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GLT-1, the major glutamate transporter in the mammalian central nervous system, is
expressed in presynaptic terminals that use glutamate as a neurotransmitter, in addition
to astrocytes. It is widely assumed that glutamate homeostasis is regulated primarily
by glutamate transporters expressed in astrocytes, leaving the function of GLT-1 in
neurons relatively unexplored. We generated conditional GLT-1 knockout (KO) mouse
lines to understand the cell-specific functions of GLT-1. We found that stimulus-evoked
field extracellular postsynaptic potentials (fEPSPs) recorded in the CA1 region of the
hippocampus were normal in the astrocytic GLT-1 KO but were reduced and often
absent in the neuronal GLT-1 KO at 40 weeks. The failure of fEPSP generation in
the neuronal GLT-1 KO was also observed in slices from 20 weeks old mice but not
consistently from 10 weeks old mice. Using an extracellular FRET-based glutamate
sensor, we found no difference in stimulus-evoked glutamate accumulation in the
neuronal GLT-1 KO, suggesting a postsynaptic cause of the transmission failure. We
hypothesized that excitotoxicity underlies the failure of functional recovery of slices from
the neuronal GLT-1 KO. Consistent with this hypothesis, the non-competitive NMDA
receptor antagonist MK801, when present in the ACSF during the recovery period
following cutting of slices, promoted full restoration of fEPSP generation. The inclusion
of an enzymatic glutamate scavenging system in the ACSF conferred partial protection.
Excitotoxicity might be due to excess release or accumulation of excitatory amino
acids, or to metabolic perturbation resulting in increased vulnerability to NMDA receptor
activation. Previous studies have demonstrated a defect in the utilization of glutamate
by synaptic mitochondria and aspartate production in the synGLT-1 KO in vivo, and we
found evidence for similar metabolic perturbations in the slice preparation. In addition,
mitochondrial cristae density was higher in synaptic mitochondria in the CA1 region in
20–25 weeks old synGLT-1 KO mice in the CA1 region, suggesting compensation for
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loss of axon terminal GLT-1 by increased mitochondrial efficiency. These data suggest
that GLT-1 expressed in presynaptic terminals serves an important role in the regulation
of vulnerability to excitotoxicity, and this regulation may be related to the metabolic role
of GLT-1 expressed in glutamatergic axon terminals.

Keywords: homeostasis, excitotoxicity glutamatergic, aging, neurodegeneration, mitochondria, Alzheimer’s
disease, repair

INTRODUCTION

Most synapses have a mechanism for neurotransmitter reuptake
in the presynaptic terminal, and the demonstration of a
high-affinity specific uptake system for glutamate in purified
synaptosomes provided important biochemical evidence that
this amino acid is a neurotransmitter (Logan and Snyder,
1971; Bennett et al., 1972; Rimmele and Rosenberg, 2016).
In excitatory presynaptic terminals, the high-affinity glutamate
transporter GLT-1 is expressed in many but not all synapses
(Chen et al., 2004; Berger et al., 2005; Furness et al., 2008). In
the hippocampus, 80–90% of GLT-1 is found in glial cells and
5–10% in axon terminals (Furness et al., 2008), and a consensus
has arisen that glutamate clearance is primarily if not exclusively
accomplished by astrocytic GLT-1 (Bergles et al., 1999; Danbolt,
2001; Tzingounis and Wadiche, 2007). Glutamate homeostasis
(Schousboe and Hertz, 1981; Ottersen et al., 1996; Schousboe
et al., 1997; Takahashi et al., 1997; Bezzi et al., 1999; Kalivas, 2009)
is important for the survival of neurons in the CNS in the face of
the constant threat of excitotoxicity due to excess or abnormal
activation of glutamate receptors (Lipton and Rosenberg, 1994).
In addition, glutamate homeostasis has emerged as a critical
determinant of important neurobiological phenomena, including
pain (Inquimbert et al., 2012, 2018), addiction (Fischer et al.,
2020), mental illness (Hu et al., 2015; O’Donovan et al., 2015;
Parkin et al., 2018, 2020) plasticity (Levenson et al., 2000a,b,
2002; Collado et al., 2007, 2009), and chronic neurodegeneration,
in particular, in Alzheimer’s disease (Li et al., 2009; Zott et al.,
2019). In general, it has been assumed that these multiple roles
for GLT-1 are implemented by GLT-1 expressed in astrocytes,
whereas the functions of the small amount of GLT-1 expressed
in axon terminals remain largely unknown.

Recent studies have shown that GLT-1 expressed in axon
terminals may serve an important metabolic role (McNair et al.,
2019, 2020; Andersen et al., 2021a), although the functional
importance of this metabolic involvement of GLT-1 and the
consequences of its perturbation or disruption have not been
explored. To pursue the cell-type specific functions of GLT-
1, we generated a conditional GLT-1 knockout and mouse
lines using Cre/lox technology to: (i) inactivate the GLT-1 gene
in astrocytes, by a tamoxifen-inducible glial fibrillary acidic
protein (GFAP) driver (Casper et al., 2007) of Cre-recombinase
expression (gfapGLT-1 KO), and (ii) using a synapsin 1 driver
of Cre-recombinase expression (Zhu et al., 2001) to inactivate
GLT-1 specifically in neurons (synGLT-1 KO; Petr et al., 2015).
Like the pan GLT-1 KO (Tanaka et al., 1997), gfapGLT-1 KO
mice have intractable seizures and a shortened life span (Petr
et al., 2015). The synGLT-1 KO, in contrast, is behaviorally

normal up to 12 months of age (Petr et al., 2015; Sharma et al.,
2019) but has been found to have a defect in the performance of
the Morris Water Maze at 18 months of age suggesting impaired
hippocampal memory formation (Vorhees and Williams, 2006;
Sharma et al., 2019).

Neurons in the CA3 region of the hippocampus express
GLT-1 mRNA at the highest levels found in neurons anywhere
in the brain (Torp et al., 1994, 1997; Schmitt et al., 1996;
Berger and Hediger, 1998; Berger et al., 2005). If GLT-1
expressed in axon terminals has a role in synaptic transmission
it should be manifest at the CA3 to CA1 synapse that can be
conveniently studied using the hippocampal slice preparation.
The hippocampal slice preparation is also considered to be a
model for brain injury and repair, in that during the preparation
of slices the brain is subjected to both ischemic and traumatic
injury and after an initial period of electrical silence undergoes
repair processes that restore synaptic transmission (Kirov et al.,
1999; Fiala et al., 2003; Buskila et al., 2014; Rae and Balcar,
2014; Frenguelli, 2019). Accordingly, the slice preparation has
been used as a model in which it is possible to study how
genetic and other manipulations affect processes associated with
repair and recovery from injury (Hossmann, 2008; Hall and
Frenguelli, 2018; Frenguelli, 2019; Frenguelli and Dale, 2020).
In this study, we took advantage of the hippocampal slice
preparation to test whether the inactivation of GLT-1 in neurons
affects synaptic function and synaptic health. In fact, we found
that the generation of field excitatory postsynaptic potentials was
compromised in slices from synGLT-1 KO animals 20 weeks and
older, and this compromise appeared to be due to excitotoxic
injury. Remarkably, fEPSP generation in gfapGLT-1 KO animals
was normal at least through 40 weeks of age. These findings
suggest that, despite its low level of expression, GLT-1 expressed
in axon terminals serves an important role in regulating
vulnerability to excitotoxicity.

MATERIALS AND METHODS

Mice
Male conditional GLT-1 knock-out mice were obtained from the
founding colony at Boston Children’s Hospital (Slc1A2tm1.1Pros;
MGI: 5752263; Petr et al., 2015). Neuronal GLT-1 knockout
mice were generated in which the GLT-1 gene was inactivated in
neurons by expression of synapsin-Cre as described previously
(GLT-1flox/flox; synapsin-Cre; Petr et al., 2015; Fischer et al.,
2018), and littermate controls with normal GLT-1 function
(GLT-1flox/flox). These are referred to in the current article as
synGLT-1 KO and wild-type littermate controls, respectively.
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In order to determine that our observations were not due to
Cre-recombinase expression, per se (Harno et al., 2013), we
generated and used synapsin-Cre control mice. Male mice with
a tamoxifen-inducible astrocyte-specific knock-out of GLT-1
(GLT-1∆/∆;GFAP-Cre ERT2) are referred to as gfapGLT-1 KO
and were generated using the hGFAP-CreERT2 driver (Casper
et al., 2007) as described previously (Petr et al., 2015). Pups
from an entire litter were treated daily with tamoxifen (T5648,
Sigma-Aldrich; 33 mg/kg, i.p. or oral gavage in sunflower
oil) starting from P5 and for 4–5 consecutive days (Ganat
et al., 2006). Tamoxifen solutions were made fresh for a
given litter and never frozen. Experiments were conducted on
adult male mice, synGLT-1 KO experiments were performed
with three age groups, 10–12 weeks (referred to as 10 weeks
throughout the manuscript), 18–21 weeks (referred to as
20 weeks throughout the manuscript), and 30–40 weeks of
age, using age-matched littermates as controls; gfapGLT-1 KO
experiments were performed with 24–40 weeks old mice and
littermate controls. For the electron microscopic study, a single
age group of 22–24 weeks was used. Animals were housed in a
temperature-controlled room on a 12-h light/12-h dark cycle and
had ad libitum access to food and water.

