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Abstract: Since the first case of Coronavirus disease (COVID-19) caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) in 2019, SARS-CoV-2 infection has affected many individuals
worldwide. Eventually, some highly infectious mutants—caused by frequent genetic recombination—
have been reported for SARS-CoV-2 that can potentially escape from the immune responses and
induce long-term immunity, linked with a high mortality rate. In addition, several reports stated
that vaccines designed for the SARS-CoV-2 wild-type variant have mixed responses against the
variants of concern (VOCs) and variants of interest (VOIs) in the human population. These results
advocate the designing and development of a panvaccine with the potential to neutralize all the
possible emerging variants of SARS-CoV-2. In this context, recent discoveries suggest the design
of SARS-CoV-2 panvaccines using nanotechnology, siRNA, antibodies or CRISPR-Cas platforms.
Thereof, the present comprehensive review summarizes the current vaccine design approaches
against SARS-CoV-2 infection, the role of genetic mutations in the emergence of new viral variants,
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the efficacy of existing vaccines in limiting the infection of emerging SARS-CoV-2 variants, and efforts
or challenges in designing SARS panvaccines.

Keywords: SARS-CoV-2; viral variants; vaccine; immunity; mutations

1. Introduction

According to the WHO report, around 572,239,451 cases of COVID-19 have been
confirmed globally, with 63,904,401 deaths confirmed through 29 July 2022. The maxi-
mum confirmed 240,211,364 cases of COVID-19 were detected in Europe, while the lowest
92,091,133 cases were reported in Africa. In addition, in terms of death caused by SARS-
CoV-2, the United States of America (USA) displayed 1,020,405 death reports, while the
lowest death rate was noted in Africa. A summary of the reported deaths caused by
COVID-19 worldwide is mentioned in Table 1. It is also important to mention that about
12,248,795,623 doses of different vaccines designed against SARS-CoV-2 have been adminis-
tered worldwide, and the number of vaccinations in percent per country (top 10 countries
in the world) is also cited in Table 2.

Table 1. Countries with a maximum number of COVID-19 induced deaths (above 0.1 million).

Sr. No. Country Total COVID-19 Induced Deaths

1. United States of America 1,020,405

2. Brazil 678,715

3. India 526,477

4. Russian Federation 382,560

5. Mexico 327,750

6. Peru 214,364

7. United Kingdom 183,953

8. Italy 172,397

9. Indonesia 157,028

10. France 148,833

11. Germany 144,360

12. Iran 142,134

13. Colombia 140,845

14. Argentina 129,369

15. Poland 116,608

16. Spain 110,713

17. Ukraine 108,713

18. South Africa 101,982

Initially, multiple vaccine strategies and candidates were reported soon after the
pandemic caused by SARS-CoV-2 but proved unsuccessful in the control and management
of COVID-19. Experts observed that the emergence of new viral variants caused by the
acquisition of genetic mutations in SARS-CoV-2 in some parts of the world and then rapid
transmission across the continents essentially contributed to the progression of COVID-19.
In addition, the available vaccines showed varying efficiencies against the emerging SARS-
CoV-2 mutants depending on the population and variants. This highlighted the need to
develop a broad-spectrum vaccine that can neutralize all the existing and future variants of
SARS-CoV-2. Herein, we comprehensively describe the vaccine development strategies



Vaccines 2022, 10, 1655 3 of 25

against SARS-CoV-2 and different vaccine candidates. We also highlight the efficiency of
existing vaccine candidates against the SARS-CoV-2 variants. Finally, we comprehensively
describe the recent attempts to develop a broad-spectrum vaccine formulation that can
neutralize the existing variants of SARS-CoV-2.

Table 2. Data on COVID-19 vaccines administered (by country) as of 7 August 2022.

Sr. No. Country No. of People with Double Dose of COVID-19 Vaccines

1. India 935.52 million

2. United States 223.04 million

3. Brazil 170.17 million

4. Mexico 92.33 million

5. Russia 82.58 million

6. Germany 64.74 million

7. Turkey 57.89 million

8. France 54.53 million

9. United Kingdom 53.71 million

10. Italy 50.82 million

11. Spain 41.28 million

12. Chile 18.04 million

13. Israel 6.72 million

14. Hungary 6.41 million

15. Uruguay 3 million

16. Bahrain 1.24 million

2. Methods

In this review, the PubMed database was used to search and analyze the reported
publications pertinent to the present review’s title related to vaccines associated with SARS-
CoV-2. The Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA)
were used in the search methodology. The keyword string created for the search method,
composed of (((COVID[Title] OR SARS[title] OR COV[title]) AND (vaccine[Title/Abstract]))
AND (Journal Article[Publication Type] OR Review [Publication Type])) was also included
for the literature collection from the PubChem database. Initially, the above keywords
were searched using the default publication type, which consisted of a journal article and
review under the title section, to improve the relevancy. As a result, a total of 17,102 articles
were obtained. Consequently, a variety of filter criteria were employed to cut down the
number of articles and identify only those that were more pertinent to the aim of the
present review. For instance, in the first filter, the publication date was used with the most
recent five years’ publications, which yielded 16,838 publications. Following the year-long
criteria, a clinical trial criterion was implemented. As vaccine development and testing
can be evaluated using clinical trials, clinical trial articles were also considered in this
review. A total of 258 clinical trial articles were available on the subject of interest, while
other relevant observational studies reported in 280 articles were also considered. Recently,
therapeutic solutions for COVID-19 have been reviewed exhaustively, making the review
articles, systematic reviews, and meta-analysis articles crucial to be considered in this
study. This produced a total of 2975 articles, whereas 108 were only meta-analyses. These
articles were further processed for common publications by using PMID were removed.
Unique articles were used in searching for keywords [variant OR effect OR effectiveness
OR feasibility OR action OR risk OR efficacy OR factors OR features OR efficacious] in the
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abstract. This produced 129 as the most relevant articles that were considered in drafting
this review.

3. Vaccine Development Strategies against SARS-CoV-2
3.1. Inactivated Vaccine

In vitro culturing of viruses and their chemical inactivation is one method for develop-
ing vaccines. These vaccines may deliver consistently expressed, conformationally native
antigenic epitopes. The firms with the most advanced vaccines are Sinopharm and Sinovac.
These products have undergone evaluation in Phase 3 studies and received worldwide use
authorizations [1–4].

3.2. Protein Subunit Vaccine

Delivering the recombinant viral spike protein through the cellular-based systems
that mediate the protein production is another strategy for vaccine production. This
strategy can provide in vivo protection for vaccinated animals, but it theoretically runs
the danger of inducing a polarized immune reaction that can be managed using different
adjuvants [5]. Recently, Novavax published the results of its last phase of clinical testing
in the UK, showing vaccination effectiveness against COVID-19 of 89% while employing
the saponin-based Matrix-M adjuvant. Though none are approved for use, over 60% of
vaccines presently under study employ a protein subunit method [1–4].

