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In this paper, we study how randomly generated
knots occupy a volume of space using topological
methods. To this end, we consider the evolution of the
first homology of an immersed metric neighbourhood
of a knot’s embedding for growing radii. Specifically,
we extract features from the persistent homology
(PH) of the Vietoris–Rips complexes built from point
clouds associated with knots. Statistical analysis of
our data shows the existence of increasing correlations
between geometric quantities associated with the
embedding and PH-based features, as a function of
the knots’ lengths. We further study the variation of
these correlations for different knot types. Finally, this
framework also allows us to define a simple notion of
deviation from ideal configurations of knots.

1. Introduction
In this paper, we consider the following question: Does
the topology of a random knot, i.e. its knot type, influence
how it ‘occupies’ space? More specifically, do more
complicated knots tend to be more compact or loose
with respect to their simpler counterparts of the same
length? Similar ideas have previously been considered
in e.g. [1–4], often with the main goal of understanding
the mechanism of DNA, or, more generally, polymer
packing in a confined volume. Prominent instances of
such studies are concerned with tight DNA packing in
viral capsids [5–8] and DNA packing in cells (e.g. [9,10]
and the review [11]). We refer to the comprehensive
survey [12] for further references and several related
notions.
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Our main tool to address these matters is persistent homology (PH) [13,14]; this is a relatively
new technique in topological data analysis, commonly used to detect insightful topological and
geometric features of point clouds. Roughly speaking, PH associates a filtered simplicial complex
to a point cloud. The filtered homology groups of these chain complexes often capture subtle
properties of the point cloud [15].

We start by generating random piecewise linear (PL) knots with prescribed length and/or
topology. We then create a point cloud for each knot K by linearly interpolating between the
endpoints of the PL curve, and we compute the PH of its Vietoris–Rips filtration in dimension 1.
Intuitively, we use PH to examine the changes in topology occurring in a metric neighbourhood
of a random knot, when the radius of this neighbourhood varies in R≥0.

We extract several features from the obtained PH and quantify the variation in the correlation
between these features and either the volume ‘occupied’ by the knot or the average crossing
number (ACN) for increasing lengths and for all knot types with up to six crossings. The most
prominent feature we extract from PH is I(K), the integral of the Betti curve of a persistence
diagram, which might be of independent interest.

Note that unlike previous approaches, such as those outlined in [12, §8], we do not prescribe
the geometry of the confined volume, but rather work backwards, by first generating the knots
and only afterwards analysing their relationship with the minimal volume that contains them.
More precisely, we consider different kinds of measures for the space ‘filled in’ by a knot: the
volume of the circumscribing sphere, i.e. the volume of the smallest sphere that encloses the
knot, the volume of the convex hull determined by the knot and the radius of gyration. This last
quantity is often used as a meaningful and computationally convenient measure of compactness
of proteins and polymers (e.g. [12,16–19]). We remark that, in the case of proteins, compactness is
defined as the ratio of the accessible surface area of a protein to the surface area of the sphere of
the same volume. We instead consider a more intuitive and geometric notion of compactness.

Most prominently, we show the existence of an inverse correlation between the integral I(K)
and the various notions of volume occupied by K mentioned above, as well as a direct correlation
between I(K) and the ACN. The magnitude of these correlations increases for increasing knot
lengths. Furthermore, we find that these correlations appear to differentiate between different
knot types. Peculiarly, the intensity of the computed correlations does not appear to be directly
related to classical measures of a knot’s complexity, such as the minimal crossing number.

To better appreciate these results, especially the resulting subdivision into knot types, we also
compute the average Betti curve for each knot type considered, as well as their integrals. We
observe an almost perfectly linear relation between the average integrals of the Betti curves and
the knot lengths; the same holds for the average maxima of the Betti curves, which are in turn
correlated to the average number of shallow angles in the embeddings. Indeed, these relations
show a clear divide among the considered knot types.

We then turn to the related concept of ideal knot embeddings. These are special embeddings
of knots, whose study was pioneered by Stasiak & Katritch [20]. Their geometry is particularly
simple, in that they minimize the length of a rope (having unit diameter) that is needed to tie a
specific knot. We show how the PH framework developed here can be used to define a simple
numerical measure of how ‘far away’ a given knot is from an ideal embedding.