Mice were maintained on a 129S4/SvJaeJ (JAX Stock
No. 009104) × C57BL/6J (JAX Stock No. 000664) genetic
background as a mixed background is most likely to produce
the widest range of phenotypes (Doetschman, 2009). The
composition of the hybrid backgroundwas periodically evaluated
using the Jackson Labs Genome Screening Service, and the
colony was refreshed either with C57BL/6J or 129S4/SvJaeJ to
approximate a 50:50 mix. In all experiments, littermate controls
were used.

All animal experiments were performed in accordance with
NIH guidelines and were approved by the Children’s Hospital
Boston Institutional Animal Care and Use Committee.

Hippocampal Slice Preparation
Mice (synGLT-1 KO and wild-type littermates; gfapGLT-1 KO
and wild-type littermates) were euthanized with Isoflurane. The
brain was quickly removed and placed in chilled (4◦C) low-
Ca, high-Mg, low-Na slicing solution consisting of (in mM):
234 sucrose, 11 D-glucose, 24 NaHCO3, 2.5 KCl, 1.25 NaH2PO4,
10 MgSO4, and 0.5 CaCl2, equilibrated with a mixture of 95%
O2:5% CO2, pH 7.4 (Figures 2–5, 6C). For some experiments,
a slightly altered composition for the low-Na slicing solution
was used: (in mM) 206 sucrose, 10 D-glucose, 26 NaHCO3,
2.8 KCl, 1.0 NaH2PO4, 2 MgSO4, 1 CaCl2, 5 MgCl2, pH 7.4
(Figures 1A–D, 6A,B). The brain was glued to the slicing stage
of a Leica VT1200S Vibratome sectioning system and slices
were cut at 350 µm in a coronal orientation. The slices were
then incubated in 32◦C oxygenated artificial cerebrospinal fluid
(ACSF: in mM: 126 NaCl, 2.5 KCl, 1.25 NaH2PO4, 1 MgSO4,
2 CaCl2, 10 D-glucose, 26 NaHCO2, pH 7.4) for at least 60 min
(Figures 2–5, 6C). In some experiments, slices were incubated in
ACSF that contained the following (in mM): 124 NaCl, 2.8 KCl,
1.25 NaH2PO4, 2 MgSO4, 2.5 CaCl2, 10 D-glucose, 26 NaHCO3,
0.4 sodium ascorbate, pH 7.4 (Figures 1A–D, 6A,B). The volume
used for the recovery incubation was 300–500ml (Figures 1A–D,

2A–E, 3, 4) except when drugs were being tested (Figures 5,
6A,B) when the reduced volume (25–100) was used to conserve
the drug.

Electrophysiological Recordings
A single slice was transferred to the recording chamber and
continuously perfused with ACSF at ∼34◦C that had been
saturated with 95% O2 and 5% CO2 after recovery at the same
temperature. In some experiments, recording (and recovery
incubation) was performed at 26◦C (Figures 1A–D, 6A,B). For
field recording and glutamate imaging, this was done in an
interface chamber; in some experiments, submerged slices were
used (Figures 1A–D, 6A,B).Whole cell recording was performed
using submerged slices.

A bipolar stimulating electrode (FHC Inc., Bowdoin, ME)
was placed in the Schaeffer collaterals to deliver stimuli. A
borosilicate glass recording electrode filled with ACSF was
positioned in the stratum radiatum of CA1, 200–300 µm from
the stimulating electrode. The input/output relationship was
determined with a series of increasing stimulation intensities.
Paired pulse facilitation of fEPSP was tested by two stimuli 50 ms
apart with an intensity of 300 µA. Electrophysiological data were
recorded with an Axon Multiclamp 700A amplifier or with an
Axon Instruments 200 B amplifier and Digidata 1322A digitizer
(sampling rate = 10 or 20 kHz; filtered at 2 kHz) with pClamp
software (Molecular Devices).

Recovery times were similar between genotypes, and the
minimum time for recovery was 60 min. Slices were taken as
needed from the recovery ACSF for recording after the 60-min
recovery period. Although the first slices were recorded following
60 min recovery period, the last to be recorded on a given
day may have been in the recovery ACSF for up to 4 h. No
effect was observed of time in recovery ACSF on the phenotype
observed in the synGLT-1 KO. In all cases comparing wild-type
and KO slices, slices from wild-type and KO littermates were
compared on the same experimental day. Therefore, slices from
both mutant and control genotypes were always subjected to the
same experimental conditions.

Glutamate Biosensor Imaging
Production, loading of glutamate biosensor, and collection of
biosensor data were performed as previously described (Dulla
et al., 2008). A 35 mm tissue culture dish was filled with ∼2 ml
ACSF and a 0.4 µm Millicell (Millipore) culture plate was
inserted. Care was taken to ensure that no bubbles were present
under the plate insert and that no ACSF spilled onto its top
surface. A single brain slice was transferred from the incubation
chamber onto the plate insert and excess ACSF was removed.
The dish containing the slice was then placed in a humidified
and warmed (32◦C) chamber equilibrated with 95% O2:5% CO2.
Fifty microliter of concentrated glutamate FRET sensor protein
(≈ 50 ng/µl) was then carefully applied to the top surface of the
slice. After 5–10 min of incubation, slices were removed from the
loading chamber and placed into the recording chamber.

Slices were placed into the recording chamber of an Olympus
Bx51WI microscope with continual superfusion of ACSF for
simultaneous imaging with an Olympus 4× objective. Excitation
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FIGURE 1 | Decreased field potentials in CA1 region of hippocampal slices from synGLT-1 KO but not gfapGLT-1 KO mice. Field excitatory post-synaptic potentials
(fEPSPs) were recorded in the stratum radiatum in the CA1 region of hippocampal slices in response to a single electrical stimulus applied to the Schaeffer
collateral/commissural fibers in 30–40 weeks old gfapGLT-1 KO (“Astrocytic GLT-1 KO”; A,C) and 30–40 weeks old synGLT-1 KO (“Neuronal GLT-1 KO”; B,D) mice
and wild-type (WT) littermate controls. (A) Representative traces from WT (black trace) and gfapGLT-1 KO (green trace) littermates (0.3 mA stimulus). (B)
Representative traces from WT (black trace) and synGLT-1 KO (red trace) littermates (0.3 mA stimulus). (C,D) Input-output relationship of fEPSP slope produced by
stimuli between 0 and 1 mA in gfapGLT-1 and WT littermates (C) and in synGLT-1 KO and WT littermates (D). ** = p < 0.01, *** = p < 0.001 in panels (C,D) indicate
effect of genotype in a linear mixed model.

with 440 nm wavelength light was used. Imaging was performed
using a Zyla (Andor) camera imaging at 200 Hz, illuminated
by a 480 nm LED (Thorlabs), using the Endow-GFP filter
cube (Chroma) and controlled by MicroManager (Edelstein
et al., 2014). Each imaging experiment consisted of collecting
500 images at 5ms acquisition time. A direct trigger sent from the
camera triggered evoked stimuli delivery by stimulation isolator
after the acquisition of 20 images. Emission signals first passed
through a 455 nm DCLP dichroic mirror to eliminate excitation
fluorescence and were then separated into two channels using
a Photometrics Dual-View or Optosplit two channel imaging
system to isolate cyan fluorescent protein (CFP) and Venus, a
variant of yellow fluorescent protein (YFP), signals.

Regions of interest (ROIs) were manually drawn within the
CA1 stratum radiatum symmetrically around the stimulation
electrode to include regions from both the CA1 and CA3 sides
of the electrode. Raw imaging data was first split into CFP and
Venus and the ratio of the two fluorophores was computed.
An average pre-stimulation ratio image was then made by
averaging the first three images. The pre-stimulation image
was then subtracted from all images resulting in a ∆FRET

image. Processed ∆FRET images were then converted into
∆FRETsignal/∆FRETnoise data, pixel-by-pixel, by dividing all
time-points by the standard deviation of ∆FRET during the
pre-stimulus time period. Bleaching of the biosensor was
corrected by calculating an exponential function fit. Imaging data
were then analyzed to determine the peak amplitude of the signal.

