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Abstract: Current plant-based yogurts are made by the fermentation of plant-based milks.
Although this imparts fermented flavors and probiotic cultures, the process is relatively longer
and often leads to textural issues. The protein content of these plant-based yogurts is also lower
than their dairy counterparts. To overcome these challenges, this paper explores the high pressure
processing (HPP) of plant protein ingredients as an alternative structuring strategy for plant-based
yogurts. Using mung bean (MB), chickpea (CP), pea (PP), lentil (LP), and faba bean (FB) proteins as
examples, this work compared the viscosity and viscoelastic properties of high pressure-structured
(600 MPa, 5 min, 5 ◦C) 12% (w/w) plant protein gels without, and with 5% (w/w) sunflower oil (SO) to
commercial plain skim and whole milk Greek yogurts and discussed the feasibility of using HPP to
develop plant-based yogurts. HPP formed viscoelastic gels (G’ > G”) for all plant protein samples with
comparable gel strength (G’~102–103 Pa; tan δ~0.2–0.3) to commercial dairy yogurts. The plant protein
gel strength decreased in the order: CP~CPSO~LP~LPSO > MBSO~PPSO~FB~FBSO > PP >> MB.
Modest addition of sunflower oil led to little change in viscoelastic properties for all plant protein
samples except for MB and PP, where gel strength increased with incorporated oil. The emulsion
gels were also more viscous than the hydrogels. Nonetheless, the viscosity of the plant protein
gels was similar to the dairy yogurts. Finally, a process involving separate biotransformation for
optimized flavor production and high pressure processing for consistent texture generation was
proposed. This could lead to high protein plant-based yogurt products with desirable texture, flavor,
and nutrition.
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1. Introduction

The demand for plant-based alternatives to meat and dairy products has been increasing to
alleviate the intense strain of animal husbandry on the environment [1]. Among the dairy substitutes,
plant-based milks have received considerable attention and is currently widely available [2]. The texture
of plant-based yogurts, however, could be improved to increase acceptability. At present, plant-based
yogurt products adopt the traditional yogurt-making process through the fermentation of plant-based
milks [3,4]. While this imparts fermented flavors and probiotic cultures, the acidification of plant
proteins often leads to weak gel formation and phase separation [5]. Hydrocolloids are thus typically
included to stabilize and enhance the texture, which is not desirable due to clean label reasons [6].
Besides having a longer (4–24 h) fermentation period, the protein content of these plant-based yogurts
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is also lower than their dairy counterparts. Therefore, traditional fermentation methods may not be
optimal for plant-based yogurts.

This presents opportunities to rethink the yogurt-making process to better suit plant-based
systems. This paper explores the high pressure processing (HPP) of plant protein ingredients as
an alternative structuring strategy for plant-based yogurts. HPP is a nonthermal processing method
primarily used to extend the shelf-life of food products by subjecting foods to high hydrostatic pressure
between 200–800 MPa [7]. HPP can also form homogenous plant protein gels with minimal ingredients,
in-package, and much quicker than fermentation [8], making it a suitable structuring alternative for
plant-based yogurts. However, there is little information on pressure-induced protein-based emulsion
gels besides whey [9] and soy proteins [10], nor any data comparing them to dairy yogurts. Hence,
using mung bean, chickpea, pea, lentil, and faba bean proteins as examples, this work compares the
viscosity and viscoelastic properties of high pressure-structured plant protein gels, without and with
sunflower oil to emulate skim and whole milk yogurts, to commercial dairy yogurts, and discusses the
feasibility of using HPP to develop plant-based yogurts.

