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ABSTRACT The advent of multidrug-resistant bacteria has hampered the development
of new antibiotics, exacerbating their morbidity and mortality. In this context, the gas-
trointestinal tract reveals a valuable source of novel antimicrobials. Microcins are bacter-
iocins produced by members of the family Enterobacteriaceae, which are endowed with
a wide diversity of structures and mechanisms of action, and exert potent antibacterial
activity against closely related bacteria. In this study, we investigated the antibacterial
activities of four microcins against 54 Enterobacteriaceae isolates from three species
(Escherichia coli, Klebsiella pneumoniae, and Salmonella enterica). The selected microcins,
microcin C (McC, nucleotide peptide), microcin J25 (MccJ25, lasso peptide), microcin B17
(MccB17, linear azol(in)e-containing peptide), and microcin E492 (MccE492, siderophore
peptide) carry different post-translational modifications and have distinct mechanisms of
action. MICs and minimal bactericidal concentrations (MBC) of the microcins were meas-
ured and the efficacy of combinations of the microcins together or with antibiotics was
assessed to identify potential synergies. Every isolate showed sensitivity to at least one
microcin with MIC values ranging between 0.02 mM and 42.5 mM. Among the microcins
tested, McC exhibited the broadest spectrum of inhibition with 46 strains inhibited,
closely followed by MccE492 with 38 strains inhibited, while MccJ25 showed the highest
activity. In general, microcin activity was observed to be independent of antibiotic resist-
ance profile and strain genus. Of the 42 tested combinations, 20 provided enhanced ac-
tivity (18 out of 20 being microcin–antibiotic combinations), with two being synergetic.

IMPORTANCE With their wide range of structures and mechanisms of action, micro-
cins are shown to exert antibacterial activities against Enterobacteriaceae resistant to
antibiotics together with synergies with antibiotics and in particular colistin.

KEYWORDS microcins, bacteriocins, multidrug resistance, antimicrobial activity, RiPPs,
synergy

The overuse and misuse of antibiotics in animal and human health generated the
emergence of resistance and its spread (1), which are responsible for the antibiotic

resistance crisis (2). Recent findings show that human and livestock microbiota have
become reservoirs of antimicrobial resistance (AMR) markers (3–5) that can be dissemi-
nated to the environment through wastewater treatment or manure (6). This issue is
exacerbated by the lack of development of novel antibiotics (7–9). In 2017 the World
Health Organization (WHO) warned that ”the world is running out of antibiotics’’ (10).
Among the emergent multidrug-resistant (MDR) bacteria, Enterobacteriaceae are partic-
ularly problematic, with MDR enteropathogens such as Escherichia coli, Klebsiella pneu-
moniae, and Salmonella strains causing ever frequent outbreaks (11–14). Due to their
double membrane and multiple efflux systems (15, 16), Enterobacteriaceae infections
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are notoriously difficult to treat, highlighting their importance as a target for new drug
developments. Faced with these challenges, new treatments with reduced risks of re-
sistance emergence and dissemination are needed.