Assay of Extracellular Amino Acids
Extracellular Amino Acids
Medium (V = 3 ml) incubating single slices during the recovery
period of 60 min was collected and assayed for amino acids.
Slices from a single animal were used for each experiment and
wild-type and synGLT-1 KO animals were used on sequential
days. The medium was kept frozen at −20◦C after collection
and until assay. At the time of assay, 0.9 ml medium was
added to 0.1 ml 35% sulfosalicylic acid to remove proteins.
The acidified medium was kept on ice for 20 min, after which
it was centrifuged, and the supernatant was decanted and
assayed. Amino acid content was determined by the Biochemical
Genetics Laboratory at the Kennedy Krieger Institute using a
Biochrom 30 amino acid analyzer (Pei et al., 2010). In these
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FIGURE 2 | Age-dependent impairment in excitatory synaptic transmission in synGLT-1 KO mice. (A,B) Representative fEPSPs recorded in the stratum radiatum of
the CA1 region in hippocampal slices in response to a single electrical stimulus applied to the Schaeffer collateral/commissural fibers in 10 weeks (A) and 20 weeks
old (B) WT littermate controls (black traces) and in synGLT-1 KO (red traces). fEPSP slope in 10 weeks old (C) and 20 weeks old (D) synGLT-1 KO produced by
stimuli between 0 and 1 mA. (E) Cre-recombinase expression on a true wild-type background (GLT-1+/+; 20 weeks) does not impair fEPSP generation. * = p < 0.05,
*** = p < 0.001 in panels (D,E) indicate effect of genotype in a linear mixed model.

experiments, slices from single animals were incubated for
selected times in ACSF, incubated at 34◦C. Wild-type and KO
animals were run on sequential days. Three pairs were assayed,
four slices per animal on a given experimental day, for a total of
12 slices/genotype.

Glutamate Uptake and Metabolism in
Hippocampal Brain Slices
Glutamate uptake and metabolism were investigated by
incubation of acutely isolated hippocampal mouse brain
slices as previously described (Andersen et al., 2021b). The
mouse was euthanized by cervical dislocation and the brain
transferred to ice-cold artificial cerebrospinal fluid (ACSF)

containing in mM: 128 NaCl, 25 NaHCO3, 10 D-glucose, 3 KCl,
2 CaCl2, 1.2 MgSO4, 0.4 KH2PO4, pH 7.4. The hippocampi
were dissected and sliced (350 µm) using a McIlwain tissue
chopper (The Vibratome Company, O’Fallon, MO, USA). The
hippocampal slices were kept just below the surface of 10 ml
37◦C oxygenated (5% CO2/95% O2) ACSF and pre-incubated
for 60 min. Subsequently, the media were exchanged for ACSF
(with an adjusted D-glucose concentration of 5 mM) containing
200 µM [U-13C]glutamate and incubated for additional 60 min.
Incubations were terminated by transferring the slices into
ice-cold 70% ethanol. Slices were subsequently sonicated and
centrifuged (4,000 g × 20 min) and the supernatant was removed
and lyophilized before further analysis. The protein content of
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FIGURE 3 | Presynaptic fiber recruitment and paired-pulse facilitation were
largely unchanged in synGLT-1 KO compared to wild-type littermates. The
fEPSP fiber volley component of field potential recording in the stratum
pyramidale of CA1 hippocampal slices in 10 (A) and 20 weeks old (B)
synGLT-1 KO (red traces) and WT littermate controls (black traces) is shown.
(C) Pair pulse facilitation ratio (PPR) of two paired electrical stimuli at 20 Hz
applied to the Schaeffer collateral/commissural fibers in 10 weeks (left) and
20 weeks (right) old WT littermate controls (black symbols) and synGLT-1 KO
(red symbols). *** = p < 0.001 in panel (B) indicates the effect of genotype in
a linear mixed model.

the pellets was determined by Pierce protein assay. The 13C
enrichment of tricarboxylic acid (TCA) cycle intermediates and
amino acids from [U-13C]glutamate metabolism was determined
by gas chromatography-mass spectrometry (GC-MS) analysis.
Slice extracts were reconstituted in water, acidified, extracted
with ethanol and the metabolites were derivatized using N-tert-
butyldimethylsilyl-N-methyltrifluoroacetamide. Samples were
analyzed by GC (Agilent Technologies, 7820A, J&W GC column
HP-5 MS) coupled to MS (Agilent Technologies, 5977E). The
isotopic enrichment was corrected for the natural abundance
of 13C by analyzing the standards of the unlabeled metabolites
of interest. The expected labeling pattern of [U-13C]glutamate
metabolism is described in Andersen et al. (2017a) and data is
presented as M + X, where M is the molecular ion and X is the
number of 13C atoms in the molecule. Aqueous slice extracts
were further analyzed by reverse-phase high-performance liquid
chromatography (HPLC, Agilent Technologies, 1260 Infinity,
Agilent ZORBAX Eclipse Plus C18 column) to quantitatively
determine the amounts of amino acids (Andersen et al., 2017b).
Ten male mice of each genotype, 20 mice in total, were used for
the metabolic slice experiments.

One mouse was used at a time for experiments. For each
incubation (20 in total, 10 WT and 10 KO), 5–6 hippocampal
slices were tested/condition i.e., incubated together exposed to
[U-13C]glutamate. All of the 5–6 slices were then homogenized
and analyzed together to provide one data point.

Electron Microscopic
Immunocytochemical (EM-ICC) Detection
of GLT-1 and Analysis of Hippocampal
Mitochondria
The procedures used were exactly as reported previously (Petr
et al., 2015) and are described only briefly here. Animals, all male,
were transcardially perfused under anesthesia at 22–24 weeks of
age, in one session, using a mixture of 0.1% glutaraldehyde/4%
paraformaldehyde in 0.1 M phosphate buffer (PB, pH 7.4) to
fix their brains. All subsequent steps for tissue preparation were
conducted strictly in parallel, so as to minimize inter-animal
differences in ultrastructural preservation due to unintended
differences in tissue handling or of chemical reagents.

Brains were cut at a coronal plane using a vibrating
microtome, with thickness of sections set to 50 µm. Brain
sections spanning the dorsal hippocampus were collected, treated
with sodium borohydride (1%, in PB, pH 7.4) for 30 min, then
rinsed in PB and stored for a month in a 4◦C cold room,
free-floating in PBS (phosphate buffered saline, pH 7.6) that
contained 0.05% sodium azide. EM-ICC was achieved by using
a monoclonal anti-GLT-1a antibody at a dilution of 1:10,000
(generous gift of Dr. Jeff Rothstein, Johns Hopkins U) and
detected using HRP-DAB/osmium.

Ultrastructural analysis was performed strictly from the
stratum radiatum of CA1 of the dorsal hippocampus, after
capturing electron microscopic images at a magnification
of 40,000× from portions of the vibratome section that
were most superficial and thus optimal for immunodetection.
Synaptic neuropil that fulfilled these two criteria were captured
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FIGURE 4 | Comparison of stimulus-evoked glutamate release in synGLT-1 KO and wild-type slices. Acute hippocampal slices were prepared from synGLT-1 KO
and WT mice and loaded with a glutamate FRET sensor. A recording electrode was placed in the stratum radiatum of CA1 and a bipolar stimulating electrode was
placed in the Schaeffer collateral/commissural fibers. (A) An example of images from a WT hippocampal slice. Left: phase contrast. Center: pseudo-colored
glutamate response after one stimulus (center) and two stimuli at 20 Hz (right) and 0.3 mA intensity. The dashed line in the center and right images indicates the
region of interest used in (B,C). (B) Single trace of evoked extracellular glutamate FRET biosensor response in 10 weeks (left) and 20 weeks (right) old synGLT-1 KO
(red) and WT littermate (black) mice. (C) Population of responses obtained at 10 (left) and 20 (right) weeks old synGLT-1 KO and WT mice. The responses in (B) and
(C) were evoked by a single stimulus. There were no significant differences between responses in WT and synGLT-1 KO mice at 10 [Mann-Whitney U 106; p = 0.806
n = 15 (WT), 15 (KO)] or 20 weeks [(Mann-Whitney U 87; p = 0.202 n = 15 (WT), 16 (KO)]. Scale bar = 250 micrometers.

systematically, strictly in the order of encounter, while kept
blind to the genotype of the animal. Encounter with asymmetric
(presumably excitatory) synapses was recorded, together with the

presence vs. absence of GLT-1 immunoreactivity and presence
vs. absence of mitochondria within the presynaptic axon
terminal. The rate of encounter with GLT-1 immunoreactivity
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FIGURE 5 | Kynurenic acid partially restored excitatory synaptic
transmission in synGLT-1 KO mice. (A) Representative field potentials
recorded in the stratum radiatum of CA1 hippocampal slices in response to a
single electrical stimulus of 0.3 mA applied to the Schaeffer
collateral/commissural fibers in 20 weeks old WT littermate controls with
3 mM kynurenic acid treatment (black trace), synGLT-1 KO (red trace) and

(Continued)

FIGURE 5 | Continued
synGLT-1 KO with kynurenic acid treatment (blue trace). (B) Input-output
relationship of fEPSP slope between 0 and 1 mA in 20 weeks old synGLT-1
KO with kynurenic acid treatment (blue squares) or without treatment (red
squares) and WT littermates (black circles). (C) Summary of data obtained
with kynurenic acid and related treatments in ACSF during the recovery
period at 0.3 mA stimulus intensity: ACSF, kynurenic acid, 50 µM D-APV, 50
µm D-APV in combination with 20 µM DNQX; MCI-186. *** = p < 0.001 in
panel (B) indicates drug effect in a linear mixed model.

was measured for every group of 10 excitatory synapses, and
this assessment of the rate of the encounter was repeated
approximately 20 times, thereby assessing the rate of encounter
of a neuropil region spanning 200 or more excitatory synapses.
Within the mitochondria encountered, the average distances
between cristae were calculated as described below, under
‘‘Statistical Analyses’’.