2. Methods

2.1. Materials and Sample Preparation

Commercially available mung bean protein isolate (GludodiaTM, Fuji Oil Pte Ltd., Singapore),
chickpea protein concentrate (ArtesaTM, PLT Health Solutions, Morristown, NJ, USA), pea protein
concentrate (VitessenceTM Pulse CT 1552, Ingredion, Westchester, IL, USA), lentil protein concentrate
(VitessenceTM Pulse 2550, Ingredion, Westchester, IL, USA), and faba bean protein concentrate
(VitessenceTM Pulse CT 3602, Ingredion, Westchester, IL, USA) powders were kindly provided by
the respective ingredient suppliers. Sunflower oil (Sunbeam, Sime Darby Plantation, Kuala Lumpur,
Malaysia), plain skim (Chobani Pty Ltd., Dandenong South, VIC, Australia) and plain whole
(Fage International S.A., Strassen, Luxembourg) milk Greek yogurts were obtained from a local
supermarket. Greek yogurts were chosen as they contained higher protein content than regular
yogurts. The composition of the protein powders, as provided by the manufacturers, is shown in the
Supplementary Materials (Table S1).

To mimic the skim and whole milk Greek yogurt compositions, the plant protein powders of mung
bean (MB), chickpea (CP), pea (PP), lentil (LP), and faba bean (FB) were added to water, without and
with sunflower oil (SO). A 12% (w/w) protein concentration was fixed for all formulations as it was
around the minimum gelation concentration for the plant proteins and enabled comparison between
samples [11–14], while the fat content was approximately 5% (w/w) for samples with sunflower oil.
The composition information and labels for all ten formulations and the reference yogurts are shown
in Table 1.

To prepare the solutions, the plant protein powders were added to Milli-Q water and high-shear
mixed at 20,000 rpm for 4 min (T25 digital UltraTurrax fitted with a S25N-18G dispersion tool,
IKA Works Inc., Wilmington, NC, USA). Sunflower oil was added prior to mixing for the oil emulsion
samples. The mixed solutions were filled in flexible storage bags and vacuum sealed. Each bag
contained about 25 mL of sample. The packaged samples were stored overnight at 4 ◦C prior to
HPP treatment.
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Table 1. The composition of 12% (w/w) protein solutions of mung bean (MB), chickpea (CP), pea (PP),
lentil (LP) and faba bean (FB) without and with 5% (w/w) sunflower oil (SO), and reference plain
skim and whole milk Greek yogurts from data provided by the manufacturers and tabulated using
Microsoft Excel.

Formulation
%

Protein
(w/w)

% Fat
(w/w)

%
Carbohydrate

(w/w)

%
Sugars
(w/w)

% Dietary
Fiber
(w/w)

% Starch
(w/w)

% Ash
(w/w)

%
Moisture

(w/w)

MB 12.0 <0.1 <0.9 n.a. n.a. n.a. 0.7 86.4
CP 12.0 0.2 6.1 n.a. 2.6 n.a. 0.7 81.0
PP 12.0 1.0 7.9 0.5 3.8 0.4 1.3 77.8
LP 12.0 1.0 7.3 0.4 3.1 0.9 1.2 78.5
FB 12.0 0.8 5.2 0.3 2.7 0.4 1.2 80.8

Skim 9.7 0.2 4.2 3.3 n.a. n.a. n.a. <85.9
MBSO 12.0 5.0 <0.9 n.a. n.a. n.a. 0.7 81.4
CPSO 12.0 5.2 6.1 n.a. 2.6 n.a. 0.7 76.0
PPSO 12.0 5.0 7.9 0.5 3.8 0.4 1.3 73.8
LPSO 12.0 5.0 7.3 0.4 3.1 0.9 1.2 74.5
FBSO 12.0 5.0 5.2 0.3 2.7 0.4 1.2 76.6
Whole 9.0 5.0 3.0 3.0 n.a. n.a. n.a. <83.0

The values with “<” symbol are estimated. n.a.: no available data.

2.2. High Pressure Processing (HPP)

The samples were high pressure-treated using a 300 L commercial HPP unit (Hiperbaric, Burgos,
Spain). Samples were subjected to 600 MPa pressure for a 5 min hold time, which are typical food
industry processing parameters and were also found to induce protein gelation [15,16]. The initial
temperature of the pressurizing medium (filtered water) was 5 ◦C. The HPP-treated samples were
then stored at 4 ◦C to minimize microbial activity and analyzed within 24 h. Two treatments were
conducted for each formulation.