3.3. Vaccines on Viral Vector

In viral vector-based vaccinations, replication-deficient viruses express the gene se-
quence of a target antigen inside the host cells. Adenoviruses incapable of replicating
themselves have been created for the HIV, TB, ebola, and malaria viruses [6]. The effective-
ness of this vaccination strategy has varied, frequently being constrained by previously
existing immunity to the adenovirus vector [7]. The vaccines employing the Adenovirus
serotype 26 vector vaccine (Ad26.CoV2.S; Johnson and Johnson) have shown early success
using adenoviruses with low levels of innate immunity in the US and Europe (ChAdOx;
AstraZeneca). Both have varying degrees of effectiveness in avoiding clinical disease,
especially disease brought on by SARS-CoV-2 variants, but are effective in minimizing
COVID-19-related hospitalization and mortality [1–4].

3.3.1. Replication Deficient Viral Vectors

A sizable category of vaccines in development are replication-incompetent vectors.
These vaccines employ different viruses whose genomes are modified to produce the
structural protein of SARS-CoV-2 and have portions of their genome deleted to prevent
them from replicating in vivo. Many viruses, including human influenza and parainfluenza
viruses, modified vaccinia Ankara (MVA), adenoviruses, and the Sendai virus, are also
used [8–14]. The adenoviruses (AdV)-based vectors account for most of these strategies.
Most of these vectors are administered via intramuscular injections that penetrate deep
inside the tissues to produce viral spike proteins. This strategy does not involve working
with live SARS-CoV-2 for vaccine manufacture. Additionally, there is extensive expertise
in making more significant quantities of these vectors. It is a drawback that some of these
vectors are impacted by pre-existing vector immunity and are partially neutralized by it [10].
Using virus-based vectors, which are not familiar to humans [9], generated from animal
viruses [11], or viruses that do not produce much protection on their own are ways to get
around such immune responses (for example, adeno-associated viruses). Additionally,
when using prime-boost treatments, vector immunity might be troublesome; however,
it can be minimized by priming two viral vector-based vaccines. The data from clinical
trials of several replication-deficient vector vaccine applicants against SARS-CoV-2 has
advanced significantly. The outcomes from human clinical trials are disclosed [9–12]. In
addition, a vaccine candidate (Ad5/Ad26) [15] is in Phase III clinical trials, and another
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from ReiThera (gorilla AdV) is in Phase I trials (https://www.who.int/publications/m/
item/draft-landscape-of-COVID-19-candidate-vaccines; 1–4) (accessed on 7 August 2022).

3.3.2. Replication Competent Viral Vectors

The gene encoding the SARS-CoV-2 spike protein can be introduced into the weakened
or vaccine strains of viruses to produce replication-competent vectors. Animal viruses that
do not multiply well and do not infect humans are occasionally employed. This method
may induce a more robust immune response due to the vector’s capacity to propagate to
some degree inside the vaccine recipient and the frequent triggering of a strong innate
immune response. Several of these vectors may also be administered directly to the mucosal
lining, leading to immune responses inside the mucosa. Two such vectors are being tested
in clinical trials (Phase I), i.e., one measles strain and another influenza strain. However,
several others are now being developed, including those employing the vesicular stomatitis
virus, i.e., VSV [16], horse pox, and Newcastle disease virus, i.e., NDV [17,18]. Interest in
NDV-based vectors stems from the virus multiplying to produce high titers in eggs. These
vectors can also be modified using the already-existing framework being used for influenza
virus vaccines. They are probably safe enough just to deliver intra-nasally, unlike measles
and the VSV vectors, which might produce mucosal immunity [1–4].

3.4. DNA Vaccines

A plasmid carrying the DNA encoding for virus proteins can be multiplied to obtain
enormous quantities in bacteria. This forms the basis for DNA vaccines. These plasmids
usually include the spike protein gene and mammalian expression promoters, which are
generated in the recipient of the vaccination. The capacity to produce in vast quantities in E.
coli and the high level of plasmid DNA stability are two of these technologies’ most signifi-
cant advantages. Furthermore, DNA vaccines frequently exhibit limited immunogenicity,
necessitating the use of delivery mechanisms to make them effective. This necessity con-
strains the utilization of delivery tools such as electroporation. Phase I/II clinical studies
for four DNA vaccine candidates against COVID-19 are ongoing (https://www.who.int/
publications/m/item/draft-landscape-of-COVID-19-candidate-vaccines; 1–4) (accessed
on 7 August 2022).

3.5. mRNA Vaccines

The development of vaccines against various infections might be significantly en-
hanced by recent developments that use mRNA for vaccine delivery. Lipid nanoparticles
are employed in these vaccines to safeguard the mRNA (encoding the virus S protein)
within the cellular milieu. Inside the host cells, translation occurs to produce the target
protein, the S protein, thus triggering a well-coordinated immune response. In clinical
studies, mRNA-based vaccines created by Pfizer-BioNTech and Moderna showed over 90%
effectiveness against the clinical illness caused by COVID-19. This strategy has several
benefits, including quick vaccine production (weeks) and the capacity to elicit a TH1 or
TH2 reaction. Studies are being conducted to evaluate the effectiveness of the presently
approved vaccine candidates in protecting against the COVID-19 variants in children and
determine the efficiency of booster shots that include the variants’ mRNA [1–4].

These vaccine approaches are relatively similar to other types of viruses known to
possess a faster mutation rate. For instance, in the case of the Influenza, the four major
strategies used for conventional vaccine approaches include inactivated, live attenuated,
recombinant, and cell-based vaccines. Inactivated vaccines, in particular, can induce a
strong humoral response with a predominance of IgG than IgA [19]. The live attenuated
vaccine strains are generated by incorporating the significant antigen-encoding genes
HA and NA from the genome of seasonal or circulating variants into the backbone of a
heat-sensitive weakened influenza virus [20]. These modified influenza viruses generate a
humoral immune response in the upper respiratory tract and also a cell-mediated immune
response [19]. The recombinant vaccine, such as Flublok, contains the HA antigens from
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seasonal influenza strains produced and purified in insect cells [21]. Flucelavax is an
inactivated vaccine that is produced by growing the virus in mammalian cells [22]. The
inactivated vaccine remains the popular choice for the influenza virus, but the seasonal vari-
ants have to be used for the vaccine preparation, which otherwise may lead to inadequate
protection [23]. In addition, the use of subunit vaccines such as DNA or mRNA-based
vaccines has been shown to boost the immune response to other vaccine candidates, thus
contributing to vaccine priming [24]. Recently, influenza vaccines have been modified to
specifically activate a specific set of immune cells within the host. These T-cell-targeted
vaccine candidates mainly consist of highly conserved epitopes with the potential to stimu-
late cytotoxic T cells. For example, various internal and surface proteins in the zoonotic
influenza virus contain epitopes that are reactive against T cells. A multimeric-001 vaccine
is another example. It has nine epitopes that are conserved in both the A and B strains of
the influenza virus [25].

