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Abstract 

Background:  Acinetobacter baumannii is a common opportunistic pathogen that causes major nosocomial infec-
tions in hospitals. In this study, we hypothesized a high prevalence of A. baumanni ESBL (extended-spectrum beta-
lactamase) among all collected isolates.

Methods:  A. baumannii isolates (n = 107) from ICU (Intensive care unit) of local hospitals in Makkah were phenotypi-
cally and genotypically characterized. The identity and antibiotic susceptibility of A. baumannii strains were deter-
mined using the Vitek-2 system. The identified ESBL producers were further analyzed by PCR and sequencing followed 
by MLST typing. blaTEM, blaSHV, and the blaCTX-M-group genes 1, 2, 8, 9, and 25 were investigated. Furthermore, blaOXA51-

like and blaOXA23-like genes were also examined in the carbapenem-resistant A. baumannii isolates.

Results:  Our data indicated a high prevalence of A. baumannii ESBL producers among the collected strains. Of the 
107 A. baumannii isolates, 94 % were found to be resistant to cefepime and ceftazidime, and aztreonam using the 
Vitek 2 system. The genes detected encoded TEM, OXA-51-like and OXA-23-like enzymes, and CTX-M-group proteins 
1, 2, 8, 9, and 25. MLST typing identified eight sequence type (ST) groups. The most dominant STs were ST195 and 
ST557 and all of them belong to worldwide clonal complex (CC) 2.

Conclusions:  This study has shown that there is a high prevalence of antimicrobial resistance in A. baumannii. The 
diversity of STs may suggest that new ESBL strains are constantly emerging. The molecular diversity of the ESBL genes 
in A. baumannii may have contributed to the increased antimicrobial resistance among all isolates.
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Background
Acinetobacter baumannii is an opportunistic and rapidly 
emerging pathogen. It is an important agent of nosocomial 
infections worldwide, such as urinary tract infections, 
septicemia, pneumonia, burns, meningitis, and wound 
infections in hospitals, due to its remarkable propensity 

to rapidly acquire resistance determinants to a wide 
range of antibacterial agents [1–4]. Many studies have 
documented high rates of multidrug-resistance (MDR) 
in A. baumannii [4–6]. The development of resistance to 
the third-generation cephalosporins was a major break-
through in the fight against MDR strains. However, due to 
the frequent use of these agents, new plasmids encoding 
β-lactamase capable of hydrolyzing extended-spectrum 
cephalosporins were first reported in 1983 [7, 8]. These 
extended-spectrum β-lactamases (ESBLs) are mutant, 
plasmid-mediated, and produced by gram negative bacilli 
that mediate resistance to penicillin, cephalosporins, and 

Open Access

*Correspondence:  eyamani@kacst.edu.sa 
1 Molecular Bacteriology, National Center for Biotechnology, King 
Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, 
Saudi Arabia
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12941-015-0098-9&domain=pdf


