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Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive adult primary brain

cancer, with <10% of patients surviving for more than 3 years. Demographic and clinical fac-

tors (e.g. age) and individual molecular biomarkers have been associated with prolonged

survival in GBM patients. However, comprehensive systems-level analyses of molecular

profiles associated with long-term survival (LTS) in GBM patients are still lacking. We pres-

ent an integrative study of molecular data and clinical variables in these long-term survivors

(LTSs, patients surviving >3 years) to identify biomarkers associated with prolonged sur-

vival, and to assess the possible similarity of molecular characteristics between LGG and

LTS GBM. We analyzed the relationship between multivariable molecular data and LTS in

GBM patients from the Cancer Genome Atlas (TCGA), including germline and somatic

point mutation, gene expression, DNA methylation, copy number variation (CNV) and

microRNA (miRNA) expression using logistic regression models. The molecular relation-

ship between GBM LTS and LGG tumors was examined through cluster analysis. We iden-

tified 13, 94, 43, 29, and 1 significant predictors of LTS using Lasso logistic regression from

the somatic point mutation, gene expression, DNA methylation, CNV, and miRNA expres-

sion data sets, respectively. Individually, DNA methylation provided the best prediction per-

formance (AUC = 0.84). Combining multiple classes of molecular data into joint regression

models did not improve prediction accuracy, but did identify additional genes that were not

significantly predictive in individual models. PCA and clustering analyses showed that GBM

LTS typically had gene expression profiles similar to non-LTS GBM. Furthermore, cluster

analysis did not identify a close affinity between LTS GBM and LGG, nor did we find a signif-

icant association between LTS and secondary GBM. The absence of unique LTS profiles

and the lack of similarity between LTS GBM and LGG, indicates that there are multiple

genetic and epigenetic pathways to LTS in GBM patients.
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Introduction
Glioblastoma multiforme (GBM) is the most frequent malignant form of primary brain cancer
in adults. The median survival time for GBM patients is approximately 14 months with inten-
sive multimodal therapy that includes surgical resection, chemotherapy, and radiotherapy [1]
after initial diagnosis. GBM can develop both de novo or via progression from primary low
grade glioma (LGG). A small proportion of patients survive for exceptionally long periods of
time; for example, fewer than 10% of GBM patients survive more than 3 years [2–4]. Therefore,
studying the clinical and molecular characteristics of these rare instances of long-term survival
(LTS) among GBM patients may provide insights into both the molecular basis of GBM pro-
gression and identify potential new prognostic biomarkers.

Several patient characteristics like age, performance status and tumor localization have been
identified as predictors of survival time [4–7]. However, many studies have often attributed the
causes of LTS in GBM to erroneous histopathological diagnosis (i.e. misidentification of low-
grade gliomas as GBM) or as statistical anomalies [8–10]. With advances in microarray and
sequencing technologies, associations of molecular markers such as mutations, gene expression
levels, DNA methylation states, and microRNAs with LTS tumors have been reported [2, 3,
11–21]. Using these techniques,MGMT hypermethylation and mutations in isocitrate dehy-
drogenase (IDH1) have been the most frequently identified genomic marker of improved
patient response to chemotherapy and therefore longer patient survival [12, 22, 23]. Unfortu-
nately, many of these studies have only independently considered a single class of molecular
marker, so that integrative studies of multiple types of molecular marks specifically associated
with LTS are still lacking. In [21], the transcriptional profiles of 7 LTS patients were compared
to non-LTS, their study found no association between LTS and transcriptional subtype. The
analysis in [21] was qualitative; there have been no model-based analyses integrating different
classes of genomic data to systematically determine whether LTS cases simply represent
extreme outliers of a distribution defined by what is effectively a single pathology, or, alterna-
tively, if they represent a biologically distinct class of GBMs with unique genomic, epigenetic,
and phenotypic characteristics. Similarly, other analyses (e.g. [24]) have identified correlations
between genomic alterations and GBM patient survival times, the analysis and markers were
not specific to LTS patients.

If LTS cases do have unique molecular characteristics among GBMs, there is also the poten-
tial for similarity between LTS GBM and LGG at the molecular level. There are two reasons to
seriously investigate the hypothesis that LTS GBMs share molecular profiles with LGG. First, it
is often suggested that many LTS GBMs are misdiagnosed instances of LGG. Second, the best-
known genomic predictors of improved responses to temozolomide (TMZ) chemotherapy are
mutations in IDH1 and methylation of theMGMT promoter, which are themselves frequently
associated with secondary GBM (those that have progressed from LGG, as opposed to de novo
GBM [25]). These and similar observations suggest that secondary GBMs may retain addi-
tional genomic traits and have clinical features that are more typical of LGG. We will determine
whether this is indeed the case, and whether these secondary GBMs are also significantly char-
acterized by LTS.

In this study, we leverage 6 types of molecular data from The Cancer Genome Atlas
(TCGA) GBM samples, including germline and somatic point mutation, gene expression,
DNAmethylation, copy number variation (CNV) and microRNA (miRNA) expression data.
We use machine learning to identify molecular markers characteristic of LTS in GBM, and
construct integrative models that incorporate multiple sets of molecular profiles that are jointly
predictive of LTS when combined with clinical and demographic data. We also explore
whether LTS cases of GBM have molecular characteristics typical of LGG by comparing the
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similarity of LTS tumor genetic profiles to LGG. The results of our analyses have important
implications for our understanding of the molecular pathology of GBM, as well as providing
insight into the design of novel prognostic and therapeutics indicators.

Material and Methods

Classification of LTS Phenotypes
Clinical and demographic data describing patient age at initial diagnosis, gender, ethnicity/
race, treatment history, vital status and follow-up/survival times were collected from TCGA
[26] (Table 1). We used Kaplan-Meier survival analysis to build survival curves and identify
LTS patients. In keeping with criteria for LTS used in the clinical literature (e.g. [2–4]), we used
a three-year threshold survival time, regardless of vital status, in order to classify patients as
LTS. Actual survival times were not used in the analysis, only the binary LTS/non-LTS classifi-
cation. Only patients with documented survival times of less than 3 years were considered to be
non-LTS patients in our study; patients with uncertain status beyond the 3 year point were
excluded. For comparison, a more stringent cutoff of 1615 days (4.5 years, defining the upper
5% survival time in TCGA’s GBM data set) was also applied as an alternative criterion to clas-
sify patients as LTS and non-LTS. We also considered GBM cases with a prior history of LGG
as a separate class of data, i.e. these secondary GBMs represent a set of patients who, in contrast
to most GBM cases, have likely previously received chemotherapy and/or radiation therapy for
the earlier cancer. Both treatment types have the potential to induce distinct genetic and epige-
netic profiles.