The gastrointestinal tract, which is the seat for multiple microbial interactions, con-
stitutes a valuable source of novel antimicrobials (17, 18), and in particular of bacterio-
cins, which are antimicrobial peptides produced by bacteria through the ribosomal
pathway. Microcins are low molecular weight bacteriocins produced by members of
the family Enterobacteriaceae (19–21). More specifically, they are peptides below
10 kDa that exhibit potent antimicrobial activities directed against bacteria closely
related to the producing strains. Microcins are particularly diverse, many of them being
endowed with complex post-translational modifications, making them representatives
of ribosomally synthesized and post-translationally modified peptides (RiPPs) (22, 23).
Many bacterial species indigenous to livestock and human microbiota produce micro-
cins (20, 24, 25). Furthermore, commercially available probiotics isolated from animal
microbiota exhibit the presence of microcin-producing strains (26, 27). Being indige-
nous to the gut microbiota and exhibiting a narrow spectrum of antibacterial activity,
microcins constitute an attractive alternative to antibiotics. While antibiotics can cause
significant changes to microbiota compositions and are most often linked to dysbiosis
and related disorders (28–31) and can favor AMR dissemination (32), microcins are
expected to have a limited impact on the gut microbiota composition and induce a
reduced dissemination of resistance, should it emerge. Indeed, other bacteriocins, such
as nisin and pediocin PA-1, which both exhibit a narrow spectrum of activity in com-
parison with antibiotics, have been shown to induce significantly lower changes to the
host microbiota (33–36). Given the narrow spectrum of activity of microcins that can
vary within the same genus or species, a comprehensive study of their spectra of activ-
ity is required to determine which microcin is more appropriate against a given patho-
gen. Faced with the AMR problem, drug combinations offer a promising reprieve,
whereby combining multiple drugs should increase the energetic costs of resistance
development (37). As of yet there are no studies exploring the interactions between
microcins or between microcins and antibiotics.

In this study, we explored for the first time the potential of four microcins with spe-
cific structures and mechanisms of action, namely, microcins C (McC), J25 (MccJ25),
B17 (MccB17), and E492 (MccE492) (Table 1, Fig. 1) (19, 21) to kill, inhibit, or displace a
given pathogen using a collection of Enterobacteriaceae resistant to antibiotics.
Enterobacteriaceae from three species, E. coli, K. pneumoniae, and S. enterica, isolated
from different origins and exhibiting resistance against different antibiotics were
selected for this purpose. The microcins were tested alone or in pairwise microcin-
microcin or microcin-antibiotic combinations.

RESULTS

Four microcins, McC, MccJ25, MccB17, and MccE492, belonging to the RiPP family
were selected for their potent and narrow spectrum of activity directed against entero-
pathogens, their stability to harsh conditions, and their diversity of structures and
mechanisms of action (Fig. 1). More precisely, McC is a 7-amino acid nucleotide peptide
that is cleaved in susceptible cells to release an aspartyl adenylate mimic that targets
aspartyl-tRNA synthetase (38). MccJ25 is a 21-amino acid lasso peptide with an

TABLE 1Microcins used in this study

Microcin Producer mol wt (Da) Type of RiPPs Reference
McC E. coli 1,177 Nucleotide peptide 72
MccJ25 E. coli 2,107 Lasso peptide 39
MccB17 E. coli 3,093 Linear azol(in)e-containing peptide 41
MccE492 K. pneumoniae 8,781 Siderophore peptide 44
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N-terminal macrolactam ring threaded by the C-terminal tail (39), which is imported in
susceptible cells through interaction with the membrane proteins FhuA and SbmA and
targets RNA polymerase (40). MccB17 belongs to the linear azol(in)e-containing pep-
tide (LAP) family. It contains 43 amino acids, nine of which are converted to thiazole or
oxazole rings (41, 42). It is imported in susceptible cells through interaction with the
membrane proteins OmpF and SbmA and targets DNA gyrase (43). Finally, MccE492 is
a 84-amino acid siderophore-peptide where the C-terminal serine carboxylate is linked
to a glycosylated enterobactin derivative (44). It both perturbs the inner membrane
permeability and targets the mannose permease (45).

Production and purification of microcins. The four microcins were produced het-
erologously in E. coli and their purification was bio-guided using agar diffusion assays
against two reference indicator strains (Table S4). MccJ25, McC, MccB17, and MccE492
were purified at yields of 3.5 mg/L, 9.1 mg/L, 1 mg/L, and 4.0 mg/L of culture, respec-
tively (Table S5).

Spectrum of activity of the microcins. The four purified microcins were tested
against 54 pathogenic enterobacteria from three species, E. coli, K. pneumoniae, and S.
enterica, isolated from different hosts and/or environments: human and animal, animal
food, farm indoor air, and wastewater treatment plant (Tables S1-S3). Most of these strains
are MDR and their resistance profiles cover a wide panel of antibiotics differing both in
structures and mechanisms of action. Out of all the isolates, only three did not exhibit any
antibiotic resistance and the rest showed resistances from one to 11 different antibiotics.

