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ABSTRACT: Histone acetyltransferases of the MYST family are recruited to chromatin by BRPF scaffolding proteins. We explored
functional consequences and the therapeutic potential of inhibitors targeting acetyl-lysine dependent protein interaction domains
(bromodomains) present in BRPF1−3 in bone maintenance. We report three potent and selective inhibitors: one (PFI-4) with
high selectivity for the BRPF1B isoform and two pan-BRPF bromodomain inhibitors (OF-1, NI-57). The developed inhibitors
displaced BRPF bromodomains from chromatin and did not inhibit cell growth and proliferation. Intriguingly, the inhibitors
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Acetylation of histones and other nuclear proteins is a key
mechanism regulating gene expression, and aberrant acety-

lation has been linked to a wide range of diseases.1 Histone
acetylation is introduced by histone acetyltransferases (HATs)
that transfer an acetyl moiety to the ε-amino group of lysine
residues.2 HATs have usually broad substrate specificity in vitro.
In contrast, in vivo, HAT substrate specificity is dramatically
enhanced by scaffolding proteins that activate HATs and target
them to specific chromatin sites.
Bromodomains are evolutionarily highly conserved protein−

protein interaction modules that act as acetyl-lysine dependent
epigenetic reader domains. The human proteome encodes 61
diverse bromodomains that are present in 46 proteins including
the HATs CREBBP/EP300 and PCAF/GCN5.3 Bromodomains
share a conserved fold that comprises a left-handed bundle of four
α-helices (αZ, αA, αB, αC), linked by loop regions of variable
length (ZA and BC loops), which line the KAc binding site and
determine binding specificity. Due to its excellent druggability,
the bromodomain acetyl-lysine binding pocket has emerged
as an attractive site for the development of protein interaction
inhibitors.4 Highly potent and selective inhibitors have been
developed for BET (BRD2, BRD3, BRD4, BRDT) bromodo-
mains,5−8 and a number of BET inhibitors have now entered
clinical testing.9 While to date most efforts have focused on BET
inhibitor development, recent publications have demonstrated
that non-BETbromodomains can also be selectively targeted.10−18

A first inhibitor specific for the BRPF1B bromodomain has been
recently disclosed,19 and inhibitors that showed dual activity for
the bromodomains present in BRPF1 andTIF1α have been devel-
oped by our laboratory and others.20,21 However, phenotypic
consequences of inhibiting protein interactions mediated by
BRPF bromodomains have not been reported so far.
TheMYST(MOZ,Ybf2/Sas3, SAS2 andTip60) family of lysine

acetyl-transferases form signaling complexes with heterotetrameric
core structures comprising a MYST family member, the ING
tumor suppressor, hEAF6 (an EPC (enhancer of polycomb)-
associated protein), and a central scaffolding protein of the BRPF
(Bromodomain-PHD fingers) family. In higher eukaryotes, the
BRPF family contains three members (BRPF1, BRPF2 (also
called BRD1), and BRPF3) with conserved domain architecture
of two N-terminal PHD domains linked by a Zn2+ knuckle (PZP
[PHD−Zn knuckle−PHD] domain), a bromodomain, and a
C-terminal PWWP domain.22,23 The BRPF PHD domains target
unmethylated histone H3.24 The PWWP domains recognize the
H3K36me3 mark, and the bromodomains preferentially interact
with H2AK5ac, H4K12ac, and H3K14ac.25 BRPF1 associates
with MOZ/MORF, assembling a signaling complex that plays
a role in maintaining anterior HOX gene expression during
development.26 MOZ is frequently translocated in acute myeloid
leukemia (AML), and it is required for hematopoietic stem cell
maintenance.27 Biochemical studies have shown that BRPF1 still
interacts with and enhances the transcriptional potential of the
leukemic MOZ-TIF2 fusion protein.28 BRPF2 preferentially
associates with HBO1, assembling a chromatin complex required
for global acetylation of H3K14ac. HBO1/BRPF2 plays a key
role in the regulation of erythropoiesis. In mice, deletion of the
BRPF2 gene results in severe anemia due to impaired fetal liver

erythropoiesis.29 In addition, polymorphism in BRPF2 has been
recently linked to bipolar disorder and schizophrenia.30 The
related JADE scaffolding proteins that lack the C-terminal bromo
and PWWP domains can replace BRPF2 in the HBO1 complex.
Intriguingly, this exchange in scaffolding protein determines
which histone tail is acetylated: the JADE complex directs HBO1
toward the H4 tail, whereas BRPF2 confers high selectivity for
H3.24 The central role of reader domains in MYST complexes
and the key role of these complexes in hematopoiesis prompted
us to study the consequences of pharmacological targeting of
BRPF readers of the bromodomain family in monocyte differen-
tiation, with osteoclasts representing a particularly well-studied
and clinically relevant monocyte-derived lineage. Here, we report
that selective pharmacological inhibition of BRPF bromodo-
mains but not of the BRPF1B bromodomain alone strongly
impaired RANKL-induced differentiation of murine and human
primary monocytes into bone resorbing osteoclasts. Genome-
wide mRNA expression analysis showed that panBRPF bromo-
domain inhibition suppressed transcriptional programs required
for osteoclastogenesis, establishing a role of BRPF family members
in bone degradation. The data indicate that interactions mediated
by BRPF bromodomains play a central role in bone maintenance
and may be attractive targets for the development of drugs pre-
venting osteoporosis andmetastasis or cancer induced osteolysis.