2.3. Rheological Analyses

The viscosity and viscoelastic properties of the HPP-treated and reference yogurt samples were
analyzed using an Anton Paar MCR 302 rheometer (Anton Paar Germany Gmbh) equipped with
a temperature control system. A 50 mm diameter parallel plate configuration with an interplate
gap of 1 mm was used. All experiments were conducted at 4 ◦C. Viscosity was measured using
the steady state flow curve from 0.1 to 1000 s−1 with five points per decade. To compare between
samples, viscosity values at a shear rate of 1 s−1 were reported. The viscoelastic properties (G’, G”,
and tan δ) of the samples were subsequently characterized with amplitude sweeps from 0.01 to 100%
strain at a constant frequency of 1 Hz with eight points per decade. The storage modulus (G’) and
loss factor (tan δ) at 0.1% strain was used to compare between samples within the linear viscoelastic
region. Each of the two treatments was measured once, and all data are presented as the average of the
two treatments.

3. Results and Discussion

3.1. Viscoelastic Properties of the HPP-Treated Plant Protein Samples

The amplitude sweep data are presented in Figures 1 and 2. The values of G’ and G” indicate
the solid-like and liquid-like character of the samples, respectively, while tan δ describes the ratio
of viscous to elastic behavior. The breakdown of structure leading to flow can be represented by
the crossover strain γco [17]. Overall, HPP formed viscoelastic gels (G’ > G”) for all plant protein
samples. The plant protein gels also had comparable gel strength (G’~102–103 Pa and tan δ~0.2–0.3)
to commercial dairy yogurts except for MB (Figure 2a,b). However, the plant protein gels except for
MB had moderately higher γco values than the dairy yogurts (Figure 2c), indicating their increased
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resistance to network breakdown. This could result in a texturally stable product without the need for
added hydrocolloids, thereby contributing to a clean product label.
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Figure 1. Amplitude sweeps of high pressure-treated 12% (w/w) mung bean (MB), chickpea (CP),
pea (PP), lentil (LP) and faba bean (FB) protein samples without and with 5% (w/w) sunflower oil (SO) as
compared to commercial plain skim and whole milk Greek yogurt. Storage modulus, G’ (closed symbol)
and loss modulus, G” (open symbol). Each curve is the average of two treatments.
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Figure 2. Rheological parameters obtained from amplitude sweeps of high pressure-treated 12% (w/w)
mung bean (MB), chickpea (CP), pea (PP), lentil (LP), and faba bean (FB) protein samples without and
with 5% (w/w) sunflower oil (SO) as compared to commercial plain skim and whole milk Greek yogurt.
(a) Storage modulus (G’) at 0.1% strain; (b) loss tangent (tan δ) at 0.1% strain; (c) crossover strain (γco)
when G’ = G”. The average of two treatments is presented with the error bar extremes showing the
data for each treatment.

There was variation in the viscoelastic properties between different plant proteins. The gel strength
of the plant protein gels decreased in the order: CP~CPSO~LP~LPSO > MBSO~PPSO~FB~FBSO > PP
>> MB (Figure 2a). While the variation could be attributed partly to different total solids content
(Table 1), the type of plant protein could be more important. For example, although PP and LP
had similar total solids content, LP and LPSO gels were considerably stronger than PP and PPSO,
respectively. It was previously found that heat-treated lentil proteins generally formed stronger gels
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than pea proteins, but that depended on the pulse variety [18]. Hence, the choice of plant protein will
be an important consideration to achieve the desired viscoelastic properties. In this study, FB and
CPSO had the closest viscoelastic properties to the skim and whole milk yogurts, respectively, but more
replicates are needed to establish statistical significance. Interestingly, the crossover strain values
(Figure 2c) between plant proteins had an opposite pattern to gel strength (Figure 2a). This might
indicate that the stronger protein network had a more brittle characteristic. Sensory evaluations are
needed to determine if this brittle character can be detected. While not tested in this study, the blending
of different plant proteins could enable the gel properties to be tailored for optimal sensory properties.