The four microcins exhibited heterogeneous spectra of activities, as illustrated by
agar diffusion assays (Fig. 2) and MIC measurements (Fig. 3A, Tables S7 to S9). Every
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FIG 1 Mechanisms of action of McC, MccJ25, MccB17, and MccE492. MccE492 (A) and MccJ25 (D) gain entry to the periplasm
through siderophore receptors FepA/Fiu/Cir (A) or FhuA (D) coupled to the TonB-ExbB-ExbD complex for translocation. McC (B)
and MccB17 (C) enter the periplasm through the porin OmpF. McC gains access to the cytoplasm through YejABEF, whereas
MccB17 and MccJ25 use SbmA. When in the cytoplasm, MccJ25, MccB17, and McC target RNA polymerase, DNA gyrase, and
aspartyl tRNA synthetase, respectively, to kill the cells. For MccE492, it does not enter the cytoplasm but inserts itself into the
inner-membrane by stably associating with ManYZ and inducing depolarization of the inner membrane and perturbation of
the mannose transport. *, Inside bacteria McC is processed by a deformylase and the peptidases A, B, and N, resulting in the
formation of a non-hydrolysable Asp-tRNA mime, thus blocking translation. Figure made with Biorender.
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isolate showed susceptibility to at least one microcin with MIC values ranging between
0.02 mM and 42.5 mM. The dendrogram constructed from the susceptibility profiles did
not reveal a clear clustering per bacterial species. Nevertheless, general trends were
observed. The lowest susceptibility corresponded to inhibition by only one microcin, a
trend mostly observed for K. pneumoniae, which revealed almost non-susceptible to
MccJ25 and MccB17, with the exception of strain K. pneumoniae C4750, susceptible to
all four microcins (Table S8). By contrast, E. coli presented both the lowest number of
strains susceptible to only one microcin and the highest number of strains susceptible
to all four microcins. The number of strains susceptible to each microcin is shown in
Fig. 3B. McC revealed the widest spectrum of activity, with 46 strains (85.2%) inhibited
within the range of concentrations tested. It was followed by MccE492, which was
active against 38 strains (70.4%), then MccB17 with 23 strains (42.6%) and MccJ25 with
19 strains (35.2%). Despite exhibiting the narrowest spectrum of inhibition, MccJ25
presented the lowest recorded MIC (0.02 mM), and thus, the highest efficacy. We
assessed the type of inhibition by calculating the ratio R between the MIC and MBC
(Fig. 3C). When R . 4, the activity of a given antimicrobial compound is considered

FIG 2 Agar diffusion assays for McC, MccJ25, MccB17, and MccE492 against E. coli, K. pneumoniae, and S. enterica strains.
Microcins were deposited at the concentration of 100 mg/mL.
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bacteriostatic, while it is considered bactericidal for R # 4 (46). Microcin inhibition
varies between bacteriostatic and bactericidal depending on the tested strains.
MccJ25, MccB17, and MccE492 appear mainly bactericidal while McC, which displays
the widest spectrum of activity, appears mainly bacteriostatic.

To assess the relationships between microcin susceptibility and antibiotic resistance
profiles, we performed multifactorial analysis (MFA) based on categorized susceptibility to
microcins and antibiotics (Fig. 4). MFA revealed a clustering for K. pneumoniae (except for
isolate C4750) and E. coli, while S. enterica showed a more heterogeneous distribution
(Fig. 4A). The strains that showed most susceptible to the microcins were projected on the
bottom-right panel, while the strains less susceptible to microcins (weakly susceptible to
MccC), and especially all K. pneumoniae, clustered on the upper left panel. Representation
of the microcin and antibiotic susceptibility categories in the first two components of the
multicomponent analysis (MCA) (Fig. 4B) suggested several associations between resistan-
ces to a specific microcin and a specific antibiotic (namely, gentamicin/MccJ25, tobramy-
cin/MccB17, and amoxicillin-clavulanic acid/McC). The MFA analysis shows that resistance
phenotypes toward MccJ25, gentamicin, and tobramycin pointed in the same direction.
However, only the relationship between gentamicin and MccJ25 resistances was con-
firmed by Chi-square test for independence.

