSEP) in health and disease. Clin Res Hepatol Gastroenterol 2012;36
(6):536–53.

[61] Riede J, Poller B, Huwyler J, Camenisch G. Assessing the risk of drug-induced cho-
lestasis using unbound intrahepatic concentrations. Drug Metab Dispos 2017;45
(5):523–31.
[62] Liu Ll-Y, Wang X-H, Lu Y, Zhu Q-R, Wang J-S. Association of variants of ABCB11
with transient neonatal cholestasis : ABCB11 and TNC. Pediatr Int 2013;55
(2):138–44.

[63] Geenes V, Williamson C. Intrahepatic cholestasis of pregnancy. World J Gastroen-
terol 2009;15(17):2049.

[64] Liu M, Wu Y, Chen Y, Sun J, Zhao Z, Chen X-W, et al. Large-scale prediction of
adverse drug reactions using chemical, biological, and phenotypic properties of
drugs. J AmMed Inform Assoc 2012;19(e1):e28–35.

[65] Bender A, Scheiber J, Glick M, Davies JW, Azzaoui K, Hamon J, et al. Analysis of
pharmacology data and the prediction of adverse drug reactions and off-target
effects from chemical structure. ChemMedChem: Chem Enab Drug Discov 2007;2
(6):861–73.

[66] Cheng J, Grande JP. Cyclic nucleotide phosphodiesterase (PDE) inhibitors: novel
therapeutic agents for progressive renal disease. Exp Biol Med 2007;232(1):38–
51.

[67] Dawson S, Stahl S, Paul N, Barber J, Kenna JG. In vitro inhibition of the bile salt
export pump correlates with risk of cholestatic drug-induced liver injury in
humans. Drug Metab Dispos 2012;40(1):130–8.

[68] Montanari F, Pinto M, Khunweeraphong N, Wlcek K, Sohail MI, Noeske T, et al.
Flagging drugs that inhibit the bile salt export pump. Mol Pharm 2016;13
(1):163–71.

[69] Breiman L. Random forests. Mach Learn 2001;45(1):5–32.
[70] Charte F, Charte D. Working with multilabel datasets in R: the mldr package. The

R Journal 2015;7(2):149–62.
[71] Rivolli A, de Carvalho AC. The utiml package: multi-label classification in R. The

R Journal 2018;10(2):24–37.
[72] Saito T, Rehmsmeier M. Precrec: fast and accurate precision�recall and ROC curve

calculations in R. Bioinformatics 2017;33(1):145–7.
[73] Grau J, Grosse I, Keilwagen J. PRROC: computing and visualizing precision-recall

and receiver operating characteristic curves in R. Bioinformatics 2015;31
(15):2595–7.

[74] Menze BH, Kelm BM, Masuch R, Himmelreich U, Bachert P, Petrich W, et al. A
comparison of random forest and its Gini importance with standard chemometric
methods for the feature selection and classification of spectral data. BMC Bioinfor-
matics 2009;10:213.

[75] Brugada R, Hong K, Dumaine R, Cordeiro J, Gaita F, Borggrefe M, et al. Sudden
death associated with short-QT syndrome linked to mutations in HERG. Circula-
tion 2004;109(1):30–5.

[76] Pinto CS, Raman A, Reif GA, Magenheimer BS, White C, Calvet JP, et al. Phosphodi-
esterase isoform regulation of cell proliferation and fluid secretion in autosomal
dominant polycystic kidney disease. J Am Soc Nephrol 2016;27(4):1124–34.

[77] Wang X, Ward CJ, Harris PC, Torres VE. Cyclic nucleotide signaling in polycystic
kidney disease. Kidney Int 2010;77(2):129–40.

[78] Babcock JJ, Li M. hERG channel function: beyond long QT. Acta Pharmacol Sin
2013;34(3):329–35.

[79] Mertens KL, Kalsbeek A, Soeters MR, Eggink HM. Bile acid signaling pathways
from the enterohepatic circulation to the central nervous system. Front Neurosci
2017;11:617.

[80] Srivastava A. Progressive familial intrahepatic cholestasis. J Clin Exp Hepatol
2014;4(1):25–36.

[81] Strautnieks SS, Bull LN, Knisely AS, Kocoshis SA, Dahl N, Arnell H, et al. A gene
encoding a liver-specific ABC transporter is mutated in progressive familial intra-
hepatic cholestasis. Nat Genet 1998;20(3):233–8.