Various vaccine strategies against SARS-CoV-2, along with their examples, have been
summarized in Figure 1.
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4. Vaccines Currently in Usage
4.1. BNT162b2

This vaccine is produced by Pfizer-BioNTech and contains the mRNA encoding the
viral S protein encapsulated inside the lipid nanoparticle and then administered to produce
a full-length spike protein. In the initial months following BNT162b2 immunization,
there is a significantly lower incidence of symptomatic and severe COVID-19, according
to randomized studies in kids and adults. In big placebo-controlled trials, the two-dose
primary sequence of the vaccine was a 95% confidence interval [CI] with 90.3–97.6 effectivity
at stopping symptomatic COVID-19 in adults age 16 or more [26] (https://www.fda.gov/
media/153714), (accessed on 19 September 2022), 100% (95% confidence interval [CI]
75.3–100) effective at trying to prevent COVID-19 in adults aged 12–15 years [27], and 91%
effective at preventing symptomatic COVID-19 in children aged 5 to 11 years (https://
www.fda.gov/media/153714), (accessed on 19 September 2022). Vaccine effectiveness was
91.7% in persons under 65 with obesity or other associated complications (95% CI 44.2–99.8).
Following a longer period of time, vaccine effectiveness stayed high but somewhat fell to
90% at 2 to 4 months and 84% at 4 to 6 months [27]. Among approximately 50,000 study
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participants over six months, just 1 of 30 serious infections (i.e., involving hypoxia, organ
malfunction, or critical illness) occurred in a vaccine recipient. The effectiveness of the
vaccination was 80.4 % (95% CI 14.1–96.7) in a short study involving kids aged six months
to four years, although the estimation was unclear due to the small number of cases
(https://www.fda.gov/media/159195) (accessed on 7 August 2022). Two participants—
both vaccination recipients who also had coinfections with other respiratory viruses—were
seen in the ER or hospitalized due to COVID-19.

The trial results in adults and adolescents are supported by observational data from
several nations after nationwide roll-outs of BNT162b2 [28–43]. Administration of BNT162b2
has greatly influenced the efficacy of avoiding admission to an intensive care unit, hospital-
ization, and mortality in adults and adolescents. Even though vaccination still significantly
lowers COVID-19-related hospitalizations in this age group, even with the contingency,
some observational evidence, though not all, suggests that vaccine usefulness in chil-
dren between 5 and 11 years may be lower than that among older adolescents. However,
it is uncertain how much of that difference is linked to decreased vaccine effectiveness
against the Omicron variant, which predominated shortly after the emergence of vac-
cines for younger kids [33,44–50]. The efficacy of vaccines declines with time and may
be reduced in preventing infection with specific SARS-CoV-2 variations, while protec-
tion against severe illness brought on by variants continues to be significant. These ef-
fectiveness results are in line with data from immunogenicity studies, which showed
BNT162b2 to elicit potent binding and to neutralize antibody responses with consider-
able age-related variability [26,51] (https://www.fda.gov/media/153714) (accessed on
7 August 2022). People over the age of 65 had responses that were typically lower than
those of younger participants but were on par with or higher than titers in convalescent
plasma. (https://www.fda.gov/media/159195,https://www.who.int/publications/m/
item/draft-landscape-of-COVID-19-candidate-vaccines) (accessed on 7 August 2022) Chil-
dren under five needed three shots (at a lower dose) to get the same level of neutralizing
antibodies as older people who only needed two doses. Following BNT162b2 vaccination
in adults, neutralizing antibody titers decreased over time; in one trial, men, those over 65,
and people with impaired immune systems saw more significant losses in neutralizing titers
for six months [52]. In comparison to activity against previously circulating strains, neutral-
izing activity is lower against the delta variation (B.1.617.2) [53–55] and still lower against
the omicron variant (B.1.1.529). According to preliminary findings published in a manu-
facturer’s news release, three doses of a low-dose BNT162b2 formulation caused antibody
responses in children aged six months to five years, compared to those reported in young
adults after two normal doses (https://www.pfizer.com/news/press-release/press-release,
(accessed on 7 August 2022) [1–4].

The virus-neutralizing antibodies are observed one month post-vaccination. The
waning of antibody titers is delayed even after six months of vaccination. However,
comparatively lesser activation of SARS-CoV-2 spike protein-specific CD4+ T cells is ob-
served [56].

The side effects are relatively more common after the second vaccination dose than the
first one. From 14 clinical studies with data available on the PubMed database, conducted
on approximately 10,000 patients, Dighriri et al., analyzed the relative percentage of various
side effects post-vaccination with BNT162b2. It was observed that 77% of people felt local
pain at the site of injection, 43% experienced fatigue, 39% shared muscular pain, 33% had
swelling at the injection site, and an equal percentage of people experienced a headache.
The less common symptoms included joint pain (25%), chills (18%), fever (18%), itching
(9%), lymphadenopathy (7%), nausea (7%) and diarrhea (6%) [57].

4.2. mRNA-1273

The first vaccine to be created against SARS-CoV-2 was this messenger RNA (mRNA)
vaccine created by Moderna. To make the total spike protein, the vaccine uses mRNA that
is given in lipid-based nanoparticles.

https://www.fda.gov/media/159195
https://www.fda.gov/media/153714
https://www.fda.gov/media/159195,https://www.who.int/publications/m/item/draft-landscape-of-COVID-19-candidate-vaccines
https://www.fda.gov/media/159195,https://www.who.int/publications/m/item/draft-landscape-of-COVID-19-candidate-vaccines
https://www.pfizer.com/news/press-release/press-release
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During the initial months of mRNA-1273 immunization, randomized clinical trials
in adults displayed a considerably lower incidence of symptomatic and severe infection
by SARS-CoV-2. The effectiveness of the two-dose main vaccine series in controlling
symptomatic COVID-19 conditions among individuals 18 years of age and older was 94.1%
(95% CI 89.3–96.8) in a significant placebo-controlled experiment [58]. The effectiveness
of the vaccination was 86.4% in people under 65. (95% CI 61.4–95.5). The efficacy of the
vaccine was 93.2% for symptomatic infection after a median follow-up of 5.2 months (9.6
versus 136.6 cases per 100 person-years with the placebo) and 98.2% for severe disease (i.e.,
with hypoxia, organ dysfunction, or acute illness; 2 versus 106 cases with the placebo) [59].
Although the estimates of impact were uncertain due to a few cases, limited trial data
also suggest that vaccination efficacy against symptomatic COVID-19 is higher in children
between 12–17 years (100%, 95% CI 28.9-non evaluable) and aged 6 to 11 years (69%, 95% CI
−131.4–95.8) (https://www.fda.gov/media/159189) (accessed on 7 August 2022). Even
though this estimation is primarily consistent with observational evidence on vaccination
effectiveness against omicron in adults, efficacy was lower (41.5%, 95% CI 23.8–55) in a
study of younger children that was conducted when the omicron variant was circulating.
None of the trials, including those in children, had any significant cases of COVID-19.

The trial results in adults are further supported by observational data assessing vacci-
nation efficacy [28,40,41,43,60,61]. Mainly, mRNA-1273 has been linked to a 90% or greater
vaccination efficiency in avoiding emergency room visits, hospital admissions, admission to
critical care units, and fatalities due to COVID-19 (1–4, https://www.who.int/publications/
m/item/draft-landscape-of-COVID-19-candidate-vaccines) (accessed on 7 August 2022).