FIG 3 Efficacy of microcins against Enterobacteriaceae isolates. McC, MccJ25, MccB17, and MccE492 were tested against a collection of 54
Enterobacteriaceae isolates. (A) Heatmap representing the MIC values (in mg/mL). High, medium, and low sensitivity correspond to MIC # 10,
10 , MIC # 50, and MIC . 50 mg/mL, respectively. The corresponding values in mM are provided in Tables S6 to S8. Strains are noted EC for E. coli, K for
K. pneumoniae, and S for S. enterica. (B) Susceptibility to microcins per bacterial species. (C) Inhibition type observed per microcin.
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FIG 4 MFA correlations identified between microcin and antibiotic susceptibilities. (A) Representation of the strains in the first
two dimensions, colored per species. (B) Representation of the susceptibility categories in the first two dimensions. In red:
susceptibility to microcins (H, high, MIC # 10 mg/mL, L, low, 10 , MIC # 50 mg/mL, N, no activity up to 50 mg/mL); in black:
susceptibility to antibiotics (R, resistant, S, susceptible).
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Microcin-microcin and microcin-antibiotic combinations. We further looked at
the possibility of combining microcins in different consortia either with each other or
with different antibiotics presenting diverse mechanisms of action. The MICs of the
antibiotics and microcins alone against the indicator strains were first determined
(Table S6). Then, 42 consortia were tested and the fractional inhibitory concentration
(FIC) index, indicative of the combination effect (47), was determined (Fig. 5). Out of all
the tested combinations, 22 were observed to be indifferent (52.4%), two were additive
(4.8%), 16 were partially synergetic (38.1%), and two were synergetic (4.8%) (Fig. 6).
Interestingly, no antagonistic effect was detected.

All the combinations between MccJ25 and antibiotics exhibited interactions within
the partial synergy range, whereas McC combined with antibiotics produced two inter-
actions within the partial synergy range with colistin (FIC = 0.63) and kanamycin

FIG 5 FIC values measured for all consortia tested in the study against E. coli and Salmonella indicator strains. (A) shows
the FIC values for the antibiotic microcin-consortia. (B) shows the FIC values for the microcin-microcin consortia. FIC # 0.5:
synergy, 0.5 , FIC # 0.75: partial synergy, 0.75 , FIC , 1: additivity and 1 # FIC # 2 = indifference.
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(FIC = 0.75) (Fig. 5). The interactions between microcins and antibiotics were much
more synergetic than pairwise microcin-microcin interactions. Out of the 20 positive
interactions (FIC , 1), pairwise microcin-microcin combinations only accounted for
two (10%) with MccB17/McC and MccE492/McC. Indeed, the only synergetic effects
were observed for MccJ25/colistin and MccJ25/chloramphenicol combinations.
MccB17 accounted for five partially synergetic in total. McC exhibited three partially
synergetic and one additive effects in total, while MccE492 showed one additive and
two partially synergetic interactions (Fig. 5). The most potent beneficial interactions
between microcins and antibiotics are listed in Table 2.

DISCUSSION

The objective of this study was to evaluate the potential of microcins as a treatment
against Enterobacteriaceae notorious for their capacity to develop resistances to conven-
tional antibiotics (15, 16) and or persist within the host (48, 49). Despite reviews discussing
the prospects of using microcins as novel therapeutics, due to their high specificity, potent
antibacterial activity and reduced collateral damage to the host’s microbiome (19, 21, 22,
50), there have been few comprehensive studies on this point.