Page 2 of 9Alyamani et al. Ann Clin Microbiol Antimicrob  (2015) 14:38 

monobactams [9]. These ESBLs are commonly recognized 
in Enterobacteriaceae, Pseudomonas aeruginosa, and Aci-
netobacter baumannii and are found worldwide [10]. The 
majority of ESBLs are members of either the TEM, SHV, 
or CTX-M (class A) families based on the Ambler molec-
ular classification of β-lactamase genes [11, 12]. One of 
the major genes of ESBL family is the CTX-M, which is 
divided into five phylogenetic groups based on amino acid 
sequence identity: the CTX-M-1 group, the CTX-M-2 
group, the CTX-M-8 group, the CTX-M-9 group, and the 
CTX-M-25 group. The presence and prevalence of these 
different groups are variable depending on the geographi-
cal locale [13, 14]. In Saudi Arabia, the high prevalence 
of ESBL A. baumannii was reported in several studies 
[15–17]. The PCR technology is widely used technique 
to screen for ESBL in modern hospitals. A specific multi-
plex PCR assay has been optimized to screen for multiple 
ESBL genes to facilitate and monitoring the spread and 
emergence of ESBL-producing bacteria [18]. The epide-
miologic characterization of A. baumannii by multilocus 
sequence typing (MLST) is a highly used method and has 
been applied successfully [19]. With reports on the high 
prevalence of ESBL production in members of A. bau-
mannii globally and a paucity of information specifically 
regarding the emergence of ESBL A. baumannii in major 
Saudi general hospitals in Makkah, this study reports the 
analysis of the antibiotic susceptibility profiles and molec-
ular characterization of 107 A. baumannii ESBL produc-
ers isolated from ICU ward based on the phenotypic and 
genotypic approach. Understanding the molecular nature 
of the spread of A. baumannii in local hospitals is impor-
tant, especially in hospitals that admit thousands of local 
and foreign people during their holy journey to Makkah. 
This work may enhance our understanding of the extent 
of the epidemiologic re-emergence of this bacterium. 
The genes that were investigated from A. baumannii 
isolates by PCR were blaTEM, blaSHV, and the blaCTX-M-
group genes 1, 2, 8, 9, and 25. Furthermore, blaOXA51-like 
and blaOXA23-like enzymes were examined in carbapenem-
resistant A. baumannii. This work may partially contrib-
ute to the global effort to map the molecular signature of 
A. baumannii.

Methods
Study design
A total of 107 bacterial isolates were collected from dif-
ferent ICU patients from clinical labs at local general 
hospitals in Makkah during 2  years from 2012 to 2014. 
Samples were subjected to a conventional microbiology 
analysis, phenotyping, and genotyping characterizations 
at the national center for biotechnology, KACST. The 
nature of the samples were blood, and skin wound infec-
tions predominantly.

Species identification and antimicrobials susceptibilities
Bacterial identities were confirmed using the Vitek 2 sys-
tem (GN ID Card, bioMérieux, Craponne, France) and 
PCR. Antibiotic susceptibility testing was conducted 
according to the manufacturer’s recommendations 
(gram negative antimicrobial susceptibility testing (AST) 
cards, bioMérieux, Craponne, France). The extraction 
of genomic DNA was performed using QIAGEN kits 
(QIAamp DNA Mini Kit, cat# 69506, QIAGen, Valencia, 
CA, USA) according to the manufacturer’s recommenda-
tions and or the MagNA Pure LC DNA Isolation Kit III 
Bacteria, Fungi (Roche, Basel, Switzerland). The results of 
Vitek ESBL susceptibility test were reported according to 
the CLSI criteria. Quality-control bacterial strains (E. coli 
ATCC 35218 and Pseudomonas aeruginosa ATCC 27853) 
were used in all tests.

Detection of ESBL and carbapenem genes by PCR
All of the positive ESBL isolates according to pheno-
typic assays (n =  100) were further confirmed by PCR 
and sequencing. The genes investigated in this study 
were the blaTEM, blaSHV, and blaCTX-M-group genes 1, 
2, 8, 9, and 25. Furthermore, blaOXA51-like and blaOXA23-

like enzymes were tested for carbapenem-resistant A. 
baumannii. The gDNA was extracted using a QIAamp 
Genomic DNA kit (QIAGEN, Venlo, Netherlands) and 
used for PCR directly, or overnight cultures were boiled 
at 95  °C for 10 min to produce a bacterial gDNA/plas-
mid lysate that was diluted 1:10 with ddH2O before it 
was used for PCR. PCR amplification was performed 
with either 1 µl of pure gDNA or 10 µl of gDNA/plas-
mid lysate as a template. Final reactions of 25  μl of 
illustra PuReTaq Ready-To-Go PCR beads (GE Health 
Biosciences, USA) were used in the PCR reaction 
according to the manufacturer’s recommendations. The 
reactions were set up as follows: 10–22 μl of nuclease-
free water (Promega) depending on the DNA templates 
being used; 2 µl of 10 pmol of each blaTEM, blaSHV, and 
blaCTX-M-group genes 1, 2, 8, 9, and 25; blaOXA51-like 
and blaOXA23-like forward and reverse primers (Eurofins 
MWG Operon, Germany); and 1–10  µl of DNA tem-
plate or bacterial lysate were used (Table  1) [18]. The 
cycling conditions of the PCR are illustrated in Table 1. 
All of the amplicons were size fractionated using 1  % 
agarose gel electrophoresis and visualized under ultravi-
olet illumination using the Gel Doc EZ system (Bio-Rad, 
Hercules, CA, USA).