[82] Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, et al. Bile
acids induce energy expenditure by promoting intracellular thyroid hormone
activation. Nature 2006;439(7075):484–9.

[83] Mukaisho K-I, Araki Y, Sugihara H, Tanaka H, Chen K-H, Hattori T. High serum bile
acids cause hyperthyroidism and goiter. Dig Dis Sci 2008;53(5):1411–6.

[84] Comhair SAA, McDunn J, Bennett C, Fettig J, Erzurum SC, Kalhan SC. Metabolomic
endotype of asthma. J Immunol 2015;195(2):643–50.

[85] Tan X, Gao F, Su H, Gong Y, Zhang J, Sullivan MA, et al. Genetic and proteomic
characterization of bile salt export pump (BSEP) in snake liver. Sci Rep
2017;7:43556.

[86] Li C-H, Sung F-C, Wang Y-C, Lin D, Kao C-H. Gallstones increase the risk of devel-
oping renal stones: a nationwide population-based retrospective cohort study.
QJM 2014;107(6):451–7.

http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0030
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0030
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0031
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0031
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0032
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0032
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0033
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0033
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0034
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0034
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0034
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0034
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0035
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0035
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0035
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0036
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0036
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0036
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0037
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0037
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0038
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0038
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0039
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0039
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0040
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0040
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0041
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0041
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0041
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0042
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0042
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0042
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0042
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0042
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0043
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0043
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0044
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0044
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0044
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0045
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0045
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0045
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0046
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0046
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0046
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0046
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0047
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0047
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0047
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0048
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0048
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0049
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0049
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0049
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0049
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0049
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0050
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0050
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0051
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0051
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0051
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0052
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0052
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0053
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0053
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0054
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0054
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0054
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0054
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0054
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0055
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0055
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0055
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0056
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0056
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0056
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0057
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0057
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0058
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0058
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0058
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0059
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0059
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0059
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0059
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0060
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0060
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0060
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0061
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0061
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0061
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0062
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0062
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0062
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0063
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0064
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0064
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0065
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0065
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0066
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0066
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0066
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0067
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0067
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0067
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0068
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0068
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0068
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0068
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0069
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0069
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0069
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0070
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0070
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0070
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0071
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0071
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0072
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0072
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0073
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0073
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0073
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0074
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0074
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0075
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0075
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0075
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0076
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0076
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0076
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0077
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0077
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0078
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0078
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0079
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0079
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0079
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0080
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0080
http://refhub.elsevier.com/S2352-3964(20)30212-7/sbref0080

	Machine learning guided association of adverse drug reactions with in vitro target-based pharmacology
	1. Introduction
	2. Methods
	2.1. In vitro secondary pharmacology assays for marketed drugs
	2.2. Mining adverse event reports of marketed drugs using openFDA
	2.3. Random forest models and statistical methods of drug - ADR associations
	2.4. Statistical methods of target-ADR associations
	2.5. Side effect resource (SIDER) analysis
	2.6. Systematic validation of predicted target-ADR association using PubMed database
	2.7. OMOP benchmark comparison analysis

	3. Results
	3.1. Systematic in vitro pharmacology of marketed and withdrawn drugs
	3.2. Analysis of adverse event reports from FAERS connects drugs with human ADRs
	3.3. Random forest model learns relationship between in vitro pharmacology and reported ADRs in humans
	3.4. Predictive power of the random forest model for multiple FAERS reporting time periods
	3.5. Chronological validation of predicted drug-ADR associations
	3.6. Random forest model predicts expected ADR profiles for anti-hypertensive drugs
	3.7. Random forest model validation through comparison with drug label ADRs
	3.8. Random forest performance and validation on OMOP benchmark
	3.9. Random forest model predicts 221 target-ADR associations
	3.10. Systematic literature validation of target-ADR associations
	3.11. Evidence for targets that are predicted to cause cardiovascular-related ADRs
	3.12. COX-2, PDE3, and hERG associations with kidney related ADRs
	3.13. PDE3 and nuclear hormone receptors AR, ERa, and PR are overrepresented in ADR associations
	3.14. GABAA receptor associations with psychoactive ADRs
	3.15. Bile salt export pump BSEP associations with ADRs in various organs

	4. Discussion
	Declaration of Competing Interest
	Data availability
	Code availability
	Acknowledgments
	Role of the funding source
	Author contributions

	Supplementary materials
	References