Genomic data processing
All genomic/molecular data, including exome sequences, germline mutations, probes for
microarray gene expression, DNA methylation, CNV and miRNA expression were retrieved
from TCGA for both GBM and LGG patients. The platforms and levels of data are summarized
in Table 2. Somatic point mutations were called from the whole exome bam files using the
pipeline described in [27], where SomaticSniper [28] was used to call mutations, the output
was filtered for read quality with a custom Python script. Somatic point mutations were classi-
fied as missense, nonsense, silent, etc. using snpEff [29]. Non-silent somatic mutations that

Table 1. Summary of clinical and demographical information of the TCGA patient cohort used for this
study.

Total number of patients 591

Clinical outcomes

Overall survival 0–10.6 years

Median survival 0.9 year

Event(Alive/Dead) 146/443

Classifications

LTS (survival > 3 years) 44

nonLTS(survival < 3 years and dead) 411

Censored (survival < 3 years and alive) 136

Clinical Covariates

Age at initial diagnosis 10–89 (median 59)

Race (white/Asian/Black) 503/13/50

Gender (Female/Male) 228/363

History of LGG diagnosis (Yes/No) 15/576

doi:10.1371/journal.pone.0154313.t001
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were identified in more than one tumor were retained as candidate predictors of survival time
for subsequent inclusion in our models. Additionally, germline single nucleotide polymor-
phisms (SNPs) were identified from the Level II TCGA SNP data, these were processed to
exclude low quality genotype calls and rare alleles, using a pipeline described in [30].

Level 1 gene expression data were collected for GBM, LGG, and normal tissue samples from
TCGA. The expression data was RMA adjusted [31] and transformed to a base-2 logarithmic
scale. Level 3 DNA methylation data from two platforms (Illumina methylation arrays 27 and
450) were combined by intersecting the probe sets, excluding 10.1% of samples with more than
5% missing values. Missing values in the remaining probes were imputed using the median
value across samples. The level 3 miRNA expression data was used without any further pro-
cessing. For the Level 3 CNV data, a weighted average CNV score was computed if a gene
spanned multiple segments of a CNV probe, with score weights proportional to the fraction of
the gene spanned by each probe. Unless otherwise indicated, the data processing and all analy-
ses were implemented in Python 2.7.5 and R 3.0.3.

Regression Analysis
Prediction of LTS is a statistical binary classification problem. Models were individually con-
structed for each molecular data type using both False Discovery Rate (FDR)—adjusted univar-
iate logistic regression (ULR) and Lasso logistic regression (LLR). Integrative models that
combine clinical variables with one or more types of molecular profiles were constructed using
LLR. The individual and integrative model construction procedures are schematically repre-
sented in Fig 1.

1. Univariate logistic regression (ULR). A univariate logistic regression model was fitted for
each gene or probe in every class of genomic data, with the genotype at each variant site as a
predictor Y = 0,1 (non-LTS vs. LTS) with p-values adjusted using a Bonferroni correction
for each class of data (in cases with limited data or where no significant associations were
found following Bonferonni correction, the less stringent Benjamini-Hochberg adjustment
was applied). Significantly LTS-associated features were selected with Bonferroni-adjusted
q< 0.05. On tests performed on individual traits, the unadjusted p< 0.05 was used for fea-
ture selection.

2. Lasso logistic regression (LLR). Least absolute shrinkage and selection operator (Lasso) is a
penalized multivariable regression model whereby parameter shrinkage and feature selec-
tion are done simultaneously [32]. Lasso imposes a penalty on the regression coefficients

Table 2. Summary of the 6 types of molecular data and their platforms used for this study.

Platform Number of
patients

LTS/non-
LTS

Total
features

ULR
features

LLR
features

Germline
Mutation

Affimetrix Genome Wide SNP6 array 346 30/316 532954 0 0

Somatic Mutation Illumina Genome Analyzer DNA Sequencing 187 18/169 1419 10 13

Gene expression Affymetrix Human Genome U133 Plus 2.0
Array

415 39/376 22277 38 94

DNA methylation Illumina Infinium Human DNA Methylation 27/
450

283 22/261 23233 38 43

miRNA Agilent 8X15 k human miRNA-specific
microarray

437 43/394 534 1 1

CNV Agilent Human Genome CGH Microarray
244A

417 43/374 23169 11 29

doi:10.1371/journal.pone.0154313.t002
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β = (β1, . . ., βp) by restricting the sum of the absolute values (L1 norm) of the coefficients βj
to values no greater than the shrinkage parameter λ. By selecting an appropriate λ, a Lasso
model can be tuned to include any number of variables in the final regression model;
smaller values of λ will set more coefficients βj to zero, effectively removing them from the
model. We implemented Lasso logistic regression using the ‘glmnet’ library in R with the
binomial distribution option, reflecting the binary response variable Y. λ was selected
using 10-fold cross validation so that the model minimizes cross-validation error. Predic-
tion performance was evaluated with Area Under the Receiver Operating Characteristic
Curve (AUC) estimation, a commonly used evaluation metric for binary classification. A
perfect model will score an AUC of 1, while at the other extreme an AUC near 0.5 reflects
models with no predictive power that essentially select Y = 0,1 by a random guess.

3. Integrative Models. Integrative LASSO logistic regression models were constructed by using
4 classes of molecular data in combination as predictors of LTS, i.e. clinical information,
gene expression levels, DNAmethylation scores, CNV counts, and miRNA expression levels
were used in combination to identify subsets of molecular markers that were jointly predic-
tive of LTS. To prevent overfitting, initial feature selection was performed for each class of
data by selecting all variables with unadjusted p< 0.05 in the ULR models; only those
genes/probes above the threshold were pooled for multiple regression analysis. We

Fig 1. Flow chart with a schematic of the data analysis pipeline used in this study.

doi:10.1371/journal.pone.0154313.g001
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identified a core set of n = 212 samples (including 23 LTSs) with all molecular data types
represented except for point mutations. Both somatic and germline point mutations were
excluded from the combined data sets because no point mutations were significant predic-
tors of LTS in adjusted ULR models and their inclusion would have produced a much
smaller sample set since so few tumors contained any particular somatic mutation. Conse-
quently, separate regression analyses were performed with clinical information and point
mutation genotypes as predictors of LTS.