We make the concepts mentioned in the introduction rigorous in §2, and give a basic overview
of the techniques we use in §3. We then detail how we generated our data in §4, and present the
results in §5. Finally, in §6, we define the aforementioned deviation from ideal knot embeddings.

2. Knot theory
We call a knot K the image of a smooth embedding of S1 in S3, and reserve the notation K to
denote knot types. We refer to [21] for basic definitions in knot theory (see also [22, Ch. 8]). In what
follows, we relax the smoothness condition to allow the approximation of a smooth embedding
by equilateral polygons. These curves will be referred to as PL knot embeddings.
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Figure 1. (a, b) In red, a circumscribing sphere and convex hull for the blue PL trefoil knot with 50 edges. In this example, the
sphere has volume approximately 50, while the convex hull’s volume is approximately 14.

Figure 2. The evolution of the neighbourhood νt(K) for an eight-shaped unknot. The last stage on the right is homeomorphic
to a 3-ball. The image was generated using KnotPlot [23].

The length �(K) of a knot K is the usual Euclidean length of K. When considering the length
in the PL case, we always require all segments composing a given polygonal knot to be of equal
length; we take each segment of unit length, so that �(K) coincides with the number of edges used.

We are interested in investigating how efficiently a given embedding can occupy a volume; we
therefore consider different kinds of measures of compactness for a knot embedding. In increasing
order of accuracy, for each K we compute the volume of the minimal sphere and the convex
hull surrounding K (figure 1). We also take into consideration the radius of gyration Rg of a PL-
embedded knot.

We denote by νt(K) the metric neighbourhood of K of radius t > 0. We obtain this by
considering the union of the radius t discs contained in the affine planes Pp + p that are centred
at the points p in the image of the embedding, and that are orthogonal to the embedding.
We crucially point out that in what follows we will not necessarily only consider regular (i.e.
non-self-intersecting) neighbourhoods (figure 2).

The injectivity radius IR(K) of K (see [24]) is the supremum among all radii t ≥ 0 for which
the tubular neighbourhood νt(K) is regular. In other words, IR(K) is the smallest value of the
neighbourhood’s radius such that νt(K) comes into contact with itself. Intuitively, if we regard the
given knot K as being made of rope, IR(K) represents the maximal radius that the rope can have
while being knotted in the ‘shape’ of K.
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The length over diameter ratio of K is the quotient

L/D(K) = �(K)
2IR(K)

,

between the length of K and twice the injectivity radius. The ratio L/D was introduced and has
been extensively studied by Stasiak & Katritch [20] (the inverse of this quantity is also known as
the thickness of K [24]), due to its relation with the notion—also introduced by Stasiak—of ideal
knot.

An ideal knot (see the monograph [20]) is an embedded knot that minimizes the L/D ratio
within its knot type. Note that a priori there might be more than one ideal representative of a
given knot type. One interpretation of L/D for an ideal knot K is as the minimal length needed to
tie a knot of the knot type of K with a rope that has diameter 1.

We will also use other quantities that can be associated with PL knot embeddings: a discrete
analogue of torsion and curvature, and the ACN. This latter quantity is defined as the integral
of the function S2 −→ N associating to a point p on the unit sphere the crossing number of the
diagram obtained by projecting K onto the plane tangent to the sphere at p (strictly speaking, we
should also renormalize by dividing by 4π and restrict to projections with at most double points
as singularities).

We have just seen that the notion of injectivity radius is crucial for the definition of several
knot properties. One of the key technical aspects of this paper is the use of a straightforward
generalization of IR, and that PH can be effectively used to compute it. Given a knot K, consider
the neighbourhood νt(K) for t ∈ [0, ∞[. For small enough t, the homology of the embedded
neighbourhood is of rank 1 in dimension 1. The topology changes as soon as we get to t = IR(K),
where (generically) the rank of the homology of νt(K) increases by one. Similarly, for increasing
t, we can keep track of all the times t where the topology of νt(K) changes. Note that for values
of t greater than RS(K), the radius of the circumscribing sphere, H1(νt(K)) vanishes, and the only
non-trivial homology is of rank 1 in degree 0.