■ RESULTS AND DISCUSSION
The human BRPF family (BRPF1, BRPF2, and BRPF3) shares a
conserved domain architecture22,23 and a high degree of sequence
homology within their bromodomains (Figure 1A,B). Interest-
ingly, we found that alternative splicing generates two BRPF1
isoforms (A and B). The longer BRPF1A harbors a six-residue
insert in the ZA-loop that prevented binding to histone peptides
as well as inhibitors (Figure 1C). Thus, it seems that the BRPF1
bromodomain is regulated by alternative splicing, which gene-
rates a dominant negative isoform. Unfortunately, we were unable
to crystallize the A isoform, but the location of the inset within
the ZA loop region and the inability of this isoform to bind
inhibitors suggested that BRPF1A specific insertion blocks access
to the acetyl-lysine binding site (Figure 1D).
To enable identification of BRPF bromodomain inhibitors, we

developed an ALPHAscreen (amplified luminescent proximity
homogeneous assay) assay using a tetra-acetylated histone 4
peptide (H4K5acK8acK12acK16ac) and his6-tagged recombinant
BRPF bromodomains. Screening of an in-house bromodomain
targeted library and fragment sets resulted in the identification of
a number of inhibitors that carried either the benzoimidazolone
or the dimethylquinolinone core structure. Purchasing and
optimization by synthetic medicinal chemistry efforts led to the
development of the potent benzoimidazolone-based inhibitors
OF-1, PFI-4, and the dimethylquinolinone NI-57 (Figure 2A).
A detailed discussion of the SAR (structure−activity relationship)
will be reported elsewhere.31,32 Using dose response ALPHAscreen
assays, the developed chemical probes showed potencies for
BRPF1B (IC50) of 270 nM, 172 nM, and 114 nM for OF-1, PFI-4,
and NI-57, respectively. These data correlated well with tem-
perature shift and isothermal titration calorimetry data (ITC),
but ALPHAscreen underestimated somewhat the affinity of

impaired RANKL-induced differentiation of primary murine bone marrow cells and human primary monocytes into bone resorbing
osteoclasts by specifically repressing transcriptional programs required for osteoclastogenesis. The data suggest a key role of BRPF
in regulating gene expression during osteoclastogenesis, and the excellent druggability of these bromodomains may lead to new
treatment strategies for patients suffering from bone loss or osteolytic malignant bone lesions.
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PFI-4 for the BRPF1B isoform, which had a KD of 13 ± 1 nM
using ITC (Supporting Information Tables 1−3).
Next, we used temperature shift assays (ΔTm) to evaluate the

family wide selectivity of the three developed chemical probes
using a comprehensive panel of 49 diverse bromodomains. OF-1
showed significantΔTm shifts within the BRPF family identifying
this inhibitor as a pan-BRPF inhibitor, but also weak interactions
(2.1 °C) were observed for BRD4(1). ΔTm shifts of 1° were
observed for other bromodomains such as other BET family
members, TRIM24 (TIF1α), and BRD9 (Figure 2B). However,
such small ΔTm shifts often represent false positive hits or very
weak interactions. Indeed, ALPHAscreen did not reveal strong
interactions of OF-1 with BRD4 and TRIM24 (TIF1α), with
IC50 values larger than 10 μM(Supporting Information Table 2).
ITC determined a KD of 3.9 ± 0.3 μM for the first bromodomain
of BRD4(1), thus 39-fold selectivity when compared to the

BRPF1B isoform (Figure 2C). Using ITC, we determined KD

values of 0.5± 0.06 μMand 2.4± 0.2 μM for BRPF2 and BRPF3,
respectively. We did not identify any significant interaction
outside subfamily IV for NI-57, which showed only weak ΔTm

shifts (∼1 °C) for the bromodomain present in BRD9, CREBBP,
and EP300, suggesting excellent selectivity for the BRPF family.
ITC revealed aKD of 0.031± 0.002 μM for BRPF1B (Supporting
Information Table 3), in agreement with ALPHAscreen data
(IC50: 0.114 ± 0.061 μM). Finally, PFI-4 was highly selective for
the BRPF1B isoform. ΔTm screening against the bromodomain
family detected only a weak temperature shift for the CECR2
bromodomain. ITC confirmed isoform selectivity for BRPF1B
(KD: 0.013 ± 0.001 μM), whereas BRPF2 interacted with this
chemical probe with a KD of 0.775± 0.09 μM (60-fold selectivity)
and CECR2, the only detected off-target outside family IV with
only 2.35 ± 0.52 μM affinity, thus showing 180-fold selectivity.