A total of 69213 features representing the 4 classes of molecular data from 212 patients were
jointly modeled using LASSO logistic regression. Prior to model fitting, each variable was z-
transformed to zero mean and unit variance so that variables across different classes of data
would be on the same scale. We also constructed regression models using specific combina-
tions of data classes and excluding others (e.g. gene expression + methylation data used to pre-
dict LTS while excluding CNV and miRNA data etc), as this allows us to compare predictive
performance of models and to determine the marginal effects of incorporating additional data
classes on LTS prediction. To evaluate the prediction performance for individual models, we
performed tenfold cross-validation and computed the mean AUC over 100 iterations. In every
iteration, the data set was divided into 10 subsets, and the LLR was repeated 10 times. One of
the 10 subsets was used as the test set and the other 9 subsets were pooled to form a training set
in order to compute the average AUC across all 100 iterations. The advantage of this method is
that it minimizes the bias from the division of data into training and test sets.

Imbalanced Sampling and Bootstrapping
Because LTS account for<10% of GBM samples, logistic and LASSO regression analyses of the
entire data set by necessity use imbalanced data, which can potentially bias estimation and pre-
diction in logistic regression and machine-learning models [33]. To determine the extent of
artifacts introduced by imbalanced data, we performed a bootstrap analysis by downsampling
with replacement the non-LTS set to equal the number of LTS samples over 100 replicates
(random sampling with replacement of 90% of LTS, 10% of non-LTS). The sensitivity of
regression models to downsampling is determined by computing the distributions of AUC val-
ues for LLR and logistic regression coefficients for ULR, and compared to the values obtained
for models computed from the imbalanced complete data.

Principal Components Analysis and Hierarchical Clustering
To explore the relationship between LTS GBM and LGG tumors, we represent each sample in
a coordinate space defined by the principal components of gene expression and methylation
measures. Gene expression data from the AgilentGA4502A microarrays for both GBM and
LGG samples was analyzed following Loess normalization and quantile normalization to cor-
rect for within and between-array bias, respectively. Significantly differentially expressed genes
(DEGs) were identified as follows: a Student’s t-test with Benjamini-Hochberg FDR correction
of the p-values was performed for each probe to compare mean expression levels between the
sample sets. DEGs were identified as those in which the FDR adjusted q< 0.01 and the median
log fold-change across probes was at least two fold (|log2FC|� 2).

Principal Component Analysis (PCA) was performed on four sets of genes: 1. DEGs
between LGG and GBM tumors. 2. DEGs between GBM and normal brain tissues. 3. genes
whose expression levels were significant predictors of LTS in the ULR models. 4. genes selected
for inclusion the LLR model. For each set of genes, the expression values were projected onto
principal components 1 and 2, representing each sample’s coordinates in this PC space.
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Moran's I, a measure of autocorrelation, was used to measure the extent to which samples from
a defined subset (e.g. LTS patients) cluster together due to similar expression values [34]. This
measure was applied to determine the similarity of gene expression or methylation profiles
among LTS samples in the coordinate spaces defined by the first two principal components. In
the context of this study, a Moran’s I value near 0 indicates that LTS expression levels are ran-
domly dispersed among the GBM samples, a value near 1 indicates that the LTS samples are
closest to one another in PC space, while a value of -1 indicates a perfectly uniform spacing of
LTS and non-LTS samples in PC space (i.e. negative autocorrelation, or a tendency of LTS and
non-LTS samples to “alternate” in gene expression space). The same approach was used to
study DNA methylation patterns between GBM and LGG with three different gene sets: 1. All
genes with methylation probes; 2. ULR selected genes; 3. LLR selected genes.

Additionally, we used unsupervised hierarchical clustering of gene expression values to
compare LTS with non-LTS GBM and LGG expression profiles. In this cluster analysis, each
sample is represented as a vector of expression values and classified by pairwise Pearson Corre-
lation Coefficient distance.

Results

Patient cohort
For the 591 patients in this study, the median age at initial diagnosis is 59 years; the patient
cohort is 61.4% male (Table 1). We constructed a Kaplan-Meier survival curve (Fig 2A) and
estimated the median survival time following initial resection to be 13.9 months (95% CI: 12.9–
14.9 months). The survival curve resembles an exponential distribution, indicating a high prob-
ability of death within a short period after diagnosis and a comparatively low frequency of LTS.
The distribution of survival times is essentially unimodal (Fig 2B), suggesting a homogeneous
distribution, rather than a mixture of two or more distributions for LTS and the non-LTS sam-
ples. This observation was confirmed by applying Hartigan’s dip test [35](p = 0.9877), a distri-
bution-free test for bimodality, which suggests that survival times follow a homogeneous,
unimodal distribution.

Fig 2. Survival time analyses of GBM patients. a. Kaplan-Meier plot of overall survival analysis of 591 GBM patients. The vertical line indicates the 3-year
(1095 days) cutoff for LTS used in following analyses. The horizontal dashed line indicates 7.6% LTS patients corresponding to the cutoff. b. Histogram of
survival time (in days) showing that the distribution of survival time is unimodal.

doi:10.1371/journal.pone.0154313.g002
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Among the 591 patients with known vital status and survival times, 44 (7.4%) survived lon-
ger than three years—a commonly-used survival milestone for GBM patients [5, 7, 9, 36]–and
were classified as “long-term survival” (LTS) patients. Patients with shorter-than-three-year
survival time were classified as non-LTS (411, 69.5%). There are a total of 29 patients surviving
past the more stringent 4.5 years definition of LTS.