We can now introduce the Betti curve for the first homology, which is one of the main objects
we will consider in what follows.

Definition 2.1. Call the (first) Betti curve of a knot K the integer valued function

β1(K) : R≥0 −→ N,

defined as t �→ rk(H1(νt(K))).

It follows from the previous discussion that β1(K) is 1 for small values of t and becomes
definitely 0 for t � 0.

An interesting property of Betti curves is that (just as with persistent landscapes [25]) we can
add them and take averages; we will take advantage of this fact in §5.

Note that if K presents some small-scale configuration (such as the smaller twirl in figure 2),
then, after increasing the radius more than a certain threshold, its contribution to rk(H1(νt(K)))
vanishes (after the neighbourhood engulfs the small-scale configuration).

We will argue shortly that PH can be used to closely approximate β1(K). In fact, by considering
distributions of points closely approximating the embedding K and increasing in density, we get
increasingly better approximations of β1.

Example 2.2. Consider the planar standard embedding © of S1 in R
3, with radius R. Then

β1(©) ≡ 1 on [0, R[, and 0 on [R, ∞[. For the rather simple unknotted embedding in figure 2, the
Betti curve resembles that of figure 3.

Remark 2.3. If K is an ideal configuration [20] for the knot type K, then we expect β1(K)(t) to
be 1 for t ∈ [0, 1

2 [ (since the injectivity radius is by definition 1
2 ), and then jump to a large number

m(K) immediately after (see the left part of figure 4). The number m(K) is related to the number of
self-tangencies of the ropelength minimizer embedding considered. We can use this to provide a
measure of the ‘closeness’ between a given embedding and ideal configurations. We will define
such a measure in §6.
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Figure 3. A schematic of the functionβ1(K) for the unknotted embedding fromfigure 2. The values ti mark the times of twhere
the topology of νt(K) changes. (Online version in colour.)
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Figure 4. Three different embeddings of the trefoil, and their corresponding (approximated) Betti curves. From left to right: a
trefoil embedding close to its ideal configuration, a trefoil lying on a standard toruswhose longitude is longer than itsmeridian,
and a trefoil close to being planar. The images in the top panel were obtained with Knotplot [23]. (Online version in colour.)

3. PH
PH [15] is an algebraic tool for detecting topological and geometric properties of a space at
different resolutions. The input for PH is a nested sequence of simplicial complexes, called
a filtration. There are various ways to build a filtration on point-cloud data. Commonly used
constructions are made from Čech complexes, Vietoris–Rips complexes or α-complexes. Roughly
speaking, PH captures the evolution of the homology of the filtered complex as it grows through
the filtration. In particular, it keeps track of how homology classes appear and disappear, and this
information can be represented in a persistence diagram or barcode (figure 5). The Čech complex
built on a point cloud P for a given radius t ≥ 0 is the simplicial complex whose 0-simplices are
the points in P, and whose higher dimensional simplices are subsets of points in P whose closed t-
balls have non-empty intersection. This complex has the same homotopy type as the union of the
closed t-balls centred in the points in P, by the Nerve Lemma (e.g. §III.2 of [15]). The Čech filtration
on P is the filtration consisting of the Čech complexes on P for growing radii t ≥ 0, and it gives
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Figure 5. In (a), a PL knot embedding of the trefoil with 50 edges. Each edge is replaced with 10 equidistant dots to create a
point cloud (see also figure 6). In (b,c), two differentways to visualize the persistence diagramof this point cloud (in the barcode
on the right, we are only considering homology in dimension one). In the persistence diagram on (b), each point corresponds
to a homology and its placement indicates the value of t at which the class appears (birth) and the value of t at which the class
disappears (death). In the barcode on (c), homology classes are represented by bars that start and end at the birth and death
value of t, respectively.

a topologically faithful representation of the gradual thickening of the underlying space if P is a
sufficiently dense and uniform sample of the space.