Amplification and sequencing of the 16S rRNA gene
Amplification and sequencing of 16S rRNA were per-
formed to confirm the identity of A. baumannii used 
in this study [20]. In the PCR amplification, each reac-
tion contained 25 μl of illustra PuReTaq Ready-To-Go 
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PCR beads (GE Health Biosciences, USA). The reac-
tion was set up as follows: 22 μl of nuclease-free water 
(Promega), 2 µl of 10 pmol of each forward and reverse 
primer (Eurofins MWG Operon, Germany) were used 
(Table 1) [18]. Exactly 1 μl of 100 ng/µl DNA template 
was added to the beads. The amplification conditions 
are highlighted in Table  1. The amplification prod-
ucts were subjected to gel electrophoresis in 1  % aga-
rose followed by ethidium bromide staining and were 
visualized under ultraviolet illumination using the Gel 
Doc EZ system (Bio-Rad, Hercules, CA, USA). Sense 
and anti-sense strands of PCR amplicons were purified 
and sequenced in an ABI 3130 Genetic Analyzer (Life 
Technologies, Carlsbad, CA, USA) using ABI BigDye 
terminator cycle sequencing ready reaction kit chemis-
try according to the manufacturer’s recommendations. 
Following sequencing, the data were identified using a 
basic local alignment search tool BLAST-n (http://www.
ncbi.nlm.nih.gov/BLAST) or RDP database [21]. The 
identification of A. baumannii using the 16S rRNA was 
unequivocal. Therefore, there was no need to use addi-
tional confirmatory targets such as rpoB and gyrB genes 
[22].

Multilocus sequence typing (MLST)
The Acinetobacter baumannii complex MLST typing 
was performed by utilizing seven house-keeping genes: 
Citrate synthase (gltA), DNA gyrase subunit B (gyrB), 
Glucose dehydrogenase B (gdhB), Homologous recom-
bination factor (recA), 60-kDa chaperonin (cpn60), 
Glucose-6-phosphate isomerase (gpi), RNA polymerase 
sigma factor (rpoD). The primers used for amplifica-
tion and sequencing are illustrated in Table  2 [19]. The 
PCR amplifications were completed in a MasterCycler 
nexus (Eppendorf, Hamburg, Germany) with the follow-
ing conditions: 35 cycles of initial denaturation at 94  °C 
for 5 min, followed by 35 cycles of denaturation at 94 °C 
for 1 min, annealing at 55 °C for 1 min, and extension at 
72  °C for 2 min and 4 min final extension at 72  °C. The 
PCR products were directly verified by 1  % agarose gel 
electrophoresis before they were purified from the reac-
tion mixture for sequencing. Bidirectional sequencing 
was performed for each isolate. Different allele sequences 
were assigned for each locus with an arbitrary allele num-
ber for identification. Each bacterial isolate was char-
acterized by a pattern of numbers defining its sequence 
type (ST). The sequences of the seven housekeeping 

Table 1  Primers for the rapid characterization of A. baumannii by multiplex PCR

No. blaOXA-like enzymes of A. baumannii Amplification conditions

 1 blaOXA-51 
F

5′-TAA TGC TTT GAT CGG CCT TG 353 bp Initial denaturation at 94 °C for 5 min, followed by 30 cycles 
of 94 °C for 25 s, 52 °C for 40 s and 72 °C for 50 s, and a 
final elongation at 72 °C for 6 min 2 blaOXA-51R 5′-TGG ATT GCA CTT CAT CTT GG