The efficacy of vaccines declines with time and may be reduced in preventing infection
with specific SARS-CoV-2 variants, while protection against severe illness brought on by
variants continues to be significant. These effectiveness findings are in line with data
from immunogenicity trials that showed that people of all ages had strong binding and
neutralizing antibody responses to mRNA-1273 [62,63]. Immunogenicity is on par with
or greater than that observed in young adults in children or adolescents ages 6 months to
5 years (with a quarter-dose), 6 to 11 years (with a half-dose), and 12 to 17 years (with a
regular dosage) (https://www.fda.gov/media/159189) (accessed on 7 August 2022) [64,65].
Antibody titers gradually decrease after six months, although they continue to be high, and
neutralizing activity endures [66]. Compared to BNT162b2, vaccination with mRNA-1273
results in greater antibody titers following the second dose [67,68]. In comparison to activity
against previously circulating strains, neutralizing activity is lower against delta [54] and
significantly lower against Omicron variants. In a clinical trial involving various doses
of mRNA-1273 vaccine, the lower doses of mRNA-1273 vaccine were observed to induce
long-lived memory T cells, further enhanced by their cross-reactivity. In addition, the titer
of neutralizing antibodies was maintained in 88–100% of cases for a minimum of 6 months
after the second vaccine dose [69]. In a recent study which involved the comparison of the
induction of humoral and cellular responses after the administration of different vaccines,
similar findings were observed [70].

The Phase 3 clinical trial results showed immediate reactions at the injection site in
84% of the patients following the first dose of the vaccine, while 0.8% experienced delayed
reactions at the site of injection. The other symptoms included weakness, chills, headache,
nausea, sweating, and muscle spasms [71].

4.3. NVX-CoV2373

SARS-CoV-2 spike glycoproteins, along with a strong Matrix (M1) adjuvant, make up
this recombinant protein subunit vaccine produced by Novavax. NVX-CoV2373 exhibited a
90.4% (95% CI 82.9–94.6) effectiveness in avoiding symptomatic COVID-19 in seronegative
people between 18 and 84 years in a phase III efficacy trial conducted in the United States
and Mexico [72]. The four severe instances happened in the group receiving placebos. Due
to the modest number of illnesses in this category, the estimate of vaccination efficiency was
lower but less clear among individuals 65 years of age or older (78.6%, 95% CI −16.64 to 96).

https://www.fda.gov/media/159189
https://www.who.int/publications/m/item/draft-landscape-of-COVID-19-candidate-vaccines
https://www.who.int/publications/m/item/draft-landscape-of-COVID-19-candidate-vaccines
https://www.fda.gov/media/159189
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A phase III study in the United Kingdom [1–4,73] revealed similar vaccination effectiveness
(89.7%, 95% CI 80.2–94.6).

In the case of NVX-CoV2373, the neutralizing antibody titer peaked between 3.5
and 6 months after vaccination and was comparable to the mRNA vaccines, BNT162b2
and mRNA-1273, but higher than Ad26.COV2.S. The CD4+ T cells specific to the viral
spike protein as well as the CD8+ memory T cells were only detected in 10–50% of the
recipients [70].

The most common side effects include headache, fatigue, and malaise and persist for
2–3 days, while the systemic effects include myocarditis and pericarditis [73].

4.4. Ad26.COV2.S

This vaccine’s foundation is an adenovirus 26 vector that cannot replicate itself and
encodes a stabilized spike protein. Janssen/Johnson and Johnson develop it. Randomized
studies in adults have shown that after getting the Ad26.COV2.S vaccine, the chances of
getting COVID-19 symptoms and a severe case are much lower. At a median two-month
follow-up, a placebo-controlled trial showed that adults aged 18 and older were 66.9%
effective (95% CI 59.0–73.4) at trying to prevent moderately severe COVID-19 (which
also included patients with pneumonia, dyspnea, tachypnea, or at least 2 symptoms of
COVID-19). After 14 and 28 days post-vaccination, the vaccine’s effectiveness against
severe/critical infections (i.e., those accompanied by hypoxia, organ failure, or critical
illness) trended higher at 78–85%. Effectiveness estimates were 56.3 % (95% CI 51.3–60.8)
for at least moderate COVID-19 and 74.6% (95% CI 64.1–82.1) for severe/critical COVID-19
after a median of four months of follow-up [74]. Press reports claimed that a two-dose
series had superior success rates (75 and 100% against symptomatic and severe COVID-19),
but published study information is required to evaluate these claims rigorously [1–4,65].

A single dose of Ad26.COV2.S has been linked to vaccination effectiveness of 67–75%
against COVID-19-related emergency medical care and hospitalization and 83 percent
against COVID-19-related death [28,75,76]. Observational evidence analyzing vaccine
effectiveness broadly confirms the trial results. These effectiveness results are in line
with findings from immunogenicity studies that showed post-vaccination binding and
neutralizing antibody responses that coincided with but were somewhat below those in con-
valescent plasma [74,77]. In contrast, neutralizing antibody levels after mRNA vaccination
decrease over time (though remain higher than after Ad26.COV2.S) [78]. These neutral-
izing responses are relatively constant over eight months with both one- and two-dose
regimens [79]. In addition, there is still neutralizing activity against the Delta (B.1.617.2)
variation, but it is not as strong as it was against the Omicron (B.1.1.529) strains that
were circulating before (https://www.who.int/publications/m/item/draft-landscape-of-
COVID-19-candidate-vaccines) (accessed on 7 August 2022). In a comparative study, 64%
of the Ad26.COV2.S recipients showed detectable neutralizing antibodies after 2 months,
less than the mRNA vaccines. The presence of spike protein-specific CD4+ T cells was stable
for 6 months post-vaccination. The peak levels of these antigen-specific T cells were still
lower than the mRNA vaccines [70].

The side effects include breathing difficulties, chest and abdominal pain, thrombocy-
topenia and myocarditis [80].

4.5. ChAdOx1 nCoV-19/AZD1222

This vaccine was developed based on an adenovirus vector from a chimpanzee that
produces the spike protein. Two dosages are injected intramuscularly. The two doses should
be administered eight to twelve weeks apart, according to the World Health Organization
(WHO’s recommendations for the use of AZD1222).

Randomized adult studies show that the risk of COVID-19 with symptoms is much
lower in the first few months after vaccination. The vaccine’s effectiveness in avoiding
COVID-19 after a follow-up of two months in large placebo-controlled studies ranged from
70–76% (95% CI 54.8–80.6) after 14 days of receiving the second dose [81,82]. According

https://www.who.int/publications/m/item/draft-landscape-of-COVID-19-candidate-vaccines
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to further analysis of this experiment, receiving the second dose at 12 weeks or later was
linked to greater vaccination effectiveness than receiving it at less than six weeks (81 versus
55%) [81]. These results provide evidence in favor of a 12-week delay between the first and
second doses.

The trial results are also supported by observed data from several nations following
their nationwide roll-outs of ChAdOx1 nCoV-19/AZD1222, but, they do imply that efficacy,
even against severe infection, deteriorates with time [30,83]. These effectiveness statistics
are in line with data from immunogenicity trials, which showed that vaccination recipi-
ents had strong binding and neutralizing antibody responses [12,84,85]. In some people
who have received vaccinations, the delta and omicron variants elude immunological
responses [1–4,53,55] (https://www.who.int/publications/m/item/draft-landscape-of-
COVID-19-candidate-vaccines) (accessed on 7 August 2022).