Figure 1. BRPF bromodomain family and its inhibitors. (A) Domain organization of human BRPF proteins. Two splice isoforms of BRPF1B are
expressed (A and B) that differ in the ZA loop of the bromodomain. In BRPF1A (or isoform 2), six residues EVTELD (661−666) are inserted into the
ZA loop. Annotated domains are the PHD (plant homeo-domain) connected by a zinc finger, the bromodomain (BRD), and the PWWP domain
(harboring the PWWP motif). (B) Sequence alignment of human BRPF bromodomains. The main secondary structural elements are highlighted.
(C) BLI (BioLayer Interferometry) data measured on the two splice isoforms of BRPF1A and BRPF1B. Shown are the raw data traces for acetylated as
well as nonacetylated peptide. (D) Location of the isoform BRPF1A specific insertion depicted on the structure of BRPF1B.
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BRD7 was detected in Tm assays, but this interaction was not
confirmed in alternative assays (DiscoverX bromoscan) probably
due to the low intrinsic stability of the protein leading often to
misleading DSF results (Figure 2D). It is interesting to note that
in agreement with our peptide binding data, none of the inhi-
bitors interacted with the BRPF1A isoform in temperature shift
assays, consistent with this splicing isoform acting as a bromo-
domain inactivating variant with an inaccessible acetyl-lysine
binding site. Screening of the developed probes against a diverse
panel of potential off-targets (kinases, GPCRs) revealed no signi-
ficant off-targets outside the bromodomain family (Supporting
Information Table 4). In conclusion, medicinal chemistry and
in vitro screening efforts led to the development of three potent
chemical tools with good selectivity for the BRPF family as well
as one highly isoform-selective chemical probe. Thus, this set
of three chemical probes allows independent evaluation of
phenotypic consequences of BRPF bromodomain inhibition as
well as BRPF1B specific activities in cellular systems.
Following the analysis of inhibitor potency and selectivity

in vitro, we set out to demonstrate cellular “on-target” activity
of the three probe molecules. Since the developed inhibitors
are anticipated to block chromatin association of BRPF, it is
expected that the inhibitors would weaken the interactions
of BRPF with histones and strongly inhibit the recruitment of
isolated BRPF bromodomains to histones. To assess this, we

developed a BRPF1A/B-Histone H3.3-nanoBRET (nano bio-
luminescence resonance energy transfer) assay, which measures
the energy transfer from one NanoLuciferase coupled protein
(BRPF1, donor) to the interacting HaloTag-protein labeled with
a NanoBRET 618 fluorophore (histone H3.3 acceptor). Indeed,
we observed dose-dependent displacement of BRPF1B but not
of the BRPF1A isoform from histone H3.3 (Figure 3, Supporting
Information Figure 1). Estimated IC50 values were 0.07± 0.0034
and 0.24 ± 0.039 μM for NI-57 and PFI-4, respectively.
We verified these data using FRAP (fluorescence recovery after
photobleaching) assays.33 As expected from our selectivity
screening data, PFI-4 led only to the dissociation of the
bromodomain of BRPF1b, but not any of the full-length family
members from histone H3.3 (Supporting Information Figure 1B).
NI-57 displaced a GFP fusion construct where the bromodomain
was triplicated as well as full-length GFP-BRPF2, but not inacti-
vating bromodomain mutants from chromatin, which was indi-
cated by significant reduction of recovery times in the presence of
the inhibitor. Acetylation dependence of the interaction was
demonstrated by adding the pan-HDAC inhibitor suberoylani-
lide hydroxamic acid (SAHA), which leads to a global increase
in histone acetylation and therefore to stronger association of
the BRPF bromodomains with histones (Figure 3B−D). Similar
results were observed for OF-1 and PFI-4 (Supporting
Information Figure 1). Thus, the nanoBRET and FRAP

Figure 2. Selectivity and potency of the three BRPF chemical probes. (A) Chemical structure of OF-1, NI-57, and PFI-4. (B) Selectivity screening data
of OF-1, NI-57, and PFI-4 using temperature shift assays (ΔTm). The temperature shifts (listed in Supporting Information Table 1) were mapped onto
the phylogenetic tree using red spheres with radii corresponding to ΔTm as indicated in the figure. (C) ITC measurements of the OF-1 with BRPF1B
and its main off-target BRD4 domain 1 (shown in red). Raw binding heats are shown for each injection. The insert depicts normalized binding heats and
a nonlinear least-squares fit to a single binding site model. (D) ITC measurements of PFI-4 with BRPF1B and its main off-target CECR2. See also,
Supporting Information Tables 1−4.
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experiments demonstrated that the developed inhibitors strongly
inhibit BRPF1 and BRPF2 but not BRPF1A bromodomains in
the nucleus.
Structural models of monoacetylated histone peptides