Regression Analyses of Clinical and Molecular Features
In a logistic regression model that included only clinical and demographical variables, younger
age at initial diagnosis, Karnofsky performance score (KPS) and presence/absence of chemo-
therapy were the three significant predictive factors of LTS (Table 3). While post-operative
KPS scores are stronger predictors of patient outcomes than pre-operative scores [37], the
TCGA data contain only 76 samples with post-operative/post-adjuvant KPS values, so that
pre- and post-operative scores were pooled. In the initial LLR analyses, patient age, KPS, and
chemotherapy were considered jointly with the molecular biomarkers as independent variables
in multiple regression analyses. Combining KPS and chemotherapy reduces the effective sizes
of gene expression and DNA methylation datasets to 277 and 194 samples (due to 28% and
14% missing data in KPS and chemotherapy, respectively), while there was no missing age
data.

We evaluated the regression models with or without the inclusion of KPS and chemother-
apy, and found that they converged to a set of predictors that included age but not KPS or che-
motherapy (S1 Table), presumably reflecting the strong (r = -0.323, p = 1.93E-9) correlation
between KPS and age, as well as the small fraction of patients (13.5%) who did not receive che-
motherapy. Moreover, an identical set of predictor biomarkers and nearly identical coefficients
were obtained from LLR that initially included KPS and chemotherapy as from models where
only age is initially included on the same set of samples. Because of this and the reduction of
sample size, age is the only clinical variable included in subsequent regression analyses.

ULR identified 10 somatic mutations as predictors of LTS with p< 0.05 (none of which are
statistically significant after Bonferroni or Benjamini-Hochberg adjustment of p-values),
among these are mutations in genes whose somatic variants are well-known to correlate with
GBM survival time such as IDH1 and PRSS1 (S2 Table). LLR identified 13 somatic mutations
as significant (Table 4 and S3 Table). Most of the significant LLR mutations are located in

Table 3. Partial regression coefficients for logistic regression model for LTS against clinical and demographical information.

Estimate Std error z value Pr(>|z|)

Intercept -2.300 1.9698 -1.168 0.24299

Age -0.054 0.0135 -4.008 6.12E-05*

Gender (male) -0.025 0.4015 -0.061 0.95128

LGG history 0.075 1.2110 0.062 0.95034

Race (black) -0.185 1.1205 -0.165 0.86874

Race (white) -1.159 0.8813 -1.316 0.18834

Karnofsky score 0.047 0.0170 2.790 0.00526*

Radiation 2.011 1.2393 1.622 0.10473

Chemotherapy -1.555 0.7191 -2.163 0.03054*

Age at initial diagnosis, gender, ethnicity, presence/absence of prior LGG history and presence/absence of chemo and radiotherapy are used as

independent variables in the model. * Independent covariates with statistically significant partial regression coefficients are indicated with ‘*’ (p < 0.05).

“Estimate” is the coefficient associated with the variable; “Std.Error” is the standard error associated with these estimates; “Pr (>|z|)” is the p-value
associated with the z-value.

doi:10.1371/journal.pone.0154313.t003
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different genes from those identified from ULR, except for mutations in IDH1 and the mRNA
splicing gene DHX16. We note that IDH1 somatic mutations are the most significant predic-
tors of LTS in both cases, with unadjusted p = 3.2E-3 in ULR and β = 1.10 in LLR. This is con-
sistent with the occurrence of non-synonymous mutations in IDH1 in 16.67% of the LTS
patients versus 1.19% of the non-LTS patients in the TCGA sample set, corresponding to an
odds ratio of 16.03 (p = 6.8E-3). There are 39592 germline mutations (SNPs) with unadjusted
p< 0.05, although none are significant under either Bonferroni or Benjamini-Hochberg
adjustments, even when the adjustment is restricted to the set of mutations in the exome. In
LLR analysis, we identified 8 SNP genotypes with nonzero regression coefficients. The stron-
gest associations are for mutations in the B3GALT5 (a Beta-galactosyltransferase gene) gene
and the TGS1 (trimethyguanosine synthase), with β = -0.28, -0.18, respectively, indicating that
the wild type genotypes at these loci are weakly predictive of LTS (AUC = 0.52, 95% CI: 0.44–
0.60, Table 5).

For the gene expression data, there are 38 significant LTS predictors with FDR-adjusted
ULR (S2 Table) vs 94 with LLR (Table 4 and S3 Table). Functional enrichment analysis of the
478 ULR significant predictor genes (q< 0.05) found a significant enrichment in phosphopro-
teins (1.32 fold enrichment, p = 1.6E-04) and genes in acetylation pathways (1.78 fold enrich-
ment, p = 4.39E-06) (S4 Table). In contrast, the 94 significant predictor genes in LLR analysis

Table 4. List of significant predictor genes in LLR using single classes of molecular data.

Genes (Positive Association) Genes (Negative Association)

Germline Mutation B3GALT5, TGS1 None

Somatic Mutation IDH1 None

Gene Expression MLNR, PI15, NOS3, NEUROG1, MFI2 MST1L,CRLF2

DNA Methylation HS1BP3, CDKN1B, TMED10, PURB,
RSPO3, LETMD1, STX17

TNS4, C6orf48, SNORD48, LLGL1,
VIM, NLRP4, CXorf23

Copy Number
Variation

AY289773,HPR AL713660, DUSP28

miRNA None hsa-miR-222

Only predictor genes with relative large beta are shown here (i.e. |β| > 1 for somatic mutation, gene

expression, DNA methylation, CNV and miRNA; |β| > 0.1 for germline mutation). For a complete list, see

S3 Table.

doi:10.1371/journal.pone.0154313.t004

Table 5. Prediction performance of individual molecular type under LLR, as measured by AUC.

Unbalanced Balanced

Type of Variable mean AUC Std mean AUC Std

Age 0.8034 0.0150 0.8070 0.0901

Germline Mutation 0.5169 0.0395 0.5490 0.0832

Somatic Mutation 0.6156 0.0354 0.6451 0.0724

Gene Expression 0.7385 0.0322 0.6665 0.0706

DNA methylation 0.8387 0.0341 0.6747 0.0962

miRNA 0.7350 0.0272 0.6577 0.0724

CNV 0.7002 0.0232 0.6785 0.0599

The last two columns are the mean and standard deviations of AUC under 100 bootstrap permutations (i.e. downsampling the ~10% of non-LTS cases

and 90% of LTS so that the number of samples is equal to that in LTS).

doi:10.1371/journal.pone.0154313.t005
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did not identify enrichment with respect to any known KEGG pathway or structural/functional
classes of genes. Among the genes whose expression levels are positively associated with LTS
are NOS3 (nitrous oxide synthase, a known regulator of blood pressure and other vascular
function) [38] and the neurogenin NEUROG1, a transcription factor regulating growth of neu-
rons [39], indicating that the upregulation of these genes is linked to a higher probability of
LTS.