The phase I/II clinical trial conducted on adults aged 18–55 followed the induction
of humoral and cellular immune responses after a single dose of ChAdOx1. The results
showed that CD4+ T cells produced IFN- and TNF-, which induced the Th1 response. The
antibodies produced were predominantly IgG1 and IgG3 classes. In addition, CD8+ T
cells of monofunctional, polyfunctional and cytotoxic natures were activated [86]. Another
study showed the induction of a stronger humoral and cellular immune response in people
who received theChAdOx1 first vaccine dose of ChAdOx1 and a booster dose of BNT162b2,
also referred to as the heterologous vaccination, as compared to the patients receiving both
doses of the homologous vaccine [87].

The side effects include both local and systemic adverse reactions such as pain,
swelling, itching, diarrhea, joint pain, and chills [87].

4.6. Ad5-Derived Vaccine (CanSino Biologics)

This vaccine is built on an adenovirus 5 vector that produces the spike protein but is
replication-incompetent. It is administered intramuscularly as a single dose. Pre-existing
immunity to adenovirus 5 and older age was linked in early clinical studies to lower titers
of binding and neutralizing antibodies after vaccination; this may restrict its applicability
in areas where pre-existing immunity is common [10]. A randomized phase III study
found that the vaccination was effective in preventing symptoms of infection in 57.5%
(95% CI 39.7–70.0) of cases and in preventing severe illness in 91.7% (95% CI 36.1–99.0)
of patients [88]. This vaccination is offered in China and several other nations, such as
Pakistan and Mexico (1–4, https://www.who.int/publications/m/item/draft-landscape-
of-COVID-19-candidate-vaccines) (accessed on 7 August 2022).

In a phase II clinical trial conducted on 604 volunteers, neutralizing antibodies were
detected in 95% of individuals and the production of Th1-specific IFN-γ was observed in
90% of individuals [10]. In a recent Phase 4 trial, the heterologous booster dose of Ad5-nCov
or Convidecia in people with two prior doses of CoronaVac elicited better neutralizing
antibody titers compared to the homologous booster doses of CoronaVac [89].

The most common side effects include local reactions such as pain (54% of vaccine
recipients) and systemic reactions include fever (46% of vaccine recipients), fatigue (44% of
vaccine recipients), headache (39% of vaccine recipients) and muscle pain (17% of vaccine
recipients) [10].

4.7. Gam-COVID-Vac/Sputnik V (Gamaleya Institute)

Two replication-deficient adenovirus vectors are employed to produce a full-length
spike glycoprotein in a vaccine candidate developed by Gamaleya Institute. Adenovirus
26 vector is the first dose of the vaccine administered intramuscularly, and an adenovirus
5 vector boosting dose is administered 21–23 months later (https://sputnikvaccine.com/
newsroom/pressreleases), (accessed on 19 September 2022). This vaccination is accessible
in Mexico as well as in a number of other nations, including Russia. At the time of
the second dose, this vaccine had 91.6% (95% CI 85.6–95.2) effectiveness in avoiding
symptomatic COVID-19, according to an interim analysis of a phase III trial [15]. The

https://www.who.int/publications/m/item/draft-landscape-of-COVID-19-candidate-vaccines
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placebo group contained all 20 cases of severe COVID-19 that manifested 21 days following
the initial treatment. Local and systemic flu-like symptoms occurred 15% and 5% more
frequently in the vaccination group, respectively. No major side effects were linked to
the vaccination (1–4, https://www.who.int/publications/m/item/draft-landscape-of-
COVID-19-candidate-vaccines) (accessed on 7 August 2022).

A longitudinal study conducted on 118 volunteers showed the stable sustenance of
neutralizing antibodies against the VOCs (α, β, γ & δ) and a local VOI over 6 months.
Additionally, the cross-neutralizing activity shows a significant reduction in the escape
of these VOCs to the neutralizing antibodies (89). In a recent study conducted on non-
human primates, the intranasal delivery of Sputnik V induced a strong local and systemic
immune response. The production of marked levels of neutralizing antibodies in the serum,
proliferation of antigen-specific CD4+ & CD8+ T cells and a proinflammatory cytokine
response protected against the severe lung pathophysiology induced by SARS-CoV-2
which may lead to sterilizing immune response [90].

The side effects include injection site pain, fatigue, headache, body ache, fever, drowsi-
ness, and chills [91].

4.8. WIV04 and HB02 (Sinopharm)

These inactivated, whole-virus vaccines, each containing an adjuvant like aluminium
hydroxide, are developed using two COVID-19 isolates obtained from China. An alterna-
tive name for HB02 is BBIBP-CorV. Each of them is administered intramuscularly twice,
28 days apart. In a phase III efficacy trial, vaccination effectiveness for WIV04 and HB02,
when compared to an alum-only placebo, was assessed to be 73% (95% CI 58–82) and 78%
(95% CI 65–86), respectively [92]. There were just two severe instances, both in the placebo
group. Similar frequencies of systemic and injection site responses were seen in all three
groups (eg, pain in 20–27%, headache in 13%, fatigue in 11%). China and a few other
nations, such as Hungary and the United Arab Emirates, have access to these vaccina-
tions (1–4, https://www.who.int/publications/m/item/draft-landscape-of-COVID-19
-candidate-vaccines) (accessed on 7 August 2022).

In a recent cohort-based study conducted in Pakistan, the titers of neutralizing anti-
bodies after two doses of the BBIBP vaccine were lower than those induced by the natural
SARS-CoV-2 infection. However, vaccine administration in people with prior exposure to
SARS-CoV-2 significantly increases the neutralizing antibody titers [93]. In another study
conducted in Thailand, the efficacy of heterologous booster doses of mRNA (BNT162b2 or
mRNA-1273) or recombinant adenovirus-based vaccine (AZD122) on BBIBP-CorV-primed
people was assessed. When patients who had received two doses of BBIBP-CorV were
given a heterologous booster dose, the resulting neutralizing antibodies inhibited the delta
and omicron variants by 90% and 70%, respectively, in addition to stronger IFN- production
of antigen-specific CD4+ T cells [94].

The common side effects of the Sinopharm vaccine after the first dose are pain at
the injection site, headache, and fatigue. The adverse reactions after the second dose are
lethargy, fatigue, and tenderness in both males and females [95].

4.9. CoronaVac (Sinovac)

This inactivated COVID-19 vaccine was created in China and contained an aluminium
hydroxide adjuvant. Two intramuscular doses of the vaccine are administered, separated
by 28 days. The effectiveness of the vaccination was 83.5% (95% CI 65.4–92.1) according
to preliminary findings of a phase III study conducted in Turkey [96]; however, smaller
trials from other nations have also indicated higher efficacy rates [97,98]. A study in Brazil
found lower vaccine effectiveness among adults older than 70 years in the context of the
prevalent Gamma variant (47, 56, and 61 percent against COVID-19, hospitalization, and
death, respectively [99]. The observational survey in Chile, which included over 10 million
participants, estimated vaccine effectiveness to be 70% for trying to prevent COVID-19 and
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86–88% for preventing hospitalization or death [100]. China and a few other nations, such
as Chile, Mexico, Brazil, Indonesia, and Turkey, have access to this vaccine [1–4].