 3 blaOXA-
23-F

5′-GAT CGG ATT GGA GAA CCA GA 501 bp

 4 blaOXA-
23-R

5′-ATT TCT GAC CGC ATT TCC AT

blaCTX-M genes

 7 Group 1-F 5′-AAA AAT CAC TGC GCC AGT TC 415 bp Initial denaturation at 94 °C for 5 min, followed by 30 cycles 
of 94 °C for 25 s, 52 °C for 40 s and 72 °C for 50 s, and a 
final elongation at 72 °C for 6 min

 8 Group 1-R 5′-AGC TTA TTC ATC GCC ACG TT

 9 Group 2-F 5′- CGA CGC TAC CCC TGC TAT T 552 bp

 10 Group 2-R 5′-CCA GCG TCA GAT TTT TCA GG

 11 Group 9-F 5′-CAA AGA GAG TGC AAC GGATG 205 bp

 12 Group 9-R 5′-ATT GGA AAG CGT TCA TCA CC

 13 Group 8F 5′-TCG CGT TAA GCG GAT GAT GC 666 bp

 14 Group 8R 5′-AAC CCA CGA TGT GGG TAG C

 15 Group 25F 5′-GCA CGA TGA CAT TCG GG 327 bp

 16 Group 25R 5′-AAC CCA CGA TGT GGG TAG C

 1 TEM-F 5′-CATTTCCGTGTCGCCCTTATTC 800 bp Initial denaturation at 94 °C for 10 min, followed by 30 
cycles at 94 °C for 40 s, 60 °C for 40 s, and 72 °C for 1 min, 
and a final elongation step at 72 °C for 7 min

 2 TEM-R 5′-CGTTCATCCATAGTTGCCTGAC

 3 SHV-F 5′-AGCCGCTTGAGCAAATTAAAC 713 bp

 4 SHV-R 5′-ATCCCGCAGATAAATCACCAC

 1 16S rRNA 
8F

5′-GCG GAT CCG CGG CCG CTG CAG AGT TTG ATC CTG 
GCT CAG

797 bp Initial denaturation at 94 °C for 5 min, followed by 35 cycles 
at 94 °C for 60 s, 55 °C for 30 s, and 72 °C for 60 s, and a 
final elongation step at 72 °C for 7 min 2 16S rRNA 

805R
5′-GCG GAT CCG CGG CCG CGG ACT ACC AGG GTA TCT 

AAT

http://www.ncbi.nlm.nih.gov/BLAST
http://www.ncbi.nlm.nih.gov/BLAST
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genes were analyzed by using an A. baumannii database 
(http://pubmlst.org/abaumannii/) [23]. The allelic pro-
file similarities were produced by BioNumerics version 
(7) created by Applied Maths NV. Available from (http://
www.applied-maths.com).

Ethics statement
Ethical approval and consent were not required for this 
project because no human nor animal subjects were 
used.

Results
Antimicrobial susceptibility testing and screening for ESBL
In this study, 94 % (100/107) of A. baumannii were MDR. 
Among the 107 isolates of A. baumannii tested, one 
hundred isolates were confirmed as ESBL producers by 
phenotypic and genotypic assays, four isolates were sus-
ceptible to the third generation cephalosporins (Figs.  1, 
2) and three isolates were not confirmed as A. baumannii 
by 16S rRNA PCR. The ESBL A. baumannii were recov-
ered from different clinical specimens, blood, and skin 
wound infections predominantly. The susceptibility data 
of the ESBL-producing A. baumannii showed that 94 % 
of the 107 isolates resistant to the panel of the VITEK 2 
gram negative Susceptibility Card, whereas 4 % were sen-
sitive isolates based on CLSI criteria.