Among the 4 classes of genomic data, DNA methylation is the strongest predictor of LTS
with the highest mean AUC (AUC = 0.84, CI: 0.78–0.90) in LLR models (Table 5), which was
confirmed through 100 replicates of 10-fold cross validation. Indeed, methylation is an even
stronger predictor of LTS than age (i.e. AUC = 0.80, CI: 0.77–0.830). This is the case even
though there are fewer samples in the methylation data set than for gene expression, miRNA,
and CNVs. We found 38 methylation probes that are significant predictors of LTS in adjusted
ULR models (S2 Table) vs. 43 in the LLR model (Table 4 and S3 Table). Genes with Lasso
regression coefficients |β|> 10 include LETMD1, a known oncogene [35], the known tumor
suppressor CDKN1B [36], as well as several other genes whose variants have been linked with
other cancers, such as RSPO3 [37]. All of these genes are positively associated with LTS, indi-
cating that their hypermethylation is predictive of improved patient outcomes. TNS4, whose
oncogenic role has been documented for colorectal and other cancers[38], has the strongest
negative association with LTS, suggesting that hypomethylation of this gene is predicts LTS
(see Table 4 and S3 Table for a summary of genes that significantly predict LTS in LLR mod-
els). We remark that there is no significant association ofMGMT promoter region methylation
with LTS in LLR models, nor is methylation of this region a significant LTS predictor in a ULR
model following FDR correction. However, the association betweenMGMT hypermethylation
and LTS is significant in a ULR model (p = 0.036) without adjustment. There was no overlap
between the set of genes that were differentially expressed between LTS and non-LTS and
those that were differentially methylated.

A single microRNA was found to be significantly predictive of LTS with either the ULR or
LLR analyses (Table 4, S2 and S3 Tables), namely hsa-miR-222. The regression coefficient of
hsa-miR-222 expression levels on LTS is -0.169, indicating that downregulation of this miRNA
is associated with LTS. There are 11 and 29 significant CNV probes prediction LTS with ULR
and LLR, respectively (Table 4, S2 and S3 Tables). The strongest association of CNVs with LTS
(|β|> 1) in the LLR data included the oncogene DUSP28 [40] (a negative association, indicat-
ing that deletion in this gene is predictive of LTS), as well as a positive association with HPR
CNVs (i.e. duplication at this locus is correlated with LTS). Mutations inHPR have been docu-
mented in the literature as predictors of recurrent breast cancer [41]. STAM, encoding a signal
transduction adapter molecule, was found to be a significant predictor in both gene expression
and CNV analyses. Higher expression and amplification of this gene was associated with LTS
(S3 Table), suggesting that the genomic amplification of STAMmight lead to the upregulation
of gene expression.

Imbalanced Sampling and Bootstrapping
The creation of balanced LTS vs. non-LTS data sets by downsampling did not substantially
change the AUCs of the regression models. As can be seen in the last 2 columns in Table 5, the
bootstrapped mean values of AUC are nearly identical for some data types (e.g. CNV and ULR
using patient age), slightly higher for some data sets (e.g. somatic mutation and germline muta-
tion) and somewhat lower for others (e.g. expression levels and methylation). These results
indicate that the fit of models to data is not an artifact of imbalanced sampling.
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Integrative Model Construction
In terms of AUC, combining one or more classes of genomic data with age in an LLR does not
strongly enhance prediction of LTS when compared to age alone. It can be seen in Table 6 that
combining age with methylation and microRNA expression data only marginally improves
AUC, while AUC actually decreases when CNV counts or gene expression are combined with
age, which is consistent with the relatively lower prediction performance of gene expression
and CNV for individual models. The strongest improvement in prediction occurs when age is
combined with the single significant miRNA hsa-miR-222, i.e. (AUC = 0.87, 95% CI: 0.83–
0.91). The same is true when multiple classes of genomic data are combined in a single regres-
sion model, e.g. expression+methylation+microRNA data combined with age give virtually
identical AUC values to age alone, indicating that pooled biomarker data does not outperform
individual classes of biomarkers in LTS prediction, perhaps as a consequence of increased
number of features. Applying a more stringent cutoff (4.5 years) for LTS classification does not
change the results qualitatively in terms of either the significant predictors or the magnitude of
AUC (prediction of miRNA expression and CNV is moderately enhanced, while diminishing
for gene expression data, presumably due to fewer LTSs). This indicates that the results of the
regression analyses are not strongly predicated on the choice of cutoff time used to define LTS.

The principal value of constructing integrative LLR models lies in the fact they identify
molecular markers that are jointly significant predictors of LTS which are not individually pre-
dictive in ULR, nor predictive in LLR when applied to a single class of data (see Table 7). For
example, in LLR analysis of methylation probes alone, methylation of the oncogene BRAF does
not appear as a significant predictor, whereas in the integrative model it has β = 4.62. While
CAV1 (caveolin 1, a plasma membrane protein and tumor suppressor gene) appears in the LLR
model, its β = 11.34 value is much larger in the joint regression model than in LLR on methyla-
tion data alone. Downregulation or loss of function in CAV1 has previously been documented
as a determinant of aggressiveness in GBM tumor growth [42].

All but one of the gene expression probes that appear in the integrative LLR model are not
significant LTS predictors for LLR on expression data alone. We remark, however, that most of
these expression probes are only weakly predictive of LTS in the joint model, with β�0.28 (the

Table 6. Prediction performance (area under curve, AUC) of integrative models.