However, for large data, it can be computationally intensive—and hence impractical—to build
a Čech filtration [26]. Therefore, in practice, one may want to instead work with the Vietoris–
Rips filtration, which depends only on pairwise distances between points and can therefore be
computed much more efficiently. The Vietoris–Rips complex built on a point cloud P for a given
radius t ≥ 0 is the simplicial complex whose 0-simplices are the point in P, whose 1-simplices
are the pairs of points in P that are within a distance of 2t from each other, and whose higher
dimensional simplices are the cliques of its 1-simplices. The Vietoris–Rips filtration on P is the
sequence of Vietoris–Rips complexes for growing radii t ≥ 0, and it is a good approximation to
the Čech filtration in Euclidean space [27].

We use the Vietoris–Rips filtration on a point cloud P(K) constructed from a PL knot
embedding K to approximate its metric neighbourhood for growing radii.

We consider several features of the barcode corresponding to the Vietoris–Rips filtration on
P(K); the first are simply the number of bars and the length of the longest bar in the barcode
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in degree 1 of the PH of P(K). These are denoted by #B(K) and M(K), respectively. Furthermore,
similarly to the Betti curve of a growing neighbourhood of a knot (see definition 2.1), we can
define a Betti curve on the rank of the homology of the Vietoris–Rips filtration on a point cloud.
We compute the integrals of such Betti curves

∫ ∞
0 β1(P(K)) dt by summing the lengths of all bars

in the corresponding barcode. We denote the integral of the Betti curve corresponding to the
Vietoris–Rips filtration on a point cloud sampled from a knot K by I(K). We will see in §5 that the
integral I(K) as defined here constitutes a good approximation (with a few caveats, as explained
in figure 9) of the integral of the Betti curve from definition 2.1.

4. The data
In this section, we describe the samples we study, as well as the methodologies used to generate
and analyse them.

All the random knots in our datasets are generated using the excellent Python-based Topoly
[28]. The same program is also used to compute the HOMFLY polynomial, in order to determine
the knot types of the PL curves considered whenever required. The random generation function
provided by Topoly is based upon the algorithm by Cantarella et al. [29]; this algorithm guarantees
uniformity of sampling within the space of equilateral polygonal curves with a fixed number
of segments. However, the authors are not aware of a uniform way of sampling polygonal
representatives within a given knot type and length. Our sampling—for a fixed knot type—is
therefore carried out by first generating a large population of polygons, and then only keeping
those with the required knot type.

We use pyknotid [30] to compute ACN. We use custom-made programs to compute the radius
of gyration, curvature, torsion and volume of the smallest enclosing sphere of a PL-embedded
knot, and we use SciPy’s [31] built-in function to compute the volume of its convex hull.

We produce two qualitatively different datasets. For the first dataset, we generate 104 random
knots for each length from 10 to 100 (in steps of 10). We then compute the volume of the minimal
enclosing sphere and that of the convex hull inscribing each knot, as well as the curvature, torsion,
ACN and radius of gyration.

For the second dataset, we sample 103 knots for each prime knot type with up to six crossings,
for lengths between 50 and 200 (in increments of 50); we also include 103 samples of knots whose
knot types do not belong to the previous categories (so whose minimal crossing number is greater
than or equal to 7), and we will refer to these as ‘unknown’ in what follows.

We then compute the barcodes for Vietoris–Rips filtrations associated with the knots as
explained below using the efficient program Ripser [32]. As our purpose is to approximate the
topology of the neighbourhoods of our generated embeddings as closely as possible, we do not
simply compute the PH of the Vietoris–Rips filtrations on the endpoints of the sampled PL curves.
Instead, we interpolate the endpoints of the unit segments of each embedding with 10 equidistant
points, and compute the Vietoris–Rips filtration on the resulting point cloud, which we denote by
P(K) (figure 6). Using 10 points per linear segment gives a dense enough sample of the embedding
to yield a Vietoris–Rips filtration that approximates the growing tubular neighbourhood closely
for most knots. For practical reasons, we restrict our considerations to the first homology groups.
It is likely that higher homology groups do also retain useful information on the geometric
structure of such embeddings.