16S rRNA identification and the detection of ESBL 
and carbapenemase genes
The 16S rRNA sequencing of all isolates (n = 107) gener-
ated a high score (≥97 % in total) of A. baumannii iden-
tity using the BLAST and Ribosomal Database Project 

(http://rdp.cme.msu.edu/) [21, 24]. To determine the 
extent of genotypic diversity among the MDR A. bau-
mannii, PCR and sequencing of blaTEM, blaSHV, and the 
blaCTX-M-group genes 1, 2, 8, 9, and 25 and the blaOXA51-

like, and blaOXA23-like genes were employed. All of the PCR-
based ESBL-positive A. baumannii isolates (n  =  100) 
were concordant with the phenotyping data. Of these iso-
lates, seventy-one (71 %) harbored the blaTEM gene. None 
of them contained the blaSHV gene and eighty-one iso-
lates (81 %) encoded blaCTX-M-group genes 1, 2, 8, 9, and 
25. Finally, ninety-four (94 %) isolates carried the carbap-
enemase gene OXA51-like, and ninety-one isolates (91 %) 
contained OXA23-like (Table  3; Fig.  2). The sequencing 
analysis of all of the genes showed approximately 90  % 
sequence similarity to the submitted sequences that are 
related to the genes deposited in GenBank.

Table 2  Primers used in PCR to amplify the seven housekeeping genes in A. baumannii isolates

No. Locus Primer Sequences Amplicon size (bp) Usage

1 gltA Citrato F1 AAT TTA CAG TGG CAC ATT AGG TCC C 722 Amp/seq

Citrato R12 GCA GAG ATA CCA GCA GAG ATA CAC G Amp/seq

2 gyrB gyrB_F TGA AGG CGG CTT ATC TGA GT 594 Amp/seq

gyrB_R GCT GGG TCT TTT TCC TGA CA Amp/seq

3 gdhB GDHB 1F GCT ACT TTT ATG CAA CAG AGC C 774 Amp

GDH SEC F ACC ACA TGC TTT GTT ATG Seq

GDHB 775R GTT GAG TTG GCG TAT GTT GTG C Amp

GDH SEC R GTT GGC GTA TGT TGT GC Seq

4 recA RA1 CCT GAA TCT TCY GGT AAA AC 425 Amp/seq

RA2 GTT TCT GGG CTG CCA AAC ATT AC Amp/seq

5 cpn60 cpn60_F GGT GCT CAA CTT GTT CGT GA 640 Amp/seq

cpn60_R CAC CGA AAC CAG GAG CTT TA Amp/seq

6 gpi gpi_F GAA ATT TCC GGA GCT CAC AA 456 Amp/seq

gpi_R TCA GGA GCA ATA CCC CAC TC Amp/seq

7 rpoD rpoD-F ACC CGT GAA GGT GAA ATC AG 672 Amp/seq

rpoD-R TTC AGC TGG AGC TTT AGC AAT Amp/seq

Fig. 1  Cephalosporin susceptibility pattern by A. baumannii isolates. 
Among the 107 isolates of A. baumannii tested, 100 isolates (94 %) 
were confirmed as ESBL producers by phenotypic assay

http://pubmlst.org/abaumannii/
http://www.applied-maths.com
http://www.applied-maths.com
http://rdp.cme.msu.edu/
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Multilocus sequence typing analysis
MLST and sequence-based typing of ESBL and carbap-
enemase isolates were performed to analyze the genetic 
relationship of all of the isolates. The MLST anaylsis con-
tains 97 isolates of 102. Five isolates were not typable 
due to low quality traces files and were not assigned STs 
but were included in the dendrogram. The MLST anal-
ysis allowed us to group the A. baumannii isolates into 
eight STs (Figs. 3, 4). MLST typing showed that the most 
dominant sequence type was ST195 (n =  69), followed 
by ST557 (n = 6), ST 208 (n = 4), ST499 (n = 2), ST218 
(n = 2), ST231 (n = 1), ST222 (n = 1), and ST286 (n = 2). 
All of STs except ST 231 belonge to clonal complexity 2 
(CC2) and lineage clone 2. The tree (Fig. 3) is based on 
the nucleotide sequence of at least 6 or 7 housekeeping 
genes. The analysis was based on data sets that include 
all STs in the Pasteur MLST databases of A. baumannii 
(http://pubmlst.org/abaumannii/).