Combinations cutoff = 3 y cutoff = 4.5 y

mean AUC Std mean AUC Std

age 0.8033 0.0170 0.8023 0.0150

age+exp 0.7246 0.0404 0.6350 0.0630

age+met 0.8067 0.0350 0.8095 0.0467

age+mir 0.8711 0.0202 0.9028 0.0262

age+cnv 0.7164 0.0547 0.7638 0.0638

age+exp+met 0.8095 0.0343 0.7980 0.0451

age+exp+mir 0.7470 0.0429 0.6761 0.0591

age+exp+cnv 0.6918 0.0475 0.6554 0.0596

age+met+mir 0.8126 0.0411 0.8012 0.0421

age+met+cnv 0.8034 0.0416 0.8128 0.0422

age+mir+cnv 0.7777 0.0481 0.8193 0.0619

age+exp+met+mir+cnv 0.8107 0.0379 0.8022 0.0408

These models combine age with one or more molecular types with LTS cutoff at 3 year (i.e. 7.6%) or 4.5 year (5%).

doi:10.1371/journal.pone.0154313.t006
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strongest association is with expression levels of DCT, dopachrome tautomerase). This result is
consistent with methylation being the strongest individual predictor of LTS in both integrative
models and in models that only incorporate a single class of data.

Relationship of LTS to LGG
The PCA analyses reveal that the GBM, LGG, and normal samples have distinct profiles
among their DEGs (Fig 3A and 3B). LGG and (all) GBM samples are distinct clusters in the
PCA scatterplots (Moran’s I~0.1, p<< 0.01 for LGG vs. GBM), and all LGG tumors share
common nodes in the hierarchical clustering analysis discussed below (Fig 4). In contrast, LTS
samples are interspersed among the non-LTS GBM samples (Moran’s I near 0, p> 0.1 in
Table 8); methylation scores (Table 9) produces qualitatively similar results. Together, these
results suggest that there is no “hallmark” gene expression profile for LTS GBM, consistent
with the lack of association between expression profile subtype and LTS described in [21].
These observations all indicate weak mutual similarity between expression profiles of LTS
GBMs, i.e. the majority of LTS GBMs have gene expression patterns that more closely resemble
non-LTS GBM than they do the profiles of other LTS patients. Not surprisingly, if we consider
the gene sets that are significant predictors of LTS in ULR and LLR models, we do find separa-
tion and autocorrelation among LTS samples, the Moran’s I values have p effectively 0 for
genes identified ULR and LLR, respectively. This could also be seen by the greater “clumping”
of LTS samples in PCA space and in the dendrograms (S1 and S2 Figs).

In the hierarchical clustering analysis, selecting a twofold partition generates one subtree
that consists solely of GBMs and another that contains both GBM and all LGG samples (i.e. all
LGG samples are defined by a single node in this subtree, as shown in Fig 4). LTS samples
occur in both subclusters, with a disproportionate representation of LTS tumors in the subtree
containing the LGG. Specifically, 14 of the 28 LTS GBM samples occur in the subtree that also
contains LGG, versus 93 of the 318 non-LTS GBM samples (OR = 1.72, p = 0). However, most
of the neighbors of LTS in the dendrogram are non-LTS GBMs, even for those in the subtree
that contains LGG (as in the scatterplot). The same is true of GBMs in patients who have a
prior history of LGG, that is, known secondary GBMs occur throughout the dendrogram and

Table 7. List of significant predictor genes in integrative LLRmodels, with various combinations of data classes.

Probe Gene Symbol Beta In individual model

205742_at TNNI3 0.0987 NO

205923_at RELN 0.0024 NO

215443_at TSHR 0.0286 YES

216512_s_at DCT 0.2786 NO

cg05790999 HS1BP3 34.506 YES

cg07964538 CAV1 11.638 YES

cg09307279 GLT8D1;SPCS1 12.851 NO

cg10141022 BRAF 4.6218 NO

cg12927772 C9orf64 2.8326 YES

cg12989642 PURB 12.553 YES

cg18672421 TMED10 3.041 YES

cg19133903 AVPI1 0.553 NO

cg21982518 TMC7 1.3812 NO

cg25913233 SPARC 2.1799 NO

cg26864028 EPOR 0.086 YES

doi:10.1371/journal.pone.0154313.t007
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show no specific association with LGG expression profiles. In fact, only a single LTS has a doc-
umented prior history of LGG (corresponding to an insignificant OR = 1.04 for LTS associa-
tion with LGG). From both the hierarchical clustering and PCA analyses, we conclude there is
no significant association between progression from LGG and subsequent LTS in GBM.

A closer examination of IDH1mutation status in showed that all 5 IDH1+ GBMs (including
3 LTSs and 2 non-LTSs) cluster with LGGs when the dendrogram was partitioned into two
clusters (Fig 4, row-side color bar on the right), indicating a similarity in gene expression and
methylation profiles between IDH1+ genotypes and LGGs. However, while IDH1+ is a signifi-
cant predictor of LTS, the majority of LTS cases in the TCGA data set are IDH1- wildtype. Fur-
thermore, none of the IDH1+ genotypes was in a GBM with a prior LGG history.

Fig 3. Scatterplot of the first two principal components of gene expression data. PCA analyses were performed on a. DEGs between GBM and LGG
(N = 491 genes). b. DEGs between GBM and normal controls (N = 4801). c. ULR predictor genes (N = 94). d. LLR predictor genes (N = 38).

doi:10.1371/journal.pone.0154313.g003
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Most of the LTS samples are similarly interspersed with non-LTS GBM’s in the PCA scatter-
plots, only a small subset of LTS samples cluster with LGGs. The lack of a strong overall LGG-
like “signal” in LTS samples can be seen most clearly from the comparison of centroids for
PCA 1+2 scores over the different gene sets (S5 Table), where the LTS distances to LGG were
much greater than to non-LTS GBM. Indeed, except for the small subset of genetic markers
that are predictive of LTS, the absence of significant autocorrelation among LTS samples fur-
ther argues against LTS corresponding to a biologically unique and qualitative distinct class of
GBM pathology, and against their proposed molecular affinity with LGG features.

Moreover, GBM samples from patients with prior LGG history do not cluster together in
the dendrogram, nor do these known secondary GBMs cluster with LGGs, arguing against the
hypothesis of that secondary GBMs retain LGG-like molecular profiles. Previous analyses of
gene expression patterns have identified at least four subtypes of GBM [43–45], including sec-
ondary (proneural) GBM, as well as the mesenchymal, classical and neural GBM subtypes.
However, we found no significant association between LTS and the proneural subtype (based
on TCGA classification of samples), the OR = 1.21, p = 0.83. This lack of association of LTS
with subtype is consistent with the observation that most LTS samples do not share a common
node in the dendrogram nor a specific affinity with LGG.

