

Draft Genome Sequence of *Bacillus marisflavi* TF-11^T (JCM 11544), a Carotenoid-Producing Bacterium Isolated from Seawater from a Tidal Flat in the Yellow Sea

Jie-ping Wang, Bo Liu, Guo-hong Liu, De-ju Chen, Qian-qian Chen, Yu-jing Zhu, Zheng Chen, Jian-mei Che Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China

Bacillus marisflavi TF-11^T (JCM 11544) is a Gram-positive, spore-forming, and carotenoid-producing bacterium isolated from seawater from a tidal flat in the Yellow Sea. Here, we report the first draft genome sequence of *B. marisflavi* TF-11^T, which comprises 4.31 Mb in 11 scaffolds with a G+C content of 48.57%.

Received 20 October 2015 Accepted 23 October 2015 Published 10 December 2015

Citation Wang J-P, Liu B, Liu G-H, Chen D-J, Chen Q-Q, Zhu Y-J, Chen Z, Che J-M. 2015. Draft genome sequence of Bacillus marisflavi TF-11⁺ (JCM 11544), a carotenoid-

producing bacterium isolated from seawater from a tidal flat in the Yellow Sea. Genome Announc 3(6):e01451-15. doi:10.1128/genomeA.01451-15.

Copyright © 2015 Wang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 Unported license.

Address correspondence to Bo Liu, fzliubo@163.com.

The type strain TF-11^T of *Bacillus marisflavi*, a Gram-positive or Gram-variable (in older cultures), endospore-forming, and moderately halophilic bacterium, was isolated from seawater from a tidal flat in the Yellow Sea in South Korea (1). So far, the different strains of *B. marisflavi* have been found in a variety of environments, such as rice paddy soils (2), hypersaline microbial mats (3), the solid waste and liquid effluent of an electroplating industry (4), a tropical soil contaminated with petroleum hydrocarbons (5), and different plant rhizospheres (6).

It was uncovered that *B. marisflavi* produces carotenoid with absorption maxima at 455 nm (7), a finding consistent with the pale yellow phenotype of its colonies (1). Some strains of *B. marisflavi*, which inhabit varied plant rhizospheres, displayed the ability to fix nitrogen (2, 6). In environmental biotechnology, *B. marisflavi* was found to be one of the main three members in a lubricant-degrading microbial consortia (5); *B. marisflavi* tolerated chromium concentrations up to 700 mg/liter and performed chromium biosorption quickly and efficiently (4). In biomedical applications, the *Bacillus marisflavi* biomass was used as a reducing and stabilizing agent for the preparation of watersoluble grapheme, which exhibits obvious cytotoxicity against human breast cancer cells (8). Here, we report the draft genome of *B. marisflavi* TF-11^T, the first released *B. marisflavi* genome sequence.

The genome sequence of *B. marisflavi* TF-11^T was obtained by paired-end sequencing on the Illumina Hiseq 2500 system. Two different DNA libraries with insert sizes of 500 and 5,000 bp were constructed and sequenced. After filtering of the 1.21-Gb raw data, the 1.19-Gb clean sequence data were obtained, providing approximately 150-fold coverage. The average DNA G+C content was 48.57%, being in accordance with the previously acquired value of 49 mol% acquired by HPLC determination (1). The reads were assembled via SOAPdenovo software version 2.04 (9). Through the data assembly, 11 scaffolds consisting of 4,312,088 bp were obtained, and the scaffold N_{50} was 1,039,146 bp. The average length of the scaffolds was 392,008 bp, and the longest and shortest scaffolds were 1,799,863 bp and 1,254 bp, respectively. Moreover, 92.09% clean reads were aligned back to the genome, by which 99.91% of the genome sequence was covered.

The assembly was uploaded for annotation to the National Center for Biotechnology Information Prokaryotic Genomes Annotation Pipeline version 2.9 (PGAAP) (http://www.ncbi.nlm.nih .gov/genomes/static/Pipeline.html). A total of 4,340 genes were predicted, including 4,143 coding sequences (CDS), 106 pseudogenes, and 84 tRNA and 6 rRNA genes. There were 3,185 and 2,167 genes assigned with COG and KEGG databases, respectively.

Nucleotide sequence accession numbers. This whole-genome shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession number LGUE000000000. The version described in this paper is version LGUE01000000.

ACKNOWLEDGMENTS

This work was financially supported by grants from the National Natural Science Foundation of China (grant 31370059); the Scientific Research Foundation for Returned Scholars, Fujian Academy of Agricultural Sciences (grant YJRC2014-1); and the Fujian Special Fund for Scientific Research Institutes in the Public Interest (grants 2014R1101016-11 and 2015R1018-1).

REFERENCES

- Yoon J-H, Kim IG, Kang KH, Oh TK, Park YH. 2003. Bacillus marisflavi sp. nov. and Bacillus aquimaris sp. nov., isolated from seawater of a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 53:1297–1303. http:// dx.doi.org/10.1099/ijs.0.02365-0.
- Yen J, Wang Y, Hsu W, Chen W. 2013. Phylogenetic changes in soil microbial and diazotrophic diversity with application of butachlor. J Environ Sci Health B 48:49-56. http://dx.doi.org/10.1080/ 03601234.2012.716729.
- Long RA, Eveillard D, Franco SLM, Reeves E, Pinckney JL. 2013. Antagonistic interactions between heterotrophic bacteria as a potential regulator of community structure of hypersaline microbial mats. FEMS Microbiol Ecol 83:74–81. http://dx.doi.org/10.1111/j.1574-6941.2012.01457.x.
- Mishra S, Doble M. 2008. Novel chromium tolerant microorganisms: isolation, characterization and their biosorption capacity. Ecotoxicol Environ Saf 71:874–879. http://dx.doi.org/10.1016/j.ecoenv.2007.12.017.

- Supaphol S, Panichsakpatana S, Trakulnaleamsai S, Tungkananuruk N, Roughjanajirapa P, O'Donnell AG. 2006. The selection of mixed microbial inocula in environmental biotechnology: example using petroleum contaminated tropical soils. J Microbiol Methods 65:432–441. http:// dx.doi.org/10.1016/j.mimet.2005.09.001.
- Ding Y, Wang J, Liu Y, Chen S. 2005. Isolation and identification of nitrogen-fixing bacilli from plant rhizospheres in Beijing region. J Appl Microbiol 99:1271–1281. http://dx.doi.org/10.1111/j.1365-2672.2005.02738.x.
- 7. Khaneja R, Perez-Fons L, Fakhry S, Baccigalupi L, Steiger S, To E,

Sandmann G, Dong TC, Ricca E, Fraser PD, Cutting SM. 2010. Carotenoids found in *Bacillus*. J Appl Microbiol **108**:1889–1902.

- Gurunathan S, Han J, Eppakayala V, Kim J. 2013. Green synthesis of graphene and its cytotoxic effects in human breast cancer cells. Int J Nanomed 8:1015–1027. http://dx.doi.org/10.2147/IJN.S42047.
- Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, Li S, Yang H, Wang J, Wang J. 2010. *De novo* assembly of human genomes with massively parallel short read sequencing. Genome Res 20:265–272. http://dx.doi.org/10.1101/gr.097261.109.