The modest addition of sunflower oil led to little change in the viscoelastic properties for all plant
protein samples except for MB and PP. The gel strength and crossover strain of MB and PP substantially
increased when oil was incorporated in the MBSO and PPSO, respectively (Figure 2a,c). It was similarly
reported that heat-induced pea protein gels were stiffer in the presence of oil [19]. With the addition of
oil, it was likely that the protein molecules partitioned preferentially to the continuous phase, leading to
a local increase in protein concentration. It was also established that the gel network is strengthened as
protein-stabilized oil droplets act as fillers in the emulsion gel [20]. The difference in protein–protein
and protein–lipid interactions might explain the variation in viscoelastic response between the plant
proteins with the moderate addition of oil. While more in-depth study is needed to understand the
role of lipids in HPP-formed emulsion gels, it should be noted that the oil content was fixed in this
work to mimic full fat dairy yogurt. Furthermore, if similar viscoelastic properties and mouthfeel can
be achieved without the addition of oil, that may lead to a lower caloric product.

3.2. Viscosity of the HPP-Treated Plant Protein Samples

The flow curve data are shown in Figure 3. All samples exhibited shear-dependent behavior likely
due to the protein network breakdown and realignment of protein aggregates and oil droplets with
increasing shear rate (Figure 3a,b). Except for the dairy yogurts, the plant protein samples viscosity
(Figure 3c,d) mimicked the pattern of their gel strength (Figure 2a). The lower viscosity of the dairy
yogurts could be due to its lower total solids content (Table 1). In this study, the emulsion gels also
generally had higher viscosity than the hydrogels. Nonetheless, the viscosity values of the plant
protein gels were in the same order of magnitude as the dairy yogurts. In this study, PP and PPSO had
the closest viscosity to the skim and whole milk yogurts, respectively.
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Figure 3. Flow curves (a,b) and viscosity at 1 s−1 (c,d) of high pressure-treated 12% (w/w) mung bean
(MB), chickpea (CP), pea (PP), lentil (LP), and faba bean (FB) protein samples without and with 5% (w/w)
sunflower oil (SO) as compared to commercial plain skim and whole milk Greek yogurt. Each curve is
the average of two treatments. The average of two treatments is presented with the error bar extremes
showing the data for each treatment.

3.3. Feasibility of Using HPP to Develop Plant-Based Yogurts

In this proof-of-concept study, the viscosity and viscoelastic properties of high pressure-structured
plant protein gels have been shown to be comparable in behavior to commercial dairy yogurts,
though further optimization and sensory evaluation is required. As different plant proteins exhibit
variation in behavior, the gel properties could be simply tailored by blending different plant protein
ingredients or by controlling pressure level [8]. Besides having customizable texture using minimal
ingredients, the higher protein content and short processing time makes HPP an advantageous
structuring method for plant-based yogurts.

The fermentation of plant-based substrates may still be needed for flavor production. Apart from
having textural challenges in current plant-based yogurt-making, plant-based milks contain low levels
of fermentable sugars and undergo inefficient fermentation [21,22]. Furthermore, the starter cultures
may not match well to the highly variable plant-based milks from different sources [5,23]. Hence,
by decoupling the flavor and texture generation of plant-based yogurts using separate biotransformation
and HPP processes, a wider range of microorganisms could be explored to ferment the diverse sources
of plant materials at lower cost and with higher yield and efficiency. This also allows for the valorization
of low-value agricultural and waste materials such as plant fibers [24], husks [25], and peels [26,27],
as fermentation substrates. Besides the characteristic dairy yogurt flavor volatiles like diacetyl and
lactic acid [28] that can be produced and added, novel flavor compounds could also be explored.
The subsequent HPP structuring step provides the consistency of texture regardless of plant-based
flavor source. A potential plant-based yogurt-making process incorporating these ideas is shown in
Figure 4.