Fig 4. Heatmap of the gene expression levels in LTS GBM, non-LTS GBM and LGG samples (N = 383 genes).Hierarchical clustering (HC) on the
expression levels of DEGs between GBM and LGG (N = 491) was used to classify the samples, with a row dendrogram (clustering of samples) based on
Pearson correlation coefficient, the column dendrogram on a Spearman correlation coefficient. In the row-side color bars of IDH status and LGG history, red
indicates IDH1+ or history of LGG diagnosis; grey indicates IDH1- and no history of LGG diagnosis, respectively; white indicates that no data is available for
the sample.

doi:10.1371/journal.pone.0154313.g004
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Similar trends are observed with the methylation data (Figs 5 and 6, S6 Table), finding no
association between LTS and LGG samples with respect to methylation scores. Furthermore,
the tendency of LTS samples to co-occur in a single cluster is even weaker for the methylation
profiles. The Moran’s I autocorrelation measures are statistically insignificant for LTS methyla-
tion scores with respect to non-LTS GBM (Table 9), even when the LLR subset of genes are
considered separately. These results were unexpected in view of the fact that methylation is a
stronger predictor of LTS in LLR models than expression profiles, which is probably a conse-
quence a relatively small subset of the LTS samples with very similar expression profiles (high
autocorrelation) in the LLR-selected genes.

Table 8. Moran's I for each binary category (e.g. LTS vs. non-LTS).

DEGs (LGG vs GBM) Observed Expected Std p value

LGG vs GBM 0.2991 -0.0029 0.0055 0

LTS vs nLTS 0.0051 -0.0029 0.0053 0.1340

normal vs tumor 0.1989 -0.0026 0.0049 0

DEGs (GBM vs normal)

LGG vs GBM 0.1238 -0.0027 0.0052 0

LTS vs nLTS -0.0004 -0.0029 0.0056 0.6525

normal vs tumor 0.2980 -0.0026 0.0053 0

ULR genes

LGG vs GBM 0.2863 -0.0029 0.0066 0

LTS vs nLTS 0.0241 -0.0029 0.0060 7.84E-06

normal vs tumor 0.1057 -0.0026 0.0057 0

LLR genes

LGG vs GBM 0.1047 -0.0029 0.0068 0

LTS vs nLTS 0.0204 -0.0029 0.0068 0.0007

normal vs tumor 0.1345 -0.0026 0.0060 0

The statistics are computed over the coordinates of the first two principal components of gene expression.

doi:10.1371/journal.pone.0154313.t008

Table 9. Moran's I for each binary category (e.g. LTS vs. non-LTS).

All genes Observed Expected Std p value

LGG vs GBM 0.3951 -0.0026 0.0060 0

LTS vs nLTS 0.0027 -0.0036 0.0068 0.3513

normal vs tumor -0.0030 -0.0026 0.0005 0.4193

ULR genes

LGG vs GBM 0.3373 -0.0026 0.0059 0

LTS vs nLTS 0.0033 -0.0036 0.0071 0.3356

normal vs tumor -0.0033 -0.0026 0.0005 0.2393

LLR genes

LGG vs GBM 0.3412 -0.0026 0.0066 0

LTS vs nLTS 0.0014 -0.0036 0.0086 0.5612

normal vs tumor -0.0033 -0.0026 0.0005 0.2495

The statistics are computed over the coordinates of the first two principal components of DNA methylation.

doi:10.1371/journal.pone.0154313.t009
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Discussion
The principal goal of this study was to determine whether LTS GBM tumors have genomic fea-
tures that distinguish them from those found in patients with more typical survival times, i.e.
to evaluate whether they constitute a biologically distinct subclass of high-grade gliomas with
unique molecular characteristics, and to evaluate the relationship between LTS GBMs and
LGGs.

In spite of the limitations on statistical power due to comparatively small samples of LTS
patients and incomplete clinical data, our analyses identified molecular biomarkers that signifi-
cantly predict LTS, several of which have been documented in the literature as predictors of
improved response to chemotherapy and overall improved patient prognosis. For example,

Fig 5. Scatterplot of the first two principal components of the DNAmethylation data. PCA analyses were performed on a. All probes (N = 23233). b.
ULR predictor genes (N = 38). c. LLR predictor genes (N = 43).

doi:10.1371/journal.pone.0154313.g005
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among the somatic point mutations, non-synonymous mutations in IDH1 were the strongest
predictors of LTS in ULR and LLR models (Table 4), consistent with the significantly higher
proportion of IDH1mutated patients observed in the LTS vs. non-LTS data sets. However,
even the association of LTS with IDH1mutations is weak, i.e. even though most of IDH1+
genotypes are LTS, most LTS cases are IDH1-. The low predictive performance of both somatic
and germline mutations generally is in agreement with emerging clinical data suggesting that
IDH1 is a only weak predictor of LTS in GBM, as survival beyond the fourth year can occur in
patients without IDH1mutations [12, 21]. Similarly, miR-222, the only differentially expressed
miRNA identified as a predictor of LTS, has been previously documented in the literature [46]
as predictor of GBM prognosis due to its role as a regulator of the PUMA [47], a P53 mediated
regulator of apoptosis. Higher levels of PUMA protein are associated with increased apoptosis
and, consequently, lower growth rates in GBM tumors. Upregulation ofmiR-222 is linked to
repression of PUMA and higher tumor proliferation, consistent with LTS being negatively
associated withmiR-222 expression levels.

The scarcity of somatic mutation genotypes as predictors of LTS is largely the result of most
somatic mutations occurring in few (2–3) samples in the data set. On the other hand, given the
abundance of high frequency variant germline genotypes, the small number of germline muta-
tion predictive of LTS is somewhat surprising, since genome wide association studies (GWAS)
[48, 49] have identified inherited SNPs that predispose individuals to GBM. None of these
GWAS-identified SNPs appeared as a significant predictor in our regression models. These

Fig 6. Heatmap of the DNAmethylation levels in LTS GBM, non-LTS GBM and LGG samples (N = 383).Hierarchical clustering (HC) on the DNA
methylation levels of GBM and LGG (N = 23233) was used to classify the samples. The row dendrogram (clustering among samples) is based on Pearson
correlation coefficients and the column dendrogram on Spearman correlation coefficients. In the row-side color bars of IDH status and LGG history, red
indicates IDH1+ or history of LGG diagnosis; grey indicates IDH1- or no history of LGG diagnosis; white indicates no data available for the sample.

doi:10.1371/journal.pone.0154313.g006
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results suggest that there are few if any inherited (familial) mutations that predict LTS in GBM
patients, or that their effects are comparatively weak against the much stronger signal of varia-
tion among GBM types and the contribution of clinical variables such as age to patient
survival.