H2AK5ac and H4K12ac have been published recently, revealing
a canonical bromodomain acetyl-lysine interaction.25 However,
we wanted to confirm the binding mode of peptides that we used
in screening assays and for which we detected the tightest
association with BRPF1B. In particular, we were interested in
the consequences of the presence of multiple acetylation sites
on histone recognition as well as the recognition of the histone
H3 mark H3K14ac. We therefore cocrystallized BRPF1B with
peptides harboring the H3K14ac and H4K5acK8ac mark. The
H3K14ac complex revealed the canonical interaction of the
acetyl-lysine with the BRPF1B bromodomain comprising the
conserved hydrogen bond with N708 as well as the water-
mediated hydrogen bond with Y665 and additional hydrogen
bonds formed by the H3R17 side chain and the backbone
carbonyl of the G650 (Supporting Information Figure 2A−C).
It is interesting to note that in the H3K14ac complex the peptide
reversed its orientation when compared to complexes of
the same mark with the bromodomain of BAZ2B.34 Co-
crystallization of the diacetylated peptide H4K5acK8ac revealed
that in contrast to cocrystal structures with BRD435 only H4K5ac
interacted with the acetyl-lysine binding site, probably due to
steric constraints of the bulky residue F714 preventing simultaneous

interaction of two acetylated lysines in BRPF1B (Figure 4A).
In the cocrystal structure, the H4K8ac side-chain was oriented
toward the surface but in close proximity to an area of strongly
positive electrostatic potential. It is therefore likely that neutra-
lization of the positive charge of the lysine by acetylation contri-
butes favorably to the interaction with this bromodomain.
We cocrystallized OF-1 as well as PFI-4 to confirm the acetyl-

lysine mimetic binding mode suggested by our peptide displace-
ment screening assays and to elucidate the structural mechanisms
of the observed selectivity. As expected, the benzimidazolone
acted as an acetyl-lysine mimetic moiety forming in the BRPF1B
complex the canonical hydrogen bond between the conserved
asparagine (N708) and the characteristic water-mediated
hydrogen bond with Y665 (Figure 4B,D). The inhibitor was
further stabilized by a number of hydrophobic interactions
with lipophilic groups located at the rim of the Kac binding site.
The sulphonamide linker caused a 90° bend, positioning the
bromo-methylphenyl ring on top of F714, allowing an aromatic
edge-face stacking interaction and hydrophobic contacts with
I713. Comparison with the BRPF2-OF1 complex showed con-
servation of the binding mode, but the bromo-methylphenyl ring
assumed a position that is turned away from F714 due to rotation
of the phenyl ring (Supporting Information Figure 4D).
Sequence conservation in the acetyl-lysine binding pocket of
BRPF1B and BRPF2 is high, but the BC-loop residue I713 and
the central ZA-loop residue P658 positions are substituted by

Figure 3. Inhibition of BRPF bromodomains in the nucleus. (A) Dose-dependent inhibition of the BRPF1B and histone H3.3 protein interaction with
NI-57 and PFI-4 measured by NanoBRET assay. (B) Representative confocal images of nuclei from U2OS cells transfected with plasmids encoding
triple bromodomains of BRPF1B treated either with or without SAHA (*) and the panBRPF Inhibitor NI-57. The bleached area is indicated by a red
circle. (C) Half-times of fluorescence recovery (t1/2) after photo bleaching measured for the BRPF1B triple bromodomain construct. (D) Half-times of
fluorescence recovery (t1/2) after photo bleaching measured for full-length BRPF2 (WT) after treatment with NI-57 at different concentrations with or
without SAHA. Bars in panel C and D represent the mean t1/2 calculated from at least 10 individual recovery curves, and error bars depict the standard
error of the mean. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 significant difference from wild type with or without SAHA (‡2.5 μM; n-way
ANOVA and Dunnett’s posthoc-test). See also, Supporting Information Figure 1.
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V647 and S592 in BRPF2. This creates a larger and shallower
binding pocket, resulting in repositioning of OF-1. ITC data
suggested that higher affinities of the developed inhibitors for the
BRPF1B isoform are mainly due to a more favorable binding
enthalpy (Supporting Information Table 3). It is therefore likely
that the less efficient stacking of the bromo-methylphenyl ring
with F714 as well as the lack of interaction of the halogen atom
with the adjacent binding pocket formed by I713 are the main
reasons for the 5-fold weaker potency of OF-1 for BRPF2.
Comparison with the BRPF1B-PFI-4 complex revealed that the
amide linkage with the benzoimidazolones ring system does
not allow orientation of the methoxybenzamide toward F714
(Figure 4D, Supporting Information Figure 2E,F). The orientation
of the PFI-4 methoxybenzamide ring is additionally stabilized by
the presence of an intramolecular hydrogen bond, resulting in an
orientation toward the ZA loop. Together with the 6-pyrrolidine
substituent, the inhibitor shows remarkable shape complemen-
tarity with the BRPF1B acetyl-lysine binding site, explaining the
high potency for this target. Crystallographic data and refinement
statistics are summarized in Supporting Information Table 5.
To understand the complexity of the BRPF signaling network,