Statistical Analyses
Electrophysiology and Biochemistry
For comparison between two experimental groups other than
electron microscopy, Student’s unpaired t-test was used. Values
of p < 0.05 or less were considered statistically significant. For
cases in which the same brain slice was stimulatedmultiple times,
and other repeated measures, linear mixed modeling (LMM)
was used to examine the effects of genotype or drug treatment.
This approach estimates the effect size of each factor while
accounting for intra- and inter-animal variability (Aarts et al.,
2014; Boisgontier and Cheval, 2016; Yu et al., 2021) and is
gaining wide acceptance (Lau et al., 2017; Huang et al., 2018;
Hanson et al., 2019; Koenig et al., 2019; Grieco et al., 2020;
Kurucu et al., 2021). LMMs were fitted with random intercepts
to assess for the correlation between repeated measurements on
the same mouse, and experiment-specific effects were analyzed
for statistical significance. LMM was performed in R-Studio
using the lme4 and lmreTest libraries. Slices were considered
nested within animals when considering intra- vs. inter-animal
variability. For each test examining the effect of genotype, R
code similar to the following was used ‘‘output ∼ (Amp +
Amp: Genotype) + (1 | Animal) + (1 | Animal: Slice)’’ where
‘‘output’’ is the measure of interest, ‘‘Amp’’ is the stimulation
intensity and ‘‘genotype’’ is the animal genotype. For each test
examining the effect of drug treatment, an R code similar to
the following was used ‘‘output’’ ∼ (Amp * Genotype * drug)
+ +(1 | Animal) + (1 | Animal:Slice) where ‘‘drug’’ was the
dose of drug used. For no drug controls, ‘‘drug’’ equaled zero,
values >1.96 and < −1.96 were considered to be statistically
significant and corresponded to 95% confidence intervals that
did not cross zero. Each LMM examined both main fixed
effects (genotype, drug treatment, stimulation intensity, etc.) and
interactions between the effects.

Electron Microscopy
GLT-1 immunoreactivity revealed the genotype of the animal
to be wild-type or synGLT-1 KO. After this identification,
and genotype validation from tail DNA that was collected
prior to euthanasia, the values of the rate of encounter with
GLT-1 immunoreactive presynaptic terminals were pooled
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FIGURE 6 | Functional impairment of hippocampal slices was blocked by MK801 or by glutamate-pyruvate transaminase (GPT) in recovery ACSF. (A) The
non-competitive NMDA receptor blocker MK801 prevented synaptic transmission compromise in synGLT-1 KO slices. Brain slices were allowed to recover in ACSF
or ACSF containing MK801 (10 µM or 2.5 µM). Incubation with either 2.5 and 10 µM MK801 significantly increased the fEPSP slope in synGLT1-KO slices.
SynGLT-1 KO slices in the presence of 10 µM MK801 (green, 11 slices from four mice) showed a normal input-output relationship compared with WT-ACSF slices
(black, nine slices from five mice). A low dose of MK801 (2.5 µM, orange, nine slices from three mice) partially restored fEPSP generation. In ACSF without drug,
synGLT-1 KO (red, seven slices from three mice) showed very abnormal I/O. Slices from littermate controls exposed to 10 µM MK801 during the recovery period
(WT-MK801, blue, eight slices from two mice) showed responses similar to slices from littermate controls that recovered in ACSF alone (WT-ACSF, black).
*** = p < 0.001 indicates the effect of drug dose in a linear mixed model. (B) The glutamate scavenger system GPT/pyruvate partially prevented synaptic
transmission deficits in synGLT-1 KO slices. SynGLT-1 KO slices in the presence of GPT/pyruvate (GPT 10 unit/ml, 10 mM pyruvate, orange, 12 slices from three
mice) showed a partially restored input-output relationship compared with slices treated only with pyruvate (red, nine slices from three mice). *** = p < 0.001 in panel
(B) indicates effect of GPT in a linear mixed model. (C) Extracellular amino acids following 60 min incubation. Extracellular medium bathing single slices for the
recovery incubation period of 60 min was collected and assayed for amino acids. The medium volume was 3 ml. No reliable differences were noted in extracellular
glutamate, aspartate, or glutamine concentrations between synGLT-1 KO and wild-type littermate slices.

across animals of the same genotype. The number of pooled
values was equalized across animals (∼20). Normality test
indicated failure by the Anderson-Darling, D’Agostino and
Pearson, Shapiro-Wilke, and Kolmogorov-Smirnov tests. Thus,
the Mann-Whitney test was used to determine the significance
of the difference between the median values from wild-type vs.
synGLT-1 KO tissue. Graphpad Prism (version 9 forMacOS) was
used to perform these tests and to plot the graphs.

The frequency of encounters with mitochondria within
presynaptic terminals of excitatory synapses was assessed as
described above for assessing the frequency of encounters with
GLT-1 immunoreactivity.

Mitochondrial Cristae Density
Mitochondria occurred in both GLT-1 labeled and unlabeled
axon terminals forming excitatory synapses. The average distance
between cristae was calculated to assess cristae density. The
distance, d, spanning from one crista to another or two

neighboring cristae within a singlemitochondrionwasmeasured,
using ImageJ’s tool for measuring the lengths of line segments
(version 2.1.0/1.53c). The average distance between neighboring
cristae of a mitochondrion was calculated based on the following
formula: Average distance = d/(number of cristae-1). The average
distance values of mitochondria were pooled across animals
of the same genotype (∼30 mitochondria per animal), then
compared across genotype groups using the Mann-Whitney test,
as described above. The pooled samples were equalized in sample
size across animals.

Error bars used in the data presentation in the figures
represent the standard error of the mean (SEM) throughout.

Drugs and Reagents
All salts and glucose for buffers and other reagents were
obtained from Sigma-Aldrich, except as noted. MCI-186 was
obtained from Cayman Chemical. MK801 was obtained from
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Tocris. D-APV was from Tocris and Abcam. DNQX was
from Tocris.

RESULTS

Hippocampal Field Excitatory Postsynaptic
Potentials in Neuron- and Astrocyte-
Specific GLT-1 KO
We first recorded field excitatory postsynaptic potentials
(fEPSPs) in the CA1 region of gfapGLT-1 KO and synGLT-1
KO mice, and compared responses with wild-type littermate
controls (WT). Schaeffer collaterals were stimulated and
fEPSPs from pyramidal neurons in the CA1 region of the
hippocampus of 30–40 weeks old gfapGLT-1 KO (Figure 1A)
and WT mice were recorded. fEPSP slope [Figure 1C; LMM,
t = 3.15, p = 0.0017, interaction of stimulation intensity
and genotype, n = 18 slices from seven animals (WT),
18 slices from five animals (KO)] was slightly, but significantly
increased, compared to WT mice. We next measured field
responses in 25–40 weeks old synGLT-1 KO (Figure 1B)
and WT mice and found that the fEPSP slope [Figure 1D;
LMM, t = 5.393, p = 2.28e-07, n = 10 slices from four
animals (WT), nine slices from seven animals (KO)] of the
neuronal GLT-1 KO was significantly decreased compared
to WT mice. As such, the loss of GLT-1 from presynaptic
terminals but not from astrocytes appeared to negatively affect
synaptic transmission in the CA1 region of hippocampal
slices.

Age-Dependent Decrease of fEPSP in the
Neuronal GLT-1 KO
Since we observed abnormal field responses in the synGLT-1 KO
but not gfapGLT-1 KO mice, we next focused on characterizing
this defect in the synGLT-1 KO further. We recorded fEPSPs of
synGLT-1 KO and WT mice at 10 (Figures 2A,C) and 20 weeks
of age (Figures 2B,D). At 10 weeks of age, we found that fEPSP
slope [LMM, interaction of stimulation and genotype, t = −1.93,
p = 0.053; n = 15 slices from five animals (WT), n = 15 slices from
four animals (KO)] was not significantly decreased in synGLT-1
KO, as compared to WT mice (Figures 2A,C). In contrast, at
20 weeks, fEPSP slope (t = −5.34, p = 1.45e-7) was significantly
reduced (53% reduction) in the synGLT-1 KO compared with
the WT [n = 18 slices from six animals (WT), 17 slices from
five animals (KO); Figures 2B,D]. These results suggest an
age-dependent defect in fEPSP generation in synGLT-1 KO
hippocampal slices.

The Expression of Cre Does Not Decrease
fEPSPs
To exclude the possibility that the decrease in fEPSPs in
synGLT-1 KO that we observed was due to expression of
Cre-recombinase, per se, we used synapsin-Cre control mice,
i.e., animals that express Cre, but on a WT genetic background,
and their WT littermates (synCre+ and synCre-). Expression
of Cre caused a small, but significant, increase in fEPSP slope
[Figure 2E; LMM, interaction of stimulation and genotype,

t = 2.48, p = 0.02; n = 10 slices from three animals (WT),
n = 11 slices from four animals (KO)] in slices from animals at
20 weeks of age. These data indicate that the decrease in fEPSPs
in synGLT-1 KO is not the result of Cre-recombinase expression,
but rather, from a loss of GLT-1 from the presynaptic terminal.