Although mutational genotypic markers for LTS are limited, we did identify gene expres-
sion phenotypes, epigenetic markers, and copy number variant genotypes that are significantly
predictive of LTS, with the exception of DNA methylation. The fact that DNA methylation
has comparable or better predictive power than age is probably related to the coordinated reg-
ulation of aging and DNA methylation patterns [50]; the same is true for regression models of
LTS combining age with methylation. While previous analyses have shown that combining
clinical predictors with gene expression alone best predicts survival time [25], our results
found the weakest prediction when age is combined solely with gene expression data, and
strongest when combined with miRNAs (in spite of the limited number of miRNAs). This dis-
crepancy is potentially due to different choices of algorithms (i.e. feature selection approach,
shrinkage parameter optimization) and/or the nature of the model (i.e. response variable: haz-
ard proportion ratio vs. binary response, as well as our use of integrative regression models)
[51].

Apart from this comparatively small set of genomic markers, there is no strong genomic
“signature” that unambiguously distinguishes LTSs from other GBM. No molecular markers
unique to LTS were identified, and there wasn’t the large-scale statistical difference in either
gene expression or methylation patterns such as those observed between GBM and LGG. This
result is consistent with the observed unimodality of the survival time distribution for the
GBM patients (Fig 2A and 2B). If LTS patients represented a biologically distinct subclass of
cases, one would expect the distribution of survival times to resemble a bi or multimodal mix-
ture, when in fact the distribution of time until death is basically monotonically decreasing for
survival times greater than the mode.

Furthermore, while there are biomarkers that significantly predict LTS in logistic regression
models, there are no molecular profiles that strongly define LTS as a distinct subclass in the
way that LGGs are molecularly distinct from GBM. This is evident from the occurrence of LTS
samples throughout PCA scatterplots, and the lack of a single node or subtree subtending most
or all LTSs in dendrograms. Such results suggest that there are many patterns of gene expres-
sion and methylation that lead to LTS phenotypes. Similarly, the lack of a consistent molecular
signature among secondary GBMs, or a shared signature between secondary GBM and LTS
implies that secondary GBMs are not associated with improved patient outcomes in compari-
son to primary GBM.

Finally, this study found no tendency among LTS GBM cases to resemble the molecular
profiles of LGG, which argues strongly against LTS cases being misdiagnosed LGGs. This
observation, together with a lack of an association between LTS and secondary GBM, also sug-
gests that LTS in GBM is not a consequence of the retention of LGG-like biological features in
high-grade glioma tumor cells. Our finding that only IDH1+ GBMs have expression profiles
resembling LGG may indicate that IDH1mutated GBMs are either misidentified LGGs or rep-
resent a unique, LGG-like pathology among high-grade gliomas, this observation does not
account the majority of LTS cases. The fact that the overall gene expression and methylation
profiles of LTS tumors lack a unique molecular signature and don’t show a significant similar-
ity to LGGs simply indicates that there are multiple genomic paths to similar clinical pheno-
types and patient outcomes, just as there are multiple genetic and epigenetic paths to cancer.
We anticipate that the molecular correlates of different categories of LTS will be further eluci-
dated once larger data sets become available.
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Supporting Information
S1 Fig. Heatmap of the gene expression levels for LTS GBM, non-LTS GBM and LGG sam-
ples (N = 383).Hierarchical clustering (HC) on the expression levels of ULR predictor genes
(N = 38) was used to classify the samples. The row dendrogram, showing the relationship
among samples, was based on Pearson correlation coefficients, thecolumn dendrogram on
Spearman correlation coefficients. In the row-side color bars of IDH status and LGG history,
red indicates IDH1+ or history of LGG diagnosis; grey indicates IDH1- or no history of LGG
diagnosis; white indicates no data available for the sample.
(TIF)

S2 Fig. Heatmap of the gene expression levels for LTS GBM, non-LTS GBM and LGG sam-
ples (N = 383).Hierarchical clustering (HC) on the expression levels of LLR predictor genes
(n = 94) was used to classify the samples. The row dendrogram (clustering of samples) is based
on Pearson correlation coefficient and column dendrogram on Spearman correlation coeffi-
cient. In the row-side color bars of IDH status and LGG history, red indicates IDH1+ and a his-
tory of LGG diagnosis, respectively; grey indicates IDH1- or no history of LGG diagnosis,
respectively; white indicates that no data is available for the sample.
(TIF)

S1 Table. Comparison of LLR models with and without the combination of KPS and che-
motherapy with gene expression and age, as well as LLR models with DNAmethylation
and age as independent variables. The genes with non-zero penalized regression coefficients
(β) in Lasso regression model are listed in the table.
(XLSX)

S2 Table. List of features that are statistically significant associations with LTS GBM under
ULR model. For somatic point mutation, genes with unadjusted p< 0.05 are shown. For the
other classes of data, genes with adjusted q< 0.05 (Bonferroni correction, i.e. pbonf) were
shown. “Estimate” is the coefficient associated with the variable; “Std.Error” is the standard
error associated with these estimates; “Pr (>|z|)” is the p-value associated with the z-value.
(XLSX)

S3 Table. List of significant molecular predictors selected with LLR. Genes with non-zero
penalized regression coefficients (β) in Lasso regression model are shown.
(XLSX)

S4 Table. Functional annotation terms associated with LTS in GBM patients. Annotation
clusters with adjusted p-value (Benjamini-Hochberg) q< 0.05 for related annotation terms are
shown. Fold enrichment is the ratio of annotation terms of LTS predictors to those of all genes.
(XLSX)

S5 Table. Centroid distance table for PCs of gene expression.
(XLSX)

S6 Table. Centroid distance table for PCs of DNAmethylation.
(XLSX)
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