we used proximity-dependent protein biotinylation (BioID) to
identify physiologically relevant BRPF protein interactions in
living cells using HEK293 as a model.36 The experiments revealed
the canonical BRPF core complex structure, comprising MYST
acetyltransferases as well asMYST/Esa1-associated factor 6, which
was found preferentially associated with BRPF3, and the general
complex components ING4/5, in addition to other associated
proteins that were often isoform specific (Figure 5A). ING4/5

associated with all BRPF family members, but it is interesting
to note that MYST family members preferentially associate
with specific BRPF isoforms. HBO1 (KAT7) was reported to
preferentially interact with BRPF2, but significant association
with BRPF3 was also detected. KAT6A (MOZ) preferentially
associated with BRPF1B, in agreement with published data,26

but MORF (KAT6B) also showed significant interaction with
a short isoform of BRPF2. Also interesting was the presence of
Ser/Thr phosphatases (PPP1CC) and their regulators as well as
the members of the casein kinase family, which were found in
BRPF1B complexes, suggesting crosstalk with phosphorylation
dependent signaling events (Supporting Information Figure 3).
Epigenetic mechanisms play an important role in patterning

and differentiation processes, and BRPF and its associated
HATs have been particularly associated with differentiation of
hematopoietic cells. Given our interest in bone biology, and the
hematopoietic origin of the osteoclast, we investigated the
potential role of the targeted bromodomains in osteoclasto-
genesis in mouse and human cells. Bone marrow mononuclear
cells were isolated from wild-type mice, cultivated for 5 days in
the presence of CSF-1, and replated in the presence of RANKL
for differentiation into osteoclasts,28 either with DMSO as a
control or with varying doses of the BRPF inhibitors. OF-1 and
NI-57 both caused significant reductions in the number of
multinucleated tartrate-resistant acid phosphatase (TRAP)
positive cells (Figure 5B, Supporting Information Figure 4).
To understand the molecular basis for this observation, we
investigated the expression of several osteoclast marker genes
using qPCR. As expected, we found significant reductions of

Figure 4. Substrate recognition and inhibitor bindingmodes. (A)Details of the interaction of H4K5acK8ac with BRPF1B. The inset on the right shows a
surface representation indicating the electrostatic potential ranging from +1.5 V (blue) to −1.5 V (red). (B) Details of the interaction of OF-1 with the
BRPF1B bromodomain. OF-1 is shown in ball and stick representation. Hydrogen bonds are shown as dotted lines. (C) 2D projection showing the
interactions of OF-1 with the BRPF1B acetyl-lysine binding site. Blue dashed lines represent hydrogen bonds; green solid lines, hydrophobic
interactions; and green dashed lines, π−π stacking and edge-to-face aromatic interactions. The panel on the top right shows a 2Fo−Fc electron density
map contoured at 1.2 σ around the inhibitor at 1.65 Å. (D) Details of the interaction of the BRPF1B bromodomain with PFI-4. See also Supporting
Information Figure 2 and Supporting Information Table 5.
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TRAP, the late-phase osteoclast marker cathepsin K (CATK),
the proton generator carbonic anhydrase II (CA2), the key
transcription factor NFATC1, and OC-STAMP, an essential
gene involved in cell−cell fusion (Figure 5C). Suppression of
gene expression by OF-1 was particularly strong at day 2 after
RANKL-induced differentiation. Interestingly, the dominant
negative form BRPF1A exhibited significantly decreased RNA
expression levels, whereas the active acetyl-lysine binding
isoform BRPF1B was not affected (Supporting Information
Figure 4B). Additionally, BRPF bromodomain inhibitors had no
effect on the proliferation of murine monocytic RAW246.7 cells

and primary bone marrow cells, suggesting that the developed
inhibitors are not cytotoxic (Supporting Information Figure 4).
At the protein level, we also observed strong down-regulation of
NFATC1 (Figure 5D). To further investigate other osteoclast-
specific effects of the BRPF inhibitors on gene transcription, we
profiled genome-wide expression with Illumina MouseWG-6
v2.0 Expression BeadChips at different time points. Significant
differences (α = 0.05) in gene expression were observed at 48 and
72 h but not at 24 h of treatment (Figure 6). Pathway analysis
(reactome.org) of the top 25 genes showed that differentially
expressed genes were linked either to osteoclast differentiation or