In order to be able to find meaningful correlations between geometric aspects—such as
enveloping volumes, curvature, torsion and the ACN—and PH, we consider the features
extracted from the barcodes described in the previous section. Note that, in the case at hand,
the support of β1(K) is contained in the interval [0, RS(K)], where again RS(K) is the diameter of
the minimal sphere enclosing the embedding. Indeed, for t ≥ RS(K) the neighbourhood νt(K) is
topologically a 3-ball. This readily implies that I(K) is well defined, i.e. it is a proper integral.

The correlations displayed in the next section were computed using SciPy’s statistics module.
All the programs we used to generate the data, as well as the data itself, are available on the first
author’s GitHub page [33].



8

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210709

..........................................................

1

0

–1

–2

1

0

–1

–2

–2

–3

–1

–4
1.0

0.5

–0.5

–1.5
–1.0

0

1.0
0.5

–0.5

–1.5
–1.0

0

0

–2

–1

–3

–4

0

Figure 6. A point cloud describing the endpoints of a PL embedding K of the trefoil with 50 edges, and the point cloud P(K) we
consider, obtained by interpolating the unit length edges with 10 further equidistanced points. (Online version in colour.)

5. Results
In this section, we collect the results of the computations detailed above. More precisely, we show
that the correlation between the integral of β1 and the volume occupied by a knot becomes
increasingly negative as the knot’s length increases. The magnitude of these correlations is
especially large in the case of the volume of the convex hull. This confirms the intuitive fact that,
for long embeddings, being geometrically complex implies being spatially compact. Furthermore,
we quantify how considering increasingly complex topologies (i.e. progressively complex knot
types) influences this inverse correlation.

Similarly, we find a growing correlation between I(K) and the ACN (left panel of figure 12).
This is not surprising, as both can be thought of as being measures of the geometric complexity of
the embedding; it is however interesting to observe the phenomena displayed in figure 12b, where
this correlation’s behaviour is split among the different knot types. Here, we observe that, rather
unexpectedly, the values of the plots do not appear to be monotonically related to the complexity
measure on knot types given by the minimal crossing number. Indeed, the ‘unknown’ category
has values which are larger than most other knot types (in the range of lengths considered). At
the same time, the unknots’ correlations appear to be considerably larger.

We also report the existence of an increasingly positive correlation between M(K) (as
displayed in figure 7b) and the volume of the convex hull. Other correlations between e.g. #B(K)
and the convex hull’s volumes or Rg are marginally weaker than what we observe for I(K), and
we did not include this data in this manuscript, referring to the full dataset in [33]. We partitioned
our dataset in two, and verified the robustness of the previous analysis by comparing the results
obtained on each part.

Interestingly, unlike in the case of the ACN, we do not find any significant correlation between
either the curvature or torsion of the knots and the integral I. This should be compared with other
more ad hoc approaches, such as [34–36].

We also look at the sum of all Betti curves for each length and/or knot type. It turns out that
the overall shape of this ‘cumulative’ curve is the same, regardless of the knot type. One example
of such a curve is shown in figure 8 for the case of unknots of length 200. Note that the parameter
t used by Ripser is the diameter of the points’ neighbourhoods, rather than the radius, which has
the effect of stretching the domain’s length by two in figure 8.

It is interesting to point out certain clear characteristics of these cumulative functions, which
are present for each choice of knot type and length. The leftmost spike indicates the presence of
a large amount of rather short-lived homology classes that appear right after t = 0.1. This is due
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to the fact that two consecutive segments in a PL knot embedding whose internal angle is less
than or equal to arccos ( 3

4 ) ∼ 41.4◦ will produce such a class, as shown in figure 9. Therefore, the
presence of this spike can be regarded as a consequence of our choice to use the Vietoris–Rips
complex as an approximation of a knot’s neighbourhood. However, as pointed out in figure 9a, a
similar (potentially wider and higher) spike would have appeared if we had chosen the Čech
complex instead. Incidentally, the value of the maximum attained is therefore related to the
average number of small angles present in the embeddings. It is possible to remove this spike
by simply ignoring all short-lived bars appearing right after t = 0.1.