An understandable concern is the viability of adding probiotic cultures before HPP as high
pressures have been known to inactivate vegetative microorganisms [7]. A simple, but less economical
solution, is to inoculate the plant-based yogurt with a higher probiotic culture concentration.
Alternatively, since lower applied pressures (300–400 MPa) lead to partial protein denaturation
and aggregation [8], such lower pressures might just be enough to create desired textures using
strong structuring plant proteins such as CP and LP (Figure 2a), and also retain probiotic culture
viability. In fact, it was found that high pressure treatment in the range of 200–300 MPa had minimal
impact on Bifidobacterium bifidum and Lactobacillus casei probiotic strains in dairy yogurt [29]. However,
attention needs to be paid to microbial safety as lower pressures also lead to reduced pathogenic
microbial inactivation [7]. Another option is to use pressure-resistant probiotic cultures [30] and
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probiotic cultures in the form of pressure-resistant spores [31]. Finally, it is also possible to have no
added cultures to create products equivalent to high protein pasteurized yogurts.

Foods 2020, 9, x FOR PEER REVIEW 8 of 10 

 

levels of fermentable sugars and undergo inefficient fermentation [21,22]. Furthermore, the starter 
cultures may not match well to the highly variable plant-based milks from different sources [5,23]. 
Hence, by decoupling the flavor and texture generation of plant-based yogurts using separate 
biotransformation and HPP processes, a wider range of microorganisms could be explored to ferment 
the diverse sources of plant materials at lower cost and with higher yield and efficiency. This also 
allows for the valorization of low-value agricultural and waste materials such as plant fibers [24], 
husks [25], and peels [26,27], as fermentation substrates. Besides the characteristic dairy yogurt flavor 
volatiles like diacetyl and lactic acid [28] that can be produced and added, novel flavor compounds 
could also be explored. The subsequent HPP structuring step provides the consistency of texture 
regardless of plant-based flavor source. A potential plant-based yogurt-making process 
incorporating these ideas is shown in Figure 4. 

 
Figure 4. A proposed plant-based yogurt-making process using biotransformation for optimized 
flavor production and high pressure processing (HPP) for consistent texture generation. The 
bracketed ingredients are optional depending on formulation. The image shows HPP-structured 
mung bean yogurt (MBSO) in a cup. 

An understandable concern is the viability of adding probiotic cultures before HPP as high 
pressures have been known to inactivate vegetative microorganisms [7]. A simple, but less 
economical solution, is to inoculate the plant-based yogurt with a higher probiotic culture 
concentration. Alternatively, since lower applied pressures (300–400 MPa) lead to partial protein 
denaturation and aggregation [8], such lower pressures might just be enough to create desired 
textures using strong structuring plant proteins such as CP and LP (Figure 2a), and also retain 
probiotic culture viability. In fact, it was found that high pressure treatment in the range of 200–300 
MPa had minimal impact on Bifidobacterium bifidum and Lactobacillus casei probiotic strains in dairy 
yogurt [29]. However, attention needs to be paid to microbial safety as lower pressures also lead to 
reduced pathogenic microbial inactivation [7]. Another option is to use pressure-resistant probiotic 
cultures [30] and probiotic cultures in the form of pressure-resistant spores [31]. Finally, it is also 
possible to have no added cultures to create products equivalent to high protein pasteurized yogurts.  

4. Conclusions 

In this proof-of-concept study, the viscosity and viscoelastic properties of high pressure-
structured plant protein gels have been shown to be comparable in behavior to commercial dairy 

Biotransformation of 
plant-based substrates 

Shear Mixing 

Packaging 

HPP processing 

Additional Ingredients 
• Plant Proteins 
• (Water) 
• (Oil) 
• (Probiotic Cultures) 

Parameters 
600 MPa 
3–5 min 
5 °C 

Figure 4. A proposed plant-based yogurt-making process using biotransformation for optimized
flavor production and high pressure processing (HPP) for consistent texture generation. The bracketed
ingredients are optional depending on formulation. The image shows HPP-structured mung bean
yogurt (MBSO) in a cup.

4. Conclusions

In this proof-of-concept study, the viscosity and viscoelastic properties of high pressure-structured
plant protein gels have been shown to be comparable in behavior to commercial dairy yogurts.
To overcome the inefficiencies of current plant-based yogurt-making, a process involving separate
biotransformation for optimized flavor production and high pressure processing for consistent texture
generation was proposed. The next step is to test the proposal to effectively develop high protein
plant-based yogurt products with desirable texture, flavor, and nutrition.
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