Figure 5. BRPF1B binding partners and effect of BRPF bromodomain inhibition on gene transcription during mouse osteoclastogenesis. (A) BioID of
full-length and truncated (1−867) BRPF2, BRPF1B, and BRPF3 in HEK293 cells. The color of the circle represents the absolute spectral counts
observed for the prey proteins. The circle size indicates the quantitative enrichment of a prey across all baits tested while the estimated FDR for the
interaction is shown as the color of the circle edge. (B) Inhibition of murine osteoclast differentiation by panBRPF bromodomain inhibition. TRAP stain
of primary murine bone marrow cells (BMCs) differentiated into osteoclasts for 3 days with 1 ng/mL RANKL plus treatment with DMSO or the
panBRPF bromodomain inhibitor OF-1. Bar scale indicates 200 μm. (C) RNA expression of osteoclast markers and BRPF1, -2, and -3 in murine BMCs
during differentiation with 10 ng/mL RANKL and treatment with 1 μMand 2 μMOF-1 for 0, 1, 2, and 3 days measured by qPCR. Data were normalized
to day 0 of RANKL treatment. (D)Western blot analysis of NFATC1 protein level in murine BMCs during differentiation with 10 ng/mL RANKL and
treatment with 1 μM and 2 μM OF-1 for 0, 1, 2, and 3 days. LaminB1 was used as a loading control.
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to lipid metabolism, thus two pathways relevant to osteoclast
differentiation and function. For example, RANKL-induced
expression of Ppap2a and SphK1 which play central roles in
sphingolipid de novo biosynthesis, were significantly down-
regulated by OF-1. These data suggest that the fusion process
from macrophages to bone-resorbing “osteoclast-like” cells is
interrupted by bromodomain inhibition as well.
To ensure that the inhibitors also have activity on human

cells, we used human peripheral blood from healthy donors.
Consistent with the results in murine cells, we observed dose-
dependent suppression of osteoclast differentiation in the
presence of all three inhibitors and RANKL (Figure 7A). OF-1
was the only inhibitor to completely suppress the fusion into
multinucleated “osteoclast-like” cells. This suggests that during
osteoclastogenesis, other BRPF family members may, at least in
part, functionally replace BRPF1B, which was the only BRPF
family member inhibited by PFI-4 at the concentrations tested
(Figure 7B). To study this process in more detail, we performed
fluorescence microscopy analyses for beta-actin, VNR (vitro-
nectin receptor; αvβ3 integrin), and DNA (DAPI), to visualize
the cytoskeleton with the osteoclast specific actin rings that
assemble podosomes as well as nuclei. The actin ring is a hallmark
of osteoclasts which forms a seal with the bone surface to create
a protected compartment for bone resorption by HCl and
proteases. Treatment with all three inhibitors led to striking
decreases of F-actin rings. We also analyzed bone-resorbing
activity, first by seeding the cells onto a bone mineral substrate
(hydroxyapatite, HA; Osteosurface assay, Corning). Both OF-1
and NI-57 led to a significant reduction in pit formation
(Figure 7C), consistent with observed decreases in differentiation.
Second, cells were seeded on dentine slices, a more biologically
complete substrate. As with the HA plates, resorption of dentine

was also markedly reduced, including a complete block of
resorption by 1 μMOF-1 (Figure 7D). Consistent with this loss
of activity, osteoclast marker genes CA2, CATK, NFATC1, and
ACP5 (TRAP) were also down-regulated using all three BRPF
inhibitors (Figure 7E and F). Matrix metallopeptidase 9 (MMP9,
type IV collagenase) is a key protease secreted by osteoclasts for
matrix degradation. To determine whether BRPF bromodomain
inhibition leads to down regulation of MMP9, we used an ELISA
to determine the protein levels in the supernatant of primary
osteoclasts before and after exposure to PFI-4, OF-1, and NI-57.
We found that all three inhibitors led to significant reductions in
MMP9 secretion (Figure 7G). Apart from its role in normal
osteoclast function, the suppression of MMP9 secretion by the
studied BRPF bromodomain inhibitors may also have important
implications for targeting cancer metastasis infiltration into bone,
since MMP9 secretion is markedly upregulated during progres-
sion toward invasive tumors due to its central role in stromal
remodelling.37

The developed three chemical probes for the bromodomain of
BRPF led to the identification of the role of this protein inter-
action domain in regulating osteoclastogenesis, suggesting a key
role of protein acetylation in regulating this process. Previously,
Lamoureux et al. demonstrated that panBET inhibition also
attenuates osteoclast differentiation.38 However, in contrast to
BET inhibitors, the inhibition of BRPF bromodomains did
not result in antiproliferative effects or cytotoxicity. Inhibition
of BRPF bromodomains may therefore be applicable for the
prevention of bone loss, and the developed chemical probes will
provide an excellent chemical starting point for translational
studies. BRPF is widely expressed in a variety of tissue types, and
the developed probes will help to elucidate further functions of
these interesting epigenetic modulators.