Presynaptic Fiber Recruitment of
Schaeffer Collaterals and Paired Pulse
Facilitation Are Largely Unaffected in
synGLT-1 KO
The fiber volley reflects the excitation of axons projecting into
the dendritic field recording site and produces a small peak that
occurs prior to the fEPSP (Otmakhova and Lisman, 1999; Kim
et al., 2012; Tani et al., 2014). The amplitude of this phenomenon
did not significantly differ in 10 weeks old synGLT-1 KO mice,
as compared toWT [Figure 3A; LMM, interaction of stimulation
and genotype, t = -0.12, p = 0.91, n = 15 slices from five animals
(WT), n = 15 slices from four animals (KO)]. At 20 weeks
of age, the fiber volley was slightly but significantly increased
in synGLT1-KO mice compared to WT [Figure 3B; LMM,
interaction of stimulation and genotype, t = 6.865 p = 7.15e-
11, n = 18 slices from six animals (WT), n = 17 slices from five
animals (KO)], indicating that the presynaptic fiber recruitment
of Schaeffer collaterals is, at most, mildly affected by the loss
of presynaptic neuronal GLT-1. Paired pulse ratio (PPR) is an
important measure of presynaptic function, sensitively reflecting
changes in calcium dynamics in the presynaptic terminal (Schulz
et al., 1994, 1995; Wu and Saggau, 1994; Mukhamedyarov et al.,
2006; Krall et al., 2020), and may be influenced by fast inhibitory
transmission as well (Nathan et al., 1990; Nathan and Lambert,
1991; Stuart and Redman, 1991). We found no significant
difference in PPR in 10 weeks [p = 0.0928, n = 22 slices from six
animals (WT), n = 17 slices from five animals (KO)] and 20 weeks
old synGLT-1 KOmice compared toWT [p= 0.6455, n= 18 slices
from six animals (WT), n = 16 slices from five animals (KO);
Figure 3C]. The lack of a change in PPR suggests that the
impairment of fEPSP generation observed in the synGLT-1 KO
hippocampal slices is not due to a compromise of presynaptic
function, for example, by impaired calcium dynamics (Wu and
Saggau, 1994; Dittman et al., 2000; Mukhamedyarov et al., 2006).

Glutamate Imaging in Hippocampal Slices
of Neuronal GLT-1 KO
Expression of GLT-1 in axon terminals might be required
to maintain stores of the neurotransmitter glutamate, and
also might participate in the clearance of glutamate from the
extracellular space after release. We tested whether stimulus-
evoked extracellular glutamate accumulation was affected by
neuronal GLT-1 KO by measuring stimulus-evoked changes in
extracellular glutamate using a FRET-based glutamate sensor
(Figure 4). These glutamate imaging studies revealed that evoked
glutamate release was only marginally, but not significantly,
reduced in 20 weeks old synGLT-1 KO compared to WT mice
[Mann-Whitney U 87; p = 0.202 n = 17 slices from five animals
(WT), n = 16 slices from (KO); Figure 4C], and there was no
difference in evoked glutamate release in synGLT-1 KO mice

Frontiers in Cellular Neuroscience | www.frontiersin.org 10 December 2021 | Volume 15 | Article 788262

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Rimmele et al. Synaptic Health Requires Neuronal GLT-1

compared to WT mice at 10 weeks [Mann-Whitney U 106;
p = 0.806 n = 15 slices from five animals (WT), n = 15 slices from
four animals (KO)]. These results provide additional evidence
that the impairment of fEPSP generation in the synGLT-1 KO
slices is not due to a presynaptic deficit of neurotransmitter
glutamate, and also argue against a significant role for neuronal
GLT-1 in glutamate clearance.

MK801 in the Recovery ACSF Restores
fEPSP Generation
We intended to use patch clamp recordings to further pursue
the cellular basis of the age-dependent deficit in synaptic
transmission observed in the synGLT-1 KO. Upon optical
assessment after slice preparation and a 1 h resting period,
pyramidal cells in the stratum radiatum of the CA1 region in
acute brain slices of 20 weeks old synGLT-1 KO were found
to be significantly swollen compared to WT littermates, and it
was not possible to obtain stable patch-clamp recordings from
them. Impaired glutamate uptake can lead to excessive activation
of excitatory amino acid receptors and cell death, a process
known as excitotoxicity (Rothman and Olney, 1986; Choi,
1988; Meldrum and Garthwaite, 1990; Lipton and Rosenberg,
1994). Excitotoxicity produces an initial phase of cell swelling
of neurons that precedes cell death (Choi, 1985; Choi et al.,
1987; Ramnath et al., 1992; Churchwell et al., 1996). Kynurenic
acid is an antagonist of all ionotropic glutamate receptors
and is known to prevent excitotoxicity (Ganong et al., 1983;
Foster et al., 1984; Espanol et al., 1994; Pozzo Miller et al.,
1994; Urenjak and Obrenovitch, 2000; Feher et al., 2019;
Toth et al., 2021). We added kynurenic acid (3 mM) to the
recovery ACSF after slicing to attempt to prevent possible
excitotoxicity in the synGLT-1 KO acute hippocampal slices. We
then compared fEPSPs of 20 weeks old synGLT-1 KO and WT
mice with or without kynurenic acid treatment (Figures 5A–C).
In synGLT-1 KO animals kynurenic acid significantly increased
fEPSP slope from 0.039 ± 0.0106 mV/ms (synGLT1 ACSF) to
0.235 ± 0.047 mV/ms (synGLT1 KYNA) [LMM, interaction of
stimulation and dose effect, t = 12.20, p = 2e-16; n = 16 slices
from four animals (KO ACSF), n = 16 slices from four animals
(KO KYNA)], n = 15 slices from four animals (WT KYNA;
Figure 5B) representing 34% of the WT KYNA fEPSP slope
(0.699 ± 0.117mV/ms) at 0.3 mA stimulation. The partial
recovery of function produced by kynurenic acid in the recovery
ACSF was consistent with the possibility that excitotoxic injury
might be occurring in the synGLT-1 KO slices.

To ascertain whether the effect of kynurenic acid was
due to blocking glutamate receptors we tested the effects
of the competitive NMDA receptor antagonist 2-amino-5-
phosphonovalerate (D-APV; 50 µM; Davies et al., 1981; Kass
et al., 1989) alone or in combination with DNQX (20 µM),
which is a competitive inhibitor of non-NMDA receptors
(Honore et al., 1988; Sheardown et al., 1990). Surprisingly,
APV, alone [Mann-Whitney U = 8, p = 0.0719, n = 17, 3;
0.3 mA; n = 3 slices from one animal (KO plus APV)] or in
combination with DNQX [Mann-Whitney U = 29, p = 0.0553,
n = 17, 7; 0.3 mA; n = 7 slices from two animals (KO plus
APV/DNQX, n = 17 slices from four animals (KO no drugs)],

did not produce a significant recovery of the fEPSP slope in
synGLT-1 KO mice (Figure 5C). Kynurenic acid itself did
not have a significant effect on the fEPSP in slices from WT
animals [n = 14 slices from five animals WT), n = 16 slices
from five animals (WT plus KYNA)]. Since kynurenic acid
was used here at 3 mM, well above its affinity for glutamate
receptors (Albuquerque and Schwarcz, 2013), we considered
the possibility that other actions of kynurenic acid might be
involved, for example, oxygen-free radical scavenging properties
(Lugo-Huitron et al., 2011; Gonzalez Esquivel et al., 2017).
Therefore, we tested a membrane-permeable reactive oxygen
species (ROS) scavenger (MCI-186, 33 µM; Wu et al., 2006;
Schurr and Gozal, 2012). Addition of this compound to the
recovery ACSF (Mann-Whitney U = 23, p = 0.8421, n = 17,
3; 0.3 mA; n = 3 slices from one animal) did not improve
neurotransmission in synGLT-1 (Figure 5C). We found that
kynurenic acid at 500 µM had no effect (data not shown),
making it unlikely that it could be acting at nicotinic receptors,
to which kynurenic acid binds with high affinity (Albuquerque
and Schwarcz, 2013).