The vaccine induced neutralizing antibodies and virus-specific T cells in a gradual
manner, reaching a peak after the four-week booster vaccine dose. These T cells showed the
ability to neutralize the VOCs delta and omicron variants in phase III clinical trials [101,102].

The side effects of CoronaVac are similar to the Sinopharm vaccine and include muscle
pain, diarrhea, and fatigue subsiding within 48 h [103].

4.10. Covaxin (Bharat Biotech/Indian Council of Medical Research)

Covaxin is a virus-inactivated vaccine (also known as BBV152) developed jointly by
Bharat Biotech and ICMR in India. It contains aluminium hydroxide and a toll-like receptor
agonist adjuvant. It was created and is now being utilized in India. Two intramuscular
injections are administered, separated by 29 days. In a randomized experiment, the vacci-
nation’s effectiveness against COVID-19 symptoms was 78% (95% confidence interval [CI]
65–86); one instance of severe COVID-19 infection occurred in the vaccinated group in com-
parison to 15 cases in the placebo group [104]. With the exception of one case of immune
thrombocytopenic purpura, no serious side effects were linked to the immunization [1–4].

In a recent study, the persistence of humoral and cellular immune responses was
followed up to six months post-vaccination. The antigen-specific CD4+ T cells producing
numerous cytokines were detected in 85% of individuals, while the CD8+ T cells were
detected in 50% of individuals. It was also found that the central memory T cells stayed
around for up to six months after a vaccination [105].

The phase I and phase-II clinical trials presented side effects such as nausea, chills,
body ache, and fatigue with no severe adverse reactions [104].

4.11. ZyCoV-D

The first DNA COVID-19 vaccine to be made accessible was authorized in August of
2021 in India, developed by Zydus Cadila [106]. A high-pressure stream from a needleless
device administers the vaccination subcutaneously. In a study with 28,000 people aged
12 or older, the vaccine’s effectiveness against symptomatic COVID-19 was 67% (95% CI
47.6–80.7) after three doses spaced 28 days apart. In the placebo group, there was just one
severe incidence of COVID-19 [1–4,107].

After the first dose of ZyCoV-D, there were a few minor side effects in the Phase 3
clinical trials, but the next doses went well [107].

5. Evolution of SARS-CoV-2-Alpha, Beta, Delta, Omicron, Their Discovery, Infectivity

The recently found variants of SARS-CoV-2 have been classified as either the Variants
of Concern (VOCs), which include the Alpha, Beta, Gamma, and Delta variants, or the
Variants of Interest (VOIs), which include the Eta, Iota, Zeta, and Epsilon variants. The
Omicron variant is also considered to be a VOC [108,109].

The transmission rate was greatest in the alpha variant case after rigorous analysis
of the evolutionary mechanisms, regional spread and distribution pattern, transmission
trends, and diversity of mutational events among all the emerging viral variants [110].
Numerous investigations claim that mutations in the S protein are the most concerning
variations in the virus because the main goal of vaccinations is to induce antibodies against
the S protein’s components [110,111]. As a matter of fact, five VOCs have been identified in
numerous studies based on infection severity and transmission potential owing to several
mutations or amino acid changes [109,110,112–114]. According to studies looking at the
new COVID-19 variants, a higher rate of mutations in S protein was observed, which may
lead to structural changes that reduce the vaccine’s effectiveness (80–82, 85–87).

The different variants of SARS-CoV-2 were detected in various locations, including
the alpha variant (UK), beta variant (South Africa), gamma variant (Brazil), mu variant
(Colombia), lambda variant (Peru), epsilon variant (California), which are termed the
variants of concern (VOCs) [109,112–114]. As previously mentioned, the mutations may
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change how the receptor binding domain (RBD) within the S protein interacts with the
human ACE2 receptor, thus circumventing the effect of employed vaccines and changing
the pace of viral infection [114,115]. The host alterations may be facilitated by the altered
interaction of the virus with ACE2, further increasing the viral transmissibility [114]. For
instance, in February, following the start of the pandemic, a single amino acid variation
(D614G) in the spike (S) protein was discovered, enhancing the transmission ability of
the mutated virus in Europe [110,113,115]. By May 2020, another amino acid variation,
G614, displayed increased transmissibility by 70% [115]. Therefore, the efficacy of current
vaccines highly depends upon the ongoing mutation in viral S protein [4,112,113,116,117].

5.1. Alpha and Beta Variants

The Alpha variant from the UK displayed about 14 mutations in the RBD site, with a
few of them causing the deletion of three amino acids, thus increasing the transmission
ability of the virus by 50%. The beta variant from South Africa and gamma variant from
Brazil and the UK harbor two extra mutations leading to significant changes within the
S protein. These mutations appear to make the virus more transmissible. In the virus’s
infection and transmission ability, three mutations, specifically P681H, N501Y, and H69-V70
del observed in the alpha variant, are fascinating [114]. Additionally, the N501Y mutation
in the RBD domain is seen in both the Alpha and Beta forms, increasing its affinity for the
human ACE2. It also enhances the ability of the virus to get transmitted and escape from
the host defense mechanisms [114].

5.2. Gamma Variant

The Gamma variant was mainly found in Brazil in 2020, having 12 variations in the
S protein, with 3 of them located in the RBD region. This variant is 1.7–2.4 times more
contagious and 1.2–1.9 times deadlier [118,119].

5.3. Delta Variant

The Delta variant (VUI-202012/01) was first detected among Indian travelers returning
from Tanzania and South Africa (85). The Indian counterpart of the Delta variant possesses
two point mutations, Leu452Arg and Glu484Gln. Of these two mutations, Leu452Arg
facilitates the ability of the virus to connect with ACE-2 receptors in the host through its
spike protein. L452R promotes viral proliferation and can elude antibodies [109]. It should
be noted that mutations within the RBD region (L452R and E484Q) and the furin cleavage
site (P681R) may have caused the increase in ACE2 binding and also enhanced the rate of
S1-S2 cleavage, which would have improved transmissibility (86).

5.4. Omicron Variant

The first occurrence of the Omicron variant was verified in November 2021 in South
Africa and Botswana [120–124]. The latest Omicron variant shows over 50 mutations, half
located in the S protein’s RBD region [109,124]. Only a handful of these mutations had
previously been found [124]. The Omicron variant features a deletion in the spike protein
(position 69–70), similarly to the Alpha variant; three important mutations that provide
immunological escape are found in the Beta and Gamma variants [124]. Additionally, the
Centers for Disease Control (CDC) discovered at least 15 essential changes in the S protein
that may have improved the viral ability to infect, particularly when compared to the lethal
Delta variant [121,124]. This variant is more dangerous because of the several mutations at
the furin cleavage site and RBD of the S protein, which have also been detected in the delta
variant [109,114,124]

Recent studies have shown that single nucleotide variation exists in the SARS-CoV-2
viruses within the same host, termed the intrahost Single Nucleotide Variations (iSNVs).
These variations emerge randomly and may or may not get fixed within the host. If some
of these variations are fixed, they get transmitted within the population, and if they do not
get fixed, they may lead to the generation of genetically diverse viral populations. The
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fixation of these variations may be either random or stochastic [125] or involve deterministic
components [126]. The genetic characteristics of these variations have been characterized
in COVID-19 patients [127]. The iSNV analysis uses deep viral genome sequencing of
the clinical samples obtained from COVID-19 patients. The non-synonymous variations
are commonly observed in the iSNV pool but are less common at the single nucleotide
polymorphism (SNP) level. This indicates the selection of a few mutations (negative
selection) from a pool of iSNVs generated (positive selection) within the hosts [128]. The
mutations associated with all the existing SARS-CoV-2 variants are highlighted in Table 3.