Figure 6.Microarray analysis of the effect of OF-1 on gene expression. (A) Heat map of the top 25 significant differentially expressed genes between
DMSO and OF-1-treated BMCs based on sorted average p-value for the time points 48 and 72 h. Red indicates higher; blue indicates lower expression.
See also, Supporting Information Figures 3 and 4. (B) Venn diagram showing overlap of 100 significantly expressed genes for each time point
determined by paired analysis (BHmultiple testing, p-value alpha adjustment) between DMSO andOF-1-treated (2 μM)murine BMCs during 10 ng/mL
RANKL-induced differentiation of 24, 48, or 72 h.
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■ METHODS
Protein Expression. All recombinant bromodomains were ex-

pressed as described in Filippakopoulos et al.35

BioLayer Interferometry (BLI). BLI experiments to determine
binding kinetics were done using the Octet RED384 system by forteB́IO
using bromodomains of two splice isoforms of BRPF1A and BRPF1B
that were biotinylated during recombinant expression using a BirA
(Biotin transferase) overexpressing bacterial host (BL21 DE3) in con-
junction with a C-terminal AVI-tag. Biotinylated proteins were immo-
bilized on super streptavidin biosensors, which were subsequently
quenched with L-biotin. Data analysis software provided by forteB́IO was
used to calculate binding constants from the interference data.
AlphaScreen. Assays were performed as described previously with

minormodifications.39 Plates filled with 5 μL of the assay buffer followed
by 7 μL of biotinylated peptide [H-YSGRGKacGGKacGLGKacGGA
KacRHRK(Biotin)−OH for BRD1, BRD4, BRPF1B, and BRPF3 or

YQTARKSTGGK(ac)APRKQLATKAK(biotin)−OH for TIF1α] and
His-tagged protein to achieve final assay concentrations of 25−100 nM
depending on the dose−response curve for each individual protein.

Murine and Human Osteoclast Differentiation. Primary mouse
bone marrow mononuclear cells (BMMC) were obtained, differen-
tiated, and stained for TRAP as previously described.40 Briefly, marrow
cell suspensions from PBS flushed bones (two tibiae, two femora) from
2 to 3 week old mice were centrifuged at 1000g for 5 min and plated
in αMEM/10% FBS with low MCSF (10 ng/mL, human recombinant
MCSF; Chiron) and incubated at 37 °C and 5% CO2. After 3 days, fresh
medium containing highMCSF (75 ng/mL) was added for 2 more days,
and then the medium was supplemented with RANKL (R&D Systems,
Minneapolis) at 1 ng/mLunless otherwise noted, for the times indicated.
Differentiation into osteoclasts was scored by counting multinucleated
(three or more nuclei) TRAP-positive cells. Primary human peripheral
blood (OxfordNHSBlood bank,NCI0622)mononuclear cells (PBMCs)
were collected from a Histopaque generated buffy coat after gradient

Figure 7. Inhibition of human osteoclast differentiation by panBRPF bromodomain inhibition. (A) Immunofluorescence of F-actin and VNR in primary
human PBMCs differentiated into multinucleated osteoclasts by RANKL for 14 days. Osteoclasts were treated with the indicated doses of NI-57, OF-1,
or PFI-4 (chemical probe set). Experiments were conducted >10 times with >2 donors each. (B) Counts of TRAP-positive multinucleated osteoclasts
(n > 3) derived from human PBMCs after 14 days of culture with RANKL, with or without indicated doses of BRPF inhibitors. Tukey multiple
comparison test *p > 0.05, **p > 0.01, ***p > 0.001, ****p > 0.0001. (C) OF-1 and NI-57 inhibited osteosurface degradation by human osteoclast-like
cells, doses indicated. (D) OF-1 (1 μM) inhibited pit formation by human osteoclast-like cells on ivory discs. (E) RNA expression of osteoclast markers
by human osteoclast-like cells following 14 days of RANKL (+) and DMSO, NI-57, or PFI-4 treatment at 1.25 μM or (F) OF-1 in a dose-dependent
manner. (G) MMP9 concentration in the supernatant of human RANKL-induced osteoclasts treated with either PFI-4, OF-1, or NI-57 at a concen-
tration of 1.25 μM for 7 days or 11 days, respectively. See also, Supporting Information Figure 5.
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centrifugation at 20 min and 500g, brakes off. The CD14+ monocyte
fraction was obtained by on-column CD14+-MACS bead isolation
(Miltenyi Biotech, Surrey, UK), washed twice with MACS buffer, and
seeded at a density of 50 000 c/mL in αMEM/10%FCS supplemented
with 25 ng/mLMCSF (Peprotech). After 6 days at 37 °C, 5%CO2 treat-
ment with either OF-1, NI-57, or PFI-4 with and without 50 ng/mL
RANKL (Peprotech) was started. Media were changed with fresh com-
pounds every 3−4 days. After 14−21 days, cells were fixed and stained
for TRAP or lysed in RLT/2-mercaptoethanol RNA lysis buffer for RNA
isolation.
Immunofluorescence. Fixed osteoclast-like cells were permabilized