Since excitotoxicity in acute slices is primarily due to excessive
activation of NMDA receptors (Feig and Lipton, 1990), we
tested MK801, a non-competitive NMDA receptor antagonist.
We found that 10µMMK801 in the recovery medium promoted
full recovery of fEPSP generation (WT-ACSF, n = 9 slices
from five animals, WT-MK801, n = 8 slices from two animals,
synGLT-1 KO MK801 10 µM, n = 11 slices from four animals;
Figure 6A), and 2.5 µM was also effective (synGLT-1 KO
MK801 2.5 µM, 9 slices from three animals), producing 65%
recovery of the fEPSP slope [LMM, interaction of stimulation
and dose effect, t = −10.43, p = 2e-16 compared with WT
MK801]. These data suggested that excitotoxic injury prevented
functional recovery of acute slices derived from the synGLT-1
KO. Excitotoxicity might be due to excess accumulation of
excitatory amino acids in the extracellular medium or increased
sensitivity to normal extracellular glutamate concentrations due
to metabolic compromise (Novelli et al., 1988; Henneberry et al.,
1989a,b). To test the possibility that excitotoxic injury in the
synGLT-1 slices might be due to extracellular glutamate, we
used a glutamate scavenging system (O’Brien and Fischbach,
1986; Blitzblau et al., 1996) to remove glutamate from the
extracellular medium (Figure 6B). We found that glutamate
pyruvate transaminase (GPT) in combination with pyruvate
added to the recovery medium provided partial protection
and recovery of fEPSP generation [34%; LMM, interaction of
stimulation and drug, t = −5.66, p = 7.86e-8; n = 9 slices
from three animals (KO pyruvate); n = 12 slices from
three animals (KO GPT/pyruvate); Figure 6B]. Pyruvate
alone had no effect (Figure 6B), nor did α-ketoglutarate,
one of the products of the reaction driven by GPT (data
not shown). We assayed excitatory amino acids in the
medium bathing the slices during the recovery period. Both
glutamate and aspartate were detectable, but there was no
significant difference in either in the media bathing the
synGLT-1 KO and WT control slices following a 60-min
incubation (Figure 6C; pooled data from three separate
experiments for each genotype, medium incubated with each
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of four slices assayed individually/genotype/experiment ×

3 experiments = 12 slices/genotype; 30–47 weeks old animals),
consistent with the normal expression of astrocytic GLT-1 in
both the synGLT-1 KO and WT control slices.

Ultrastructural Changes in Mitochondria in
the CA1 Region in synGLT-1 KO Mice
We have previously reported that synGLT-1 KO mice at
8–10 weeks of age had increased density of mitochondria
in synaptic terminals in the cortex and hippocampus, and
increased cristae packing density in these two regions as
well as in the striatum, possibly an adaptive response to
decreased access to glutamate as a substrate for synaptic
mitochondrial metabolism (McNair et al., 2019, 2020). Since the
electrophysiological phenotype we observed occurred in slices
from 20 weeks old mice, we wanted to determine whether similar
ultrastructural changes were present in this older cohort of mice
(Figure 7).

Electron microscopic analysis verified the genotype of the
animals to be WT vs. synGLT-1 KO (Figures 7A–C). Astrocytic
immunocytochemical labeling for GLT-1a was intense for both
genotypes within WT and synGLT-1 tissue of the stratum
radiatum of dorsal CA1 of the hippocampus (Figures 7A,B).
The HRP-DAB reaction product was associated with the
astrocytic plasma membrane and had diffused intracellularly,
but leaving the lumen of intracellular organelles, such as
vesicles and mitochondria unlabeled. In comparison, GLT-1
immunoreactivity within axon terminals was less intense but
still identifiable, and distinctly more electron-dense than the
neighboring mitochondria. Most axon terminals in the vicinity
exhibited equal electron density across pre- and post-synaptic
sides and no greater electron density than mitochondria
or postsynaptic densities (PSDs). Such axon terminals were
categorized as unlabeled (UL). Using these criteria to judge
immunoreactivity in a blinded analysis, the frequency of
encounter with GLT-1 immunoreactive axon terminals forming
excitatory synapses was significantly higher for tissue from WT
animals (median value of 3 per 10 synapses) than for tissue
from synGLT-1 KO animals (median value of 0 per 10 synapses)
[p< 0.0001, Mann-Whitney U 168.5; n = 3 animals per genotype,
n = 67 sections (WT), n = 60 sections (KO)]. As further
validation of the genotype, tissue of the WT animals, but not of
the synGLT-1 KO animals exhibited axons of passage, without
synaptic contacts but with GLT-1 immunoreactivity.

The same electron micrograph sets were used to assess
the frequency of mitochondria within axon terminals forming
excitatory synapses (Figure 7D). This analysis revealed a
remarkable similarity across the genotypes (p > 0.9999, the
median value of 1.500 per 10 synapses for both genotypes;
Mann-Whitney U 1800; n = 60 for both genotypes). This result
indicates that at 20 weeks of age altered excitatory synaptic
transmission within the hippocampus of synGLT-1 KO brains
did not perturb the size or rate of autophagy of mitochondria
(Eskelinen et al., 2011) to culminate in altered mitochondrial
presence within synaptic terminals forming excitatory synapses.

The same electron micrograph sets were used to assess
the average distances between cristae of mitochondria within

axon terminals forming excitatory synapses (Figure 7E). This
analysis revealed a significant difference in the average distance
between neighboring cristae within single mitochondria. The
average distance was lower for the synGLT-1 KO tissue (median
40.42 nm, n = 90 mitochondria), compared to WT (46.25 nm,
n = 87 mitochondria). This 17% difference was statistically
significant (p = 0.0008, Mann-Whitney U 2784). These data
show that the changes in cristae density previously reported in
8–10 weeks old mice persist in 20–25 weeks old mice.

Impaired Glutamate Metabolism in
Hippocampal Slices of Neuronal GLT-1 KO
To characterize the metabolic compromise present in the
synGLT-1 KO slices that might contribute to excitotoxic
injury, we performed metabolic labeling studies with 13C
enriched glutamate ([U-13C]glutamate). By exposing slices to [U-
13C]glutamate and then usingmass spectrometry, we were able to
measure the 13C label in intracellular glutamate as well as TCA
cycle intermediates and derived amino acids (Figure 8A). We
found a significant decrease in the 13C-labeling of intracellular
glutamate [t = 4.212, p = 0.000524, n = 10WT animals, n = 10 KO
animals], consistent with the synapsin 1-Cre driven deletion of
GLT-1 in neurons and previous studies of the impact of knockout
of GLT-1 in neurons on uptake radiolabeled glutamate into
synaptosomes (Petr et al., 2015; Rimmele and Rosenberg, 2016;
Zhou et al., 2019; McNair et al., 2020). These studies establish
that even though neuronal GLT-1 is a small fraction of total
brain GLT-1, it is capable of actual transport of glutamate across
the plasma membrane of axon terminals, and, in fact, mediates
a disproportionately large fraction of uptake of glutamate into
synaptosomes when assayed using radiolabeled substrate. A
similar conclusion was reached in studies of D-aspartate uptake
into hippocampal slices (Furness et al., 2008). As expected from
a decrease in glutamate uptake in the synGLT-1 KO slices, 13C-
labeling of malate [t = 2.287, p = 0.0345, n = 10 (WT), 10
(KO)], aspartate [i = 4.212, p = 0.000524, n = 10 (WT), 10
(KO)], citrate [t = 3.253, p = 0.00441, n = 10 (WT), 10 (KO)],
α-ketoglutarate [t = 2.185, p = 0.0423, n = 10 (WT), 10 (KO)]
and GABA [t = 2.231, p = 0.0386, n = 10 (WT), 10 (KO)] were
likewise significantly decreased. Quantification of intracellular
amino acids amounts in the slices (Figure 8B) showed decrease
in glutamate [t = 2.547, p = 0.0202, n = 10 (WT), 10 (KO)] and
aspartate concentrations [t = 2.833, p = 0.0110, n = 10 (WT), 10
(KO)] in the synGLT-1 KO slices, which is in line with previous
observations. Taken together, the ultrastructural and metabolic
labeling studies confirm that hippocampal slices of synGLT-1 KO
mice display the same metabolic phenotype as observed in vivo
(McNair et al., 2019) and are consistent with the hypothesis that
metabolic perturbation caused by the deletion of GLT-1 from
axon terminals could drive excitotoxicity in the synGLT-1 KO
slices.

DISCUSSION

In this study, we found impairment of synaptic responses in
the CA1 region of hippocampal slices from animals with a
conditional knockout of GLT-1 in neurons. Field EPSPs were
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FIGURE 7 | Neuronal GLT-1 knockout decreased inter-cristae distance of presynaptic mitochondria. Panels (A,B) show examples of electron micrographs taken
from the WT (A) vs. synGLT-1 KO (B) hippocampus at 22–24 weeks of age. Within the synaptic neuropil of WT animals, only a fraction of axon terminals forming
asymmetric synapses with thick PSDs (asterisks; presumably excitatory) upon dendritic spines (DSp) are GLT-1 immunolabeled (LT, abbreviation for “labeled
terminal”). Immunolabeling within the axon terminal is evident, based on the diffuse distribution of electron-dense material reflecting the HRP-DAB reaction product.
Immunolabeling extends beyond the terminal portion of axons (LAx, abbreviation for “labeled axons”). Axon terminals lacking immunolabeling are labeled as UT
(unlabeled terminals). As expected, LT is scarce within KO tissue but both synGLT-1 KO and WT tissue exhibit intense GLT-1 immunolabeling of astrocytic processes
(LA, abbreviation for “labeled astrocyte”). DSh = dendritic shaft. Each panel shows examples of mitochondria (m) within axon terminals, with cristae indicated