Table 3. Mutations associated with SARS-CoV-2 variants.

Sr. No. Variant Place and Year
of Discovery

No. of Mutations in
Viral Genome

Most Significant
Genetic Mutations Phenotypic Effect

1. Alpha (B.1.1.7) United Kingdom
September 2020 17

His69_Val70 deletion, Tyr144
deletion, Asn501Tyr, Ala570Asp,
Asp614Gly, Pro681His, Thr716Ile,

Ser982Ala, and Asp1118His

Enhanced affinity
towards the ACE-2
receptors leading to

increased viral adhesion
and invasion of host cells

2. Beta (B.1.351) South Africa May
2020 8

Leu242_Leu244 deletion,
Asp80Ala, Asp215Gly, Lys417Asn,

Glu484Lys, Asn501Tyr,
Asp614Gly, and Ala701Val

Enhanced binding affinity
of S protein with hACE-2

receptors leading to
higher transmission risk

3. Gamma (P.1) Brazil November
2020 12

Leu18Phe, Thr20Asn, Pro26Ser,
Asp138Tyr, Arg190Ser, Lys417Thr,

Gly484Lys, Asn501Tyr,
Asp614Gly, His655Tyr, Thr1027Ile,

and Val1176Phe

1.7- to 2.4-fold more
transmissibility and 1.2 to

1.9 times in increased
mortality rate

4. Delta (B.1.617.2) India October 2020 9

Glu156_Phe157 deletion,
Thr19Arg, Gly142Asp, Arg158Gly,

Leu452Arg, Thr478Lys,
Asp614Gly, Pro681Arg,

and Asp950Asn

Increased viral replication
and transmission ability

causing a higher infection
rate in non-

vaccinated people

5. Omicron
(B.1.1.529)

India and South
Africa, November

2021

97 (34 mutations in
BA.1 lineage,

35 mutations in
BA.1.1 lineage, and

28 mutations in
BA.2 lineage

Gly339Asp, Asn440Lys,
Ser477Asn, Thr478Lys,
Gln498Arg, Asn501Tyr,

Lys417Asn, Gly446Ser, Glu484Ala,
Gln493Arg, Gly496Ser,

Gln498Arg, and Asn501Tyr

Increased the binding
affinity to hACE-2
making it highly

contagious but less severe

7. Lambda (C.37) Peru, August 2020 7

Gly75Val, Thr76Ile,
Arg246_Gly252 deletion,
Leu452Gln, Phe490Ser,

Asp614Gly, and Thr859Asn

Enhanced transmissibility
thus increasing prevalence

and morbidity.

6. Effect of Current Vaccines on COVID-19 Variants

The ChAdOx1-S/AZD1222 vaccine, the mRNA-1273 vaccine, the mRNA-BNT162b2
vaccine, the JNJ-78436735 vaccine, and the NVX-CoV2373 vaccine are now the most pop-
ularly marketed vaccines [3,4,129]. BNT162b2 and mRNA-1273 were shown to induce
neutralizing antibodies with reduced efficiency against the Alpha variant. In contrast, NVX-
CoV2373 was established to impart 85.6% effectiveness in the UK population, whereas
60% efficacy was observed in the South African population [108,111,130]. Ad26.COV2.S
vaccine displayed 64% efficacy among the Brazilian inhabitants, and 52% efficiency among
the South African inhabitants against B.1.351 variants (N501Y.V2 lineage, made up of three
receptor-binding domain mutations and five additional N-terminal domain mutations),
and NVX-CoV2373 indicated 49% efficacy in the South African population [108]. The P.1
variation has been susceptible to the Pfizer/BioNTech BNT162b2 vaccine, even though
this variant can evade inhibition by producing neutralizing antibodies [117]. The vaccines
from Pfizer-BioNTech, Moderna, Oxford/AstraZeneca, and Sinovac are 85%, 78%, less than
70%, and 66% effective against gamma and delta forms, respectively [131]. The BNT162b2
mRNA vaccine has displayed the ability to cross neutralize a few of the circulating Delta
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variants, while the effectiveness of Ad26.COV2.S against this variant lowered from 66.9 to
60% after two doses [110]. While the Pfizer and AstraZeneca vaccine candidates displayed
less efficiency in eliminating this variant compared to the Alpha variant, the Moderna
vaccine showed an efficacy of about 94.1% against the Delta variant compared to BioNTech
and the Johnson and Johnson vaccines [110,132]. The Oxford/Astra Zeneca vaccine candi-
date was nine times less effective than the RNA vaccine. However, the Biontech/Pfizer and
Moderna mRNA vaccines were able to lower the infectivity of the Alpha versions [4,133].
The beta variants demonstrated the vaccine immunization escape technique employing
convalescent plasmas in multiple instances [4,134]. A phase-III trial of Ad26.COV2.S with
40,000 participants showed that it worked almost 66.9% of the time [114].

Based on the experimental observation, it can be speculated that the variant of concern
may eventually resist the neutralizing effect of antibodies induced by vaccines currently
in use [114]. For instance, in the case of the Moderna or Pfizer vaccines, a 2.7–3.8-fold
reduction was observed in the Alpha variant [114,121,133]. The Beta variant was more
resistant to vaccination than the Alpha variant [121,135]. The Pfizer vaccine’s effective-
ness against the Delta variant dropped from 94 to 64% [110]. In South Africa, the vaccine
effectiveness against the omicron variant was noted to be 70%, while it was nearly 93%
against hospitalized COVID-19 patients exposed to the Delta variant [122]. This demon-
strated the decreased vaccine protection against the Omicron variants. The provision of a
booster dose of vaccine can supplement this loss of vaccine efficacy [123]. More so than
all other current VOCs and VOIs, the massive number of mutations inside the Omicron
variant led to a considerable decrease in the neutralization of viral S protein using hu-
man convalescent sera from patients infected with COVID-19 [123]. This variation was
notable for exhibiting an enhanced propensity for host immunological escape, which is
concerning given the current Omicron infection [121]. Even though clinical trials are still
being conducted, the current vaccines’ effectiveness is widely acknowledged worldwide.
Vaccines were developed to lessen the severity with which disease symptoms develop and
to decrease the rate of hospitalization. As a result, booster doses are necessary that could
extend the duration of the neutralizing antibodies in hosts. In 87 people between 1.3 and
6.2 months post-COVID-19 infection, the humoral memory response evaluation displayed
that IgM and IgG titers against the RBD decreased over time [136]. The memory B cells
specific for RBD were shown to have an unexpected property of clonal turnover, somatic
hypermutation, resistance to changes in RBD, and an enhanced potency 6.2 months after
infection [136–138]. Optimizing vaccination schedules and boosters as well as considering
the effects of other protective measures such as wearing masks, social distancing, etc., can
help sustain such efficacy [137,139]. Additionally, while the Omicron form may escape the
immune protection induced by double vaccine doses, it can be circumvented by the booster
vaccine doses [92].