Similarly, the value of the second maximum might be of interest, as it appears to be related to
the average distance between the edges of PL embeddings in the given knot type.

We display the values of the average integral and the maximum of the average Betti curves for
the various knot types considered as a function of length in figure 10. In both cases, there appears
to be an almost perfect linear relation. Furthermore, unlike what can be observed in figures 11
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Figure 9. (a) A short-lived homology class in the Čech complex of P(K); these appear for angles smaller thanπ/3, when the
vertex point of a PL knot embedding K , together with the two adjacent points in P(K), have neighbourhoods that only intersect
in pairs for a small range of radii. When all three disks intersect, the length-three 1-cycle they generate in the Čech complex is
capped off by a 2-simplex. (b) The analogous situation for the Vietoris–Rips complex, where four vertices are needed to create
a short-lived class. In this case, the angle has to be smaller than arccos
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Figure 10. (a) Average of the integrals of the Betti curves for each knot type as a function of length. (b) Average of themaxima
of the Betti curves (figure 8) for each knot type as a function of length. (Online version in colour.)

and 12, here we have a clear division into knot types, with values increasing monotonically with
the knot type’s topological complexity. A possible explanation for the higher (inverse) correlation
between knot length and volume/Rg displayed in figure 11 is that many of these rather long knots
might be composite and hence localized.

6. Deviation from ideality
In this final section, we use the tools considered so far to introduce a naive way of quantifying
‘how much’ a given knot deviates from being ideal. The key idea follows from remark 2.3: we can
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Figure 11. Here, we focus on the correlations betweenI (K) and the volume of the convex hull (a) and Rg (b). We are splitting
the correlations according to the various knot types considered. (Online version in colour.)
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Figure 12. Correlation functions between the average crossing number andI (K). In (a), we consider all knots (with lengths
ranging from 10 to 100), while in (b), we are splitting among the various knot types considered (with lengths ranging from 50
to 200). (Online version in colour.)

use the fact that the PH of ideal knots has a predictable behaviour to quantify the dissimilarity of
the given knot from ideal knot embeddings. Note that our measure will quantify the difference of
a given embedding to all possible ideal embeddings, rather than just those belonging to the same
knot type.

Denote by S(K) = max{t ≥ 0|β1(K) �= 0}, and let ε be a small positive real number. Call fR,ε :
[0, R] −→ R≥0 the unique function obtained by considering the linear function taking value 1 on
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0, and value 0 on R − ε, and defined to be identically 0 after R − ε. Then define

δε(K) = 1
S(K)

∫ S(K)

0
fS(K),ε(t) · max{β1(K)(t) − 1, 0} dt. (6.1)

We claim that δε defines a sensible quantification of the ‘distance’ between the given
embedding and ideal ones. Let us examine the various components of equation (6.1) to
substantiate the claim. Recall from remark 2.3 that, for an ideal embedding KI of a knot, the
function β1(KI) takes the value 1 until t = 1

2 , where it jumps to m(K), indicating the appearance
of m(K) bars. These may not be the last bars appearing, but it is reasonable to assume that any
further bar will be short-lived. This is because, by definition, the self-touching solid torus νIR(K)(K)
‘occupies’ most of the volume surrounding the knot.

As we are modelling a knot, the value of β1(K) will usually be at least 1 on the interval [0, S(K)];
we thus calibrate for this information by considering max{β1(K)(t) − 1, 0}. The role of the function
fR,ε is to preserve the contribution of bars appearing early (e.g. for small values of the diameter),
and to erase the contribution of bars appearing towards the end of the support of β1(K). Of course,
this is not the only possible choice of a function with this property, but it is definitely one of the
simplest. The value of ε acts as a cut-off, meaning that all bars born after R − ε will not contribute
to δε .

It can be checked that as expected, for sufficiently small choices of the ε threshold, for the
trefoils in figure 4 we have (from left to right) 0 < δε(T1) < δε(T2) < δε(T3).

Data accessibility. The generated data and code are available at https://github.com/agnesedaniele/knot-
confinement-and-PH.
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