in 0.5% Triton X-100 at RT (RT) for 20 min. Blocking of nonspecific
binding was carried out with 3% FBS/PBS for at least 1 h at RT. Primary
antibodies for VNR and F-actin were incubated overnight in 3%FCS/
PBS (1:500). After washes with PBS, secondary fluorescence coupled
antimouse and antirabbit antibody were applied for 1 h in the dark, at
RT. DAPI/PBS was added for 5 min, and fluorescence was measured by
confocal microscopy (Zeiss).
Bone Resorption Assays. PBMCs were isolated and seeded onto

either osteosurface assay plates (BD biosciences) or self-cut dentine
slices from ivory (provided by Edward Hookway, Botnar institute).
After 14 days of differentiation, cells were removed from osteosurface or
dentine slices. The amount of osteoclast-mediated pits in the osteo-
surface was assessed by phase contrast. Dentine pits were imaged with
confocal microscopy.
Western Blot and ELISA. Murine osteoclast-like cells were PBS

washed, homogenized and lysed in RIPA buffer (50 mM Tris-HCl,
pH 7.4; 150 mM NaCl; 1% NP-40; 0.5% Na-deoxycholate; 0.1% SDS;
2 mM EDTA; 10 mM NaF) containing protease inhibitors (Pierce,
according to manufacturer’s specifications) with a 1 mL syringe and a
23-gauge needle. After centrifugation at 15 000 rpm at 4 °C for 10 min,
supernatants were frozen at −80 °C. Protein concentrations were
assayed using a Pierce BCA Kit, and 30 μg of protein per lane was
subjected on 10% SDS gel. Proteins were electroblotted onto PVDF,
and blots were probed overnight at 4 °C (anti-NFATc1 (1:500; 7A6:
sc-7294 mouse monoclonal, Santa Cruz) or anti-Lamin B1 (1:10 000;
ab133741 rabbit monoclonal, Abcam). Secondary antibodies were
HRP-conjugated sheep antimouse (1:5000 for Nfatc1; #NA93IV; GE
Healthcare, Piscataway, NJ) or HRP-conjugated goat antirabbit (1:5000
for Lamin B1; # P0448; Dako, Carpinteria, CA). MMP9 secretion in the
human osteoclast supernatant was determined by a MMP9 ELISA
(R&D, DMP900) according to the manufacturer’s instructions. The
supernatant (50 μL/well) was collected, frozen at −20 °C, and 100-fold
diluted for the assay. Absorbance was measured at 440 nm.
Microarray and Bioinformatics Analysis. Murine bone marrow

stem cells were differentiated into osteoclast-like cells as described
above. Cells were PBS-washed and lysed in RLT-Buffer (including
2-Mercaptoethanol; Qiagen, UK), and RNA was isolated via RNeasy
PlusMini Kit (Quiagen, UK). After confirmation of RNA quality (RIN =
2± 0.1), cDNA synthesis of approximately 1000 ng of RNA with a High
Capacity cDNA Reverse Transcription Kit (Applied Biosystems, UK)
was carried out. A total of 500 ng/μL cDNA was subjected to
MouseWG-6 v2.0 Expression BeadChips (Illumina) at the Department
of Pathology, University of Cambridge. Microarray data are available in
the ArrayExpress database (www.ebi.ac.uk/arrayexpress) under acces-
sion number E-MTAB-4155. Gene expression data underwent log2
transformation and quantile normalization. Genes were filtered based on
their variation across the experiments, i.e., excluding genes with a
standard deviation of expression lower than 0.1. For genes with multiple
probes, only the highest variable probe was selected for further analysis.
Differently expressed genes were selected using LIMMA (LinearModels
for Microarray Data) in a paired analysis for the replicates. This method
resulted in p-values adjusted for multiple testing using the Benjamini−
Hochberg procedure, and α = 0.01 was used to define significance.
Microarray analyses were performed in R (v3.0.1) using the packages
Limma (3.16.8) for differential expression and Venn diagram (1.6.7),
plotrix (3.5−7), gtools (3.4.1), and gplots (2.14.1) for visualization.
Pathway analysis of the top 25 differentially expressed genes with a
Jaccard distance coefficient of p > 0.05 (Reactome.org) was performed.
The REACT_111217 pathway (metabolism of lipids and lipoproteins)

with at least more than four enriched genes was set as the most
significant (entities p-value 0.045). Additional methods’ descriptions are
available in the Supporting Information.
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