Discussion
In this study, we detected and characterized the phe-
notypic and genotypic nature of ESBL producers in A. 
baumannii, which were isolated from general hospitals 
in Makkah, Saudi Arabia. At least 107 A. baumannii iso-
lates were characterized by the Vitek-2 system and PCR-
sequencing followed by MLST typing. Our data indicated 
a high prevalence of A. baumannii ESBL producers 
among the collected isolates. A remarkable outcome of 

this study was the large number of antibiotic resistance 
genes found in these isolates. Ninety-four percent of 
A. baumannii isolates were found to have three major 
resistant determinants. We speculate that if more drug-
resistant genes were screened, we would have found pan-
resistant A. baumannii isolates.

CTX-M β-lactamases produced by A.baumannii 
strains is plasmid-mediated hence the wide spread and 
long time survival in hospitals. The CTX-M gene activity 
conferring resistance to cefotaxime and ceftazidime. We 
detected CTX-M group 1, 2, 8, 9, 25 in our current study 
(81 %). The high rate of prevalence of CTX-M resistance 
in gram negative bacteria may be influenced by mobile 
genetic elements around these genes which include 
transposon, insertion sequences (IS) and integrons [25]. 
Consistent with our study, all gram negative CTX-M 
producing bacteria are often associated with other fami-
lies of other β-lactamases resistance causing multi-drug 
resistance phenomena. The high prevalence rate around 
the world of CTX-M makes it a predominant drug resist-
ant gene in gram negative bacteria [26].

We studied the dynamic spread of A.baumannii in our 
population by MLST. The discriminatory power of the 
MLST system is comparable to other techniques such 
as pulsed field gel electrophoresis (PFGE). Yet, MLST 
provides a quick and easy method to study the epide-
miology of ESBL-producing bacteria and to monitor the 
international emergence of multidrug resistant bacteria. 
Consistent with other studies that used MLST in the 
epidemiologic characterization of clinically important 
bacterial pathogens such as A.baumannii, Streptococ-
cus pneumoniae, Streptococcus pyogenes, Neisseria men-
ingitidis, Campylobacter jejuni, Staphylococcus aureus, 
Enterococcus faecium, Haemophilus influenza, and Vibrio 
cholera, our study has detected different allelic diversity 
(STs) which belongs to clonal complex (CC)2 which is 
globally distributed in Europe, Asia, Africa, Australia, 
USA, South America [19, 27–29].

The drug of choice to treat nosocomial infection caused 
by A.baumannii is the carbapenems. However, there is 
an increasing rate of carbapenem-resistant A.baumannii 
around the world caused by OXA23-like enzume or 
OXA51-like enzyme acitivies [30]. The first OXA23-
like enzyme with carbapenem-activity to A. baumannii 
was isolated and characterized in Scotland in 1985. This 

Fig. 2  The overall distribution of ESBL and carbapenemase genes 
detected in A. baumannii isolates

Table 3  Detection and ESBL genotyping of 107 Acinetobacter baumannii clinical isolates

PCR size 501 bp 353 bp 713 bp 800 bp 327 bp 205 bp 666 bp 552 bp 415 bp
Gene CTX-M1 CTX-M2 CTX-M8 CTX-M9 CTX-M25 TEM SHV OXA- 51-like OXA-23-like