7. Need for a Broad-Spectrum Vaccine against COVID-19 Variants

Given the rapid emergence of COVID-19 variants and the limitations of existing
therapeutic strategies to control their spread, there is a strong need to develop broad-
spectrum vaccine formulations or a panvaccine that may protect against all the existing
and upcoming variants of the pathogen. For example, an ideal broad-spectrum therapeutic
strategy should be equally effective against all or most existing variants of SARS-CoV-2. In
addition, it should be able to induce both humoral as well as cell-mediated components of
the adaptive immune response. Finally, it should also lead to the generation of memory
responses against these variants. In this context, various researchers have recently shifted
their focus to developing such multitargeted therapeutic strategies as discussed below.

7.1. Nanoparticle-Based Vaccine Formulations

The principle behind this technique was to build a nanocage consisting of engineered
proteins that provide a tagging site for the viral proteins in the form of surface appendages.
These nanocages may be modified to display proteins from only one or multiple viruses
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and may be termed homotypic or mosaic nanoparticles. Upon administration into the host,
these engineered nanocages show viral antigenic fragments to the immune system and elicit
the production of specific humoral and cell-mediated adaptive immune responses [140].
For example, in a recent study, about 8 different coronaviruses were chosen that have either
caused a pandemic or have the potential to do so. The spike protein’s receptor-binding
domain is made up of small pieces of protein that were put together on a nanoparticle
scaffold [140].

In another study, the spike protein of COVID-19 was encapsulated within a ferritin
nanoscaffold and liposomes. Ferritin monomers undergo self-assembly to generate scaffold
systems that have been used as adjuvant or drug delivery systems [141]. When introduced
in primates, this new vaccine, termed Spike Protein Feritin Nanoparticles Vaccine (SpFN),
induced both virus-specific B and T cells. The serum obtained from vaccinated animals
showed high titers of neutralizing antibodies effective against various COVID-19 variants.
Two doses of SpFN (50 ug) within a 28-day interval between them induced a TH1 response
and the generation of neutralizing antibodies against the wild-type viral strain and its
variants. The induction of humoral and cell-mediated immune responses inhibited virus
replication in the upper and lower respiratory tracts in non-human primates [142].

7.2. Antibody-Based Vaccine Formulations

The neutralizing antibodies isolated from the convalescent sera of COVID-19 patients
have been recently shown to neutralize many of the existing variants of SARS-CoV-2, thus
being termed the Broadly Neutralizing Antibodies (bNAbs).

Recently, a combination of 30 antibodies was characterized to offer protection against
all the variants of SARS-CoV-2 and the other coronavirus types found in other animals such
as bats and pangolins. The antibodies were isolated from 107 COVID-19 patients who had
developed hybrid immunity and showed a significant ability to bind to the spike proteins
of both SARS-CoV-1 and 2. These antibodies targeted the conserved protein segments
common to all the coronaviruses. When mice were given these antibodies and then infected
with SARS-CoV-1 and 2, they had less virus in their lungs than mice that had not been
given these antibodies [143].

In one of the studies, the convalescent sera collected post-vaccination with the Ad5-
nCoV vaccine was used to obtain bNAb against the SARS-CoV-2 variants. A monoclonal
antibody termed ZWD12 exhibited efficacy against the Alpha, Beta, Gamma, Kappa, Delta,
and Omicron variants through the blockage of the binding of the spike protein with the
ACE2 receptor. This mAb provided complete protection against all the variants of SARS-
CoV-2 in a transgenic mouse model [144]. In another study, 1737 mAbs were purified
from the convalescent sera of a 17-year-old COVID-19 patient [145]. From this pool of
mAbs, a mAb termed DH1047 showed broad neutralization activity against not only
the SARS-CoV-2 but also the other pre-emerging bat coronaviruses and their variants in
mice [146]. A mAb known as SP1–77 was obtained from a mouse model in which the B cell
repertoire is generated via V(D)J recombination between a human light and heavy chain.
This antibody neutralizes all the known SARS-CoV-2 variants through the inhibition of
membrane fusion [147].

7.3. mRNA-Based Vaccine Formulations

Recently, a broad-spectrum mRNA vaccine, RQ3013, was developed to protect against
the variants of concern. This vaccine consists of mRNAs modified by the incorporation of
pseudouridine and encapsulated in liposomes—these mRNAs code for viral spike proteins
that harbour all the mutations detected in VOCs. The vaccine has shown to induce immune
responses in various animal models, including primates, hamsters and mice, with high
antibody titers that can neutralize the wild type and the α, β, γ, δ and omicron variants of
COVID-19. Two doses of the mRNA vaccine showed protection of the respiratory tract from
getting infected by the variants as mentioned above. In addition, the vaccine formulation
was found to be safe and well tolerated in these animal models [148].
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7.4. CRISPR Based Vaccine Formulations

CRISPR-Cas13d has shown broad-spectrum inhibition activity against various COVID-
19 variants. This inhibition depends upon the cRNA co-localization with Cas13d and the
target RNA of the COVID-19 variant. Cas13d can also enhance the anti-viral activity of
small-molecule inhibitors. Using liposome-based RNA delivery, Cas13d can inhibit the
COVID-19 variants in human airway epithelium cells. This strategy can work well with
both the vaccines and the drugs that fight viruses [149].

7.5. Circular RNA-Based Vaccine Formulations

Recently, a circular RNA-based vaccine induced the production of neutralizing anti-
bodies as well as virus-specific T cells. The circular RNA encodes for the RBD region of the
virus spike protein and showed robust protection upon administration in rhesus monkeys
and mice. The vaccine sustained antigen production, provided higher and longer-term
protection against delta and omicron variants, and could also boost the effects of other
vaccines [150].

7.6. siRNA-Based Vaccine Formulations

siRNAs show great potential in constructing a broad-spectrum vaccine formulation,
as they target mRNA and can be artificially modified to target multiple viruses simulta-
neously. It consists of dsRNA, 20 nucleotides long, which, on entering the host cytosol,
modulates the expression of the target gene depending on the sequence complementarity
with mRNA [151]. The delivery of naked siRNA into pulmonary cells has been tried
previously through the inhalation route in mice [152–154]. In 2010, it was extended to
inhibit syncytial virus replication through the intranasal administration of naked siRNA
(ALN-RSV01) through the spray. The treatment showed a significant reduction in RSV
prevalence in clinical trials (122) and reduced the risk of developing pulmonary complica-
tions post-infection in patients with lung transplants [155].

These results point out that such a siRNA delivery system could also be applied against
all the variants of COVID-19 by constructing siRNA that could target a region conserved in
all the variants. Recently, a modified siRNA preparation C6G25S was administered using
the aerosol mode to inhibit SARS-CoV-2 variants effectively. This vaccine inhibited all the
variants at picomolar concentrations and prevented generating and releasing viral progeny
in the lungs. Moreover, it could decrease the viral load by 96% with a concomitant decrease
in the virus-induced pulmonary damage, thus providing a practical approach to combat
the SARS-CoV-2 variants [156].

The recent approaches aimed at developing a broad-spectrum vaccine against the
existing SARS-CoV-2 variants have been summarized in Figure 2.
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