(Continued)
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FIGURE 7 | Continued
using the symbol ∧ in red. The small panel in the center highlights the
presynaptic mitochondrion from panel (B), magnified 4x beyond the
magnification via the electron microscope, to depict the distance (red line)
measured spanning the three cristae. Inter-crista distance was calculated as
this distance, divided by the number of cristae minus 1 (3–1 = 2 for this
example). Calibration bar = 500 nm. Graphs (C–E) show group mean
averages of GLT-1 immunoreactivity (C), frequency of occurrence of
mitochondria within presynaptic axon terminals forming excitatory synapses
(D), and average inter-crista distance of mitochondria within presynaptic axon
terminals. For all graph panels, the repeated measure of occurrence of the
ultrastructural element per every 10 synapses was pooled across three
animals of the same genotype (for C, n = 67 repeated measures for
670 synapses within WT tissue and n = 60 repeated measures for
600 synapses within synGLT-1 KO tissue; for D, n = 60 repeated measures
for 600 synapses each from WT and synGLT-1 KO tissue). For (C), the Mann
Whitney t-test revealed significant genotype difference (p < 0.0001, Mann
Whitney U 168.5). For (E), the inter-crista distance values were pooled across
animals of the same genotype (n = 87 mitochondria for WT,
n = 90 mitochondria for synGLT-1 KO). Mann-Whitney test revealed significant
genotype difference (p = 0.0008, Mann Whitney U 2784) *** = p < 0.001.

either absent or decreased in slices from 30 to 50 weeks as well
as 20 weeks old animals but were not consistently diminished
in slices from 10 weeks old animals. We compared the effect of
conditional inactivation of GLT-1 in neurons with conditional
inactivation of GLT-1 in astrocytes, and, remarkably, fEPSPs
in slices from the astrocytic GLT-1 knockout at 40 weeks were
not decreased, compared to wild-type littermates, suggesting an
important role of neuronal GLT-1 in the recovery of synaptic
function in the CA1 region of hippocampal slices.

CA3 neurons express GLT-1 mRNA at very high levels,
perhaps the highest in the brain, whereas CA1 neurons express
very low if any GLT-1 mRNA (Berger et al., 2005). Because of
the high expression of GLT-1 in CA3 neurons, we expected that
the CA3-CA1 synapse would be particularly relevant for studying
the effects of deletion of GLT-1 in neurons on synaptic function
and synaptic health. In other regions, the expression of GLT-1
in axon terminals might be significantly lower or non-existent,
and in these regions, it might be expected that the phenotype
we observed by recording in the stratum radiatum might not be
present.

Previous studies have shown that GLT-1 is not significantly
reduced in the synGLT-1 KO by immunoblot analysis of
forebrain lysates (Petr et al., 2015) consistent with the small
fraction (5–10%) of total GLT-1 expressed in axon terminals
(Furness et al., 2008). Light microscopic (LM) and electron
microscopic (EM) immunocytochemical studies focused on
the hippocampus showed that at the LM level, there was no
obvious loss of GLT-1 immunoreactivity in the hippocampus
in the synGLT-1 KO in any region (Petr et al., 2015). At
the ultrastructural (EM) level, in the same report, it was
shown that there is a ca. 90% reduction in GLT-1 labeling of
excitatory axon terminals in the stratum radiatum of synGLT-1
KO animals (Petr et al., 2015). In a subsequent study, it was
shown that 3H-L-glutamate uptake is decreased 84% in crude
synaptosomes prepared from the hippocampus of synGLT-1 KO
animals compared with littermate controls (McNair et al., 2020),
consistent with the expression of GLT-1 in axon terminals in the

hippocampus (Chen et al., 2004; Furness et al., 2008) and the
efficacious deletion of GLT-1 from axon terminals in this region
by the use of synapse-Cre mediated recombination (Petr et al.,
2015; Zhou et al., 2019). Zhou et al. (2019) also reported that
GLT-1 immunoreactivity is not detectably altered at the LM level
in the hippocampus in the synGLT-1 KO, but 3H-L-glutamate
uptake into crude hippocampal synaptosomes is diminished.

We considered the possibility that persistent tissue damage
produced by excitotoxic injury might be contributing to the
impairment of functional recovery in the synGLT-1 KO slices.
Kynurenic acid, which has been previously used in millimolar
concentrations to prevent excitotoxic injury to brain slices during
preparation (Mitra and Brownstone, 2012), provided partial
functional restoration of function when present at 3 mM during
the recovery period. Although the NMDA receptor antagonist
D-APV (Paoletti andNeyton, 2007), either alone or together with
the non-NMDA glutamate receptor antagonist DNQX (Honore
et al., 1988; Sheardown et al., 1990), had no effect, MK801, a
non-competitive antagonist (Huettner and Bean, 1988; Chen and
Lipton, 1997) was completely protective. Extracellular glutamate
scavenging, in the form of GPT plus pyruvate during the recovery
period, promoted partial recovery of physiological function in
the synGLT-1 KO slices, providing additional evidence that
excitotoxic injury blocks recovery of function in the synGLT-1
KO slices. The lack of complete protection might be due to
the absence of the scavenging system in the recording medium,
or incomplete penetration of GPT and/or pyruvate into the
depths of the slice. MK801, which is a non-competitive channel
blocker whose washout is at least partially dependent on channel
opening (McKay et al., 2013), might provide greater protection
than APV because of incomplete washout during the recording
period. Other examples of protection of hippocampal slices
against excitotoxicity byMK801 but not APV have been reported
(Schurr et al., 1995a,b; Schilp et al., 1999; Pringle et al., 2000),
as well as a recent observation that MK801, but not APV,
downregulates the expression of misfolded isoforms (PrPSc) of
cellular prior protein (PrPC; Zattoni et al., 2021).

Excitotoxicity as a cause of injury in acute slices was reported
initially by Feig and Lipton (Feig and Lipton, 1990), and it
has been invoked in many subsequent studies as a reason for
using glutamate receptor antagonists during slice preparation to
block injury and promote recovery (Buskila et al., 2020). Feig
and Lipton showed that morphological evidence of injury in
guinea pig slices, in particular swelling of neuronal cell bodies,
was alleviated by inclusion of ketamine, an NMDA receptor
blocker in the recovery medium, or using a medium lacking
calcium but with high magnesium (10 mM). Interestingly,
they found that the decline in ATP content in acute slices,
which had been documented previously (Whittingham et al.,
1984), was not affected by either ketamine or low calcium/high
magnesium, and suggested that the energy collapse in acute slices
might underlie increased vulnerability to excitotoxicity (Novelli
et al., 1988; Henneberry et al., 1989a,b). The novelty of the
present observations is in finding that heightened vulnerability
to excitotoxicity distinguishes synGLT-1 KO slices from slices
of both WT littermates and of gfapGLT-1 KO slices. This
heightened vulnerability might be due to metabolic compromise,
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FIGURE 8 | Deletion of neuronal GLT-1 impaired glutamate uptake and glutamate utilization in hippocampal slices. (A) Metabolic mapping of [U-13C]glutamate in
hippocampal slices of WT mice (black bars) and synGLT-1 KO mice (red bars). The slices were incubated in the presence of 200 µM [U-13C]glutamate in addition to
5 mM D-glucose (12C). Metabolism of 13C enriched substrates will lead to 13C incorporation in TCA cycle metabolites and derived amino acids, visualized by red
circles (13C) and gray circles (12C). (B) Amino acid content in hippocampal slices of WT mice (black bars) and synGLT-1 KO mice (red bars) incubated with 200 µM
[U-13C]glutamate in addition to 5 mM D-glucose. AAT, aspartate aminotransferase; GAD, glutamate decarboxylase; GDH, glutamate dehydrogenase. Mean ± SEM,
n = 10, each point derived from individual animals, Student’s t-test with Benjamini-Hochberg correction, *p < 0.05. See text for exact p values.
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making CA1 neurons more vulnerable to the levels of glutamate
normally encountered in acute slices, or to a disturbance of
glutamate homeostasis in proximity to post-synaptic NMDA
receptors, or to a change in NMDA receptor signaling, or a
combination of these abnormalities.

Previous studies have examined the impact of constitutive
deletion of GLT-1 in all cells, including both astrocytes and
neurons, on synaptic transmission in the CA1 region of
hippocampal slices (Tanaka et al., 1997). Of necessity, these
studies were performed on animals significantly younger than
those used in the present study (5–7 weeks) because GLT-1
pan KO mice have a 50% survival at 6 weeks on the original
mixed background (Tanaka et al., 1997). Tanaka et al. (1997)
found that the peak concentration of synaptically released
glutamate was increased in the pan KO, consistent with an
important role for GLT-1 in glutamate clearance from the
synaptic cleft. In a subsequent study, NMDA receptor-dependent
LTP was found to be impaired in GLT-1 pan KO mice due
to excess basal activation of NMDA receptors, which could
be rescued by a low concentration of D-APV (Katagiri et al.,
2001). More recently, electrophysiological studies have been
performed in slices from an astrocytic GLT-1 knockout (Aida
et al., 2015) using animals at 12–16 weeks and showed normal
synaptic transmission at corticostriate synapses in response to
single stimuli, consistent with our observations related to the
astrocytic GLT-1 KO reported here in the CA1 region of the
hippocampus.