Positive isolates of 107 isolates 9 73 72 10 61 73 0 100 97

Percentage (%) 81 71 0 94 91

http://pubmlst.org/abaumannii/
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Fig. 3  UPGMA (unweighted pair group method with arithmetic mean) dendrogram based on the catagorical coefficient applied to the allele IDs. 
All isolates with at least six loci amplified were included. The dendrogram was generated by BioNumerics 7 software. The ST numbers assigned for 
each isolate were generated by the Pasteur MLST scheme (http://pubmlst.org/abaumannii/). The tree is a rooted based on the nucleotide sequence 
of the six and seven housekeeping genes. The analysis was based on data sets that include all STs in the Pasteur MLST databases. The first clade 
consists of ST195, 208, 218 and 286; the second clade of ST231; the third clade of ST499; the fourth clade of ST 557; the fifth clade of ST222. The sixth 
and seventh clades have two nontypeable isolates due to low quality sequencing trace files

http://pubmlst.org/abaumannii/
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drug-resistant determinant is encoded by the plasmid 
therefore it is transferable [31]. This may explain the high 
prevalence of carbapenemase-producing A. bauman-
nii in hospitals around the world. The other gene clus-
ter in the OXA family is the blaOXA-51-like gene which is 
chromosomally encoded and naturally occurs in A. bau-
mannii. The functional product of this gene delivers car-
bapenemase resistance to meropenem and imipenem; its 
role in carbapenem resistance may be influenced by the 
presence of ISAba1. PCR mapping studies have found 
that the absence of this sequence upstream of blaOXA-
51-like gene may contribute to a minimal effect on car-
bapenem susceptibility [32–36].

A recent study in the Gulf Countries Council (GCC) 
[37], namely, Saudi Arabia, the United Arab Emirates, 
Oman, Qatar, Bahrain, and Kuwait, suggested a high 
prevalence of carbapenemase resistance in A. baumannii, 
Escherichia coli and Klebsiella pneumonia. A. bauman-
nii (n =  117) was studied as clusters in seven different 
sequence types: ST195, ST208, ST229, ST436, ST450, 
ST452 and ST499. Three of these sequences were iden-
tified in our study, including ST195, ST499, and ST208, 
which may suggest the circulation of these three STs in 
GCC countries [17, 37]. The circulation of the STs within 
GCC may be due to the closeness of these countries to 
each other. Recent reports have been accumulating from 
Saudi Arabia due to the wide and rapid spread of carbap-
enem-resistant gram negative bacteria isolated from local 
hospitals specially during high season [38–40].

The high level of detection of ESBL and carbap-
enemase resistance among local isolates may sug-
gest an increasing incidence rate of infection with 
ESBL-producing A. baumannii. Such high rates of 

ESBL-producing bacteria may impose a burden on 
routine clinical practice, especially for patients with 
chronic diseases and immunocompromised patients. 
Although national surveillance data are lacking, out-
breaks of infection due to ESBL-producing A. bau-
mannii have been reported by many hospitals within 
the Kingdom of Saudi Arabia. The true prevalence of 
ESBL producers is not known and is likely underesti-
mated because of the difficulties encountered in their 
detection by most local hospitals. However, it is clear 
that ESBL-producing bacteria are distributed world-
wide and their prevalence is increasing [2, 6, 41, 42]. 
Therefore, periodic screening of ESBL-producing A. 
baumannii during the high hospital visitation season is 
recommended in all local hospitals to establish national 
surveillance data archives of the level of spread of ESBL 
producers.

Conclusions
In this study, we randomly surveyed and characterized 
ESBL-producing A. baumannii from ICU of local hos-
pitals in Makkah city, Saudi Arabia. Our data indicated 
a high prevalence of A. baumannii ESBL producers 
among the collected isolates. Based on MLST typing, 
we have evidence of eight STs groups in our isolates. 
The epidemiologic diversity of these isolates may sug-
gest that new ESBL strains are constantly emerging. The 
molecular diversity of the ESBL genes in A. bauman-
nii may have contributed to the increased antimicro-
bial resistance among all isolates. Therefore, periodic 
screening of ESBL-producing A. baumannii during the 
high hospital visitation season is recommended in all 
local hospitals.

Fig. 4  Minimum spanning tree constructed based on the allele IDs
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