The observation in the present study that slices from
synGLT-1 KO animals are functionally impaired due to
excitotoxicity, whereas slices from gfapGLT-1 KO animals
recover similarly to WT animals is surprising since the defect
in clearance of glutamate is expected to be much greater in
the astrocytic KO. It may be argued that glutamate transporters
located in presynaptic terminals, because of their special
localization, make an outsize contribution to glutamate clearance
‘‘where it counts’’ because they are close to the sites of the
release of glutamate. However, this view is not consistent with
our observations that stimulus-evoked glutamate accumulation
was similar between genotypes. An alternative explanation is
that the cause of the excitotoxic injury in the synGLT-1 KO
slices is not a deficit in glutamate clearance per se but rather
a metabolic defect related to the absence of GLT-1 in synaptic
terminals resulting in increased vulnerability to excitotoxicity
in postsynaptic cellular elements (spines, dendrites, cell bodies).
Importantly, the impairment of synaptic utilization of glutamate
reported previously in synaptosomal preparations from the
synGLT-1 (McNair et al., 2019, 2020) was also observed in acute
hippocampal slices of the synGLT-1 KO mice in the present
studies.

One explanation to consider for the ‘‘normal’’ behavior
of slices from gfapGLT-1 KO animals is that the astrocyte-
specific knockout is not complete. In a previous publication
characterizing the astrocyte-specific and neuron-specific GLT-1
knockouts, it was found that the astrocyte-specific knockout
reduced GLT-1 expression by 75–95% (Petr et al., 2015). It
is possible that the remainder of GLT-1 in the astrocyte KO
is sufficient to provide protection. An observation that might

be relevant to this question is that in the light microscopic
immunocytochemistry for GLT-1 performed in the astrocytic
GLT-1 KO in that study, there were certain cells in the neuropil
that stained strongly for GLT-1, despite the KO (Petr et al., 2015).
It is possible that these cells make a large contribution to the
clearance of glutamate necessary for slice recovery.

The astrocytic GLT-1 KO was induced postnatally using an
inducible driver of Cre-recombinase expression, whereas the
neuronal GLT-1 KO was driven constitutively by a synapsin-Cre
driver, suggesting the possibility that compensatory pathways
activated in response to the two types of knockout might be
different. However, no evidence was found for upregulation of
GLAST, the other major glutamate transporter, in the astrocyte-
or neuron-specific knockouts by immunoblot analysis (Petr et al.,
2015). Even if residual glutamate clearance activity mediated by
persistent expression of GLT-1 or other transporters contributes
to slice recovery in the astrocytic GLT-1 KO, that would not
explain why the neuronal knockout, which by immunoblot
analysis does not delete enough GLT-1 to be readily detectable on
immunoblot analysis (Petr et al., 2015), produces the impairment
of recovery that it does, given that astrocytic glutamate clearance
is still intact. The issue may not be glutamate clearance per se
but some other factor, perhaps related to a metabolic or signaling
function of GLT-1 expressed in axon terminals.

It is conceivable that the postnatal exposure to tamoxifen in
some way provides the slices from adult astrocytic GLT-1 KO
protection against the excitotoxic injury observed in the neuronal
GLT-1 KO. However, such long-term protection has never
been demonstrated. Instead, there is literature demonstrating
an acute beneficial effect of tamoxifen in OGD in a brain slice
model (Wakade et al., 2008), focal ischemia in the CNS (Zhang
et al., 2005, 2007, 2009), and manganese toxicity (Lee et al.,
2009a,b; Pajarillo et al., 2018). In our studies, the tamoxifen is
administered to gfapGLT-1 KO pups at least 9–10 weeks prior
to the age when slices are taken for experiments. It is unlikely
that the normal recovery of gfapGLT-1 KO slices is due to an
enduring effect of tamoxifen exposure. In any case, even if that
were true, the unexpected, heightened vulnerability of synGLT-1
KO slices to excitotoxicity would not be explained.

The ‘‘WT controls’’ used in most experiments in this
study are flox controls (GLT-1flox/flox) from the same litter.
Conceivably insertion of loxP cassettes has an effect on gene
expression and function. Breeding to produce Cre negative
and flox negative (GLT-1+/+) littermates of animals to serve
as controls for test animals that are homozygous floxed
and expressing Cre (GLT-1flox/flox; Cre-recombinase+) is very
inefficient, because of low yields. The breeding scheme we have
chosen produces 50% test animals and 50% animals used as
littermate controls and allows for the testing of the effects
of Cre-mediated excision on a constant genetic background
(GLT-1flox/flox). This approach requires additional experiments
to test the effects of Cre recombinase expression itself, which
we have done testing slices from wild-type animals (GLT-
1+/+) compared with synapsin-Cre expressing animals on a
wild-type background (GLT-1+/+;Syn-Cre; SynCre+ vs. SynCre-
in Figure 2E). Of note, there is not a significant difference
between the fEPSP generation in slices from GLT-1flox/flox
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animals (Figures 1, 2, 5, 6) and GLT-1+/+ animals (Syn-Cre- in
Figure 2).

GLT-1 has been shown to physically interact with multiple
mitochondrial proteins as well as enzymes involved in glycolysis,
presumably by one or more scaffolding proteins that have yet
to be identified (Genda et al., 2011). It has been suggested
that this association between GLT-1 and proteins involved
in energy production serves the function of localizing energy
production close to sites of GLT-1 mediated transport, which
is highly energy consuming, and possibly to provide glutamate
as a fuel for mitochondrial metabolism (Robinson et al., 2020).
The assumption has been that this association takes place in
astrocytes, but recent data (McNair et al., 2019, 2020) and the
present studies raise the question of whether these associations
are taking place in neurons. This question has, as yet, not been
directly addressed.

In two previous studies (McNair et al., 2019, 2020), we
analyzed the prevalence and cristae density of mitochondria
in axon terminals, because morphological differences such as
cristae density are reflective of the efficiency of mitochondrial
metabolism, including ATP production (Leveille et al., 2017). As
was observed for the hippocampus at 8–10 weeks of age (McNair
et al., 2019), the hippocampus of animals at 22–24 weeks of
age in the present study revealed a decrease in the inter-cristae
distance within presynaptic mitochondria for the synGLT-1 KO
animals, relative to WT littermates (Figure 7E). The inter-cristae
distance may have been influenced not only by the genotype
but also by the age: the measured values were less for both
genotypes at 22–24 weeks of age, compared to the distances
observed at 8–10 weeks of age. However, since the tissues of
the two age groups were not processed jointly for electron
microscopic analysis, we cannot rule out the possibility that the
age difference was due to unintentional differences in tissue
preparation for electron microscopy. The results suggest that the
loss of GLT-1 within axon terminals may be compensated by
increased efficiency of the mitochondrial TCA cycle and ATP
production (Gomes et al., 2011; Cogliati et al., 2013; Leveille et al.,
2017; McNair et al., 2019).

In contrast to the previous study in which we analyzed the
impact of neuronal GLT-1 KO upon the dorsal hippocampus
at 8–10 weeks of age (McNair et al., 2020), neuronal GLT-1
KO at 22–24 weeks of age (this study) no longer resulted in an
increase of the presynaptic mitochondrial frequency, relative to
the frequency measured in the CA1 region of the hippocampus
of WT littermates (Figure 7D). The difference observed in
mitochondrial frequency in axon terminals in the synGLT-1 KO
at 20 weeks and 10 weeks in comparison with control littermates
is unlikely to have resulted from subtle unintentional differences
in tissue processing because differences in tissue handling could
not have caused differential disappearance or appearance of
axons or of mitochondria postmortem or during transcardial
perfusion of animals to fix brain tissue. The difference across
the ages could reflect developing compensation for the metabolic
defect known to occur in the synGLT-1 KO mice. Early on,
before compensation for this defect is fully developed, more
mitochondria might be trafficked to the terminals, whereas at
older ages, some form of metabolic compensation may have

occurred, so that the mitochondria traffic into the terminals does
not have to be increased. One could explain, potentially, the
age dependence of the phenomenon of increased vulnerability
to excitotoxicity of slices from the synGLT-1 KO at 20 weeks of
age compared with 8–10 weeks of age by the relative decrease
in mitochondria in the terminals at 20 weeks of age compared
with 10 weeks of age. The increased density of mitochondria in
terminals at 10 weeks may allow the slices to cope with the insult
of slice preparation more readily than they are able to at 20 weeks
of age.

The present study implicates neuronal GLT-1 in regulating
the vulnerability of neurons in the CNS to excitotoxicity, which
has long been thought to play an important role in acute
and chronic neurodegenerative disorders (Lewerenz and Maher,
2015; Choi, 2020). The work presented here suggests that the
hippocampal slice preparation provides a usefulmodel system for
the study of the metabolic role of GLT-1 expressed in neurons
and the consequences of interfering with it. The importance of
neuronal GLT-1 in regulating the vulnerability of CA1 neurons
to excitotoxicity in hippocampal slices raises the possibility that
there are pathways that have been little explored that may play
a determinative role in devastating neurodegenerative disorders
and that need to be better understood.
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