Hence, we first investigated whether four microcins (McC, MccJ25, MccB17, and
MccE492) can exert bacterial inhibition against a variety of Enterobacteriaceae, both MDR
and non-MDR. In total, 54 natural isolates were tested, belonging to the species E. coli, K.
pneumoniae, and S. enterica, all considered urgent and/or serious threats by the Centre for
Disease Control and Prevention (CDC). None of the studied Enterobacteriaceae were non
susceptible to all microcins within the range of tested concentration (up to 50 mg/mL).
However, there was a high variability in the effectiveness of the different microcins to in-
hibit the growth of bacteria. The lowest recorded MIC values were 0.03 mM, 0.1 mM, 1 mM
and 2 mM for MccJ25, MccE492, McC, and MccB17, respectively. Concomitantly, McC
recorded the widest spectrum out of all studied microcins, with 85.2% of strains inhibited
within the range of concentrations used, followed by MccE492 with 70.4% of strains inhib-
ited. According to the data, the most efficient microcins were MccE492 and MccJ25, albeit
with the narrowest spectrum for MccJ25 (35.2%). In the case of MccE492, these observa-
tions are in line with previous studies, whereby siderophore microcins including MccE492
were found to confer a significant fitness advantage (26). Moreover, D’Onofrio et al. (51)
have shown that adding exogenous siderophores to synthetic media can promote the
growth of previously uncultured bacteria, via iron acquisition. Their importance is
increased in the context of a host, where iron availability is reduced, suggesting MccE492,
and siderophore microcins by extension, are promising therapeutics.

Looking at the type of inhibition effectuated by microcins it was observed to be
variable throughout the different strains, changing between bacteriostatic and bacteri-
cidal. Indeed, the highest variation in the type of inhibition activity is observed for McC
and MccJ25. Both microcins were recorded to have two different mechanisms of
action, with one acting in the cytoplasm and the second at the level of the inner mem-
brane but at much higher concentrations, close to mM (52–55). Although the two
mechanisms are assumed to be independent, in reference to the concept that has
been proposed for conventional antibiotics (56), it could also be considered that for
both microcins the main mechanism of action could result, at least for a part, in

TABLE 2Most potent synergetic interactionsa

Microcin MICc/MIC Antibiotic MICc/MIC FIC index
MccJ25 1/4 Chloramphenicol 1/4 0.50
MccJ25 1/4 Colistin 1/4 0.50
MccJ25 1/2 Ciprofloxacin 1/16 to 1/32 0.58
MccB17 1/2 Ciprofloxacin 1/16 0.56
McC 1/2 Colistin 1/16 0.63
aMICc, MIC of the compound in the combination; MIC, MIC of the compound alone. MICc/MIC is the ratio between
the resultingMIC of an antimicrobial agent within the consortium and the MIC of the same antimicrobial by itself.
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deleterious changes in the inner membrane, leading consecutively to a bactericidal
effect. Both alternatives could explain the variety observed within their activity.
Moreover, it cannot be discarded neither that reduction of microcin uptake at the
outer membrane, essentially via the involved receptor or porin, reduces the microcin
concentration in the cytoplasm, which thus cannot reach the level required for a bacte-
ricidal activity. Furthermore, the activities of the tested microcins seemed independent
of the species and antibiotic resistance profiles of the pathogens. Given that the recep-
tors and targets of these microcins are well characterized, a comprehensive genomic
study is needed to shed more light on any potential association between susceptibility
to a given microcin and the antibiotic resistance profile or the species of a given strain.

Comparing microcin susceptibilities and antibiotic resistance profiles of the strains
revealed a correlation between MccJ25 and gentamicin resistances. Although the mecha-
nisms of action of these two pairs of antimicrobial molecules are different, this result sug-
gests that cross-resistance may occur between microcins and conventional antibiotics. It
must be noted that the resistance to antibiotics of the collection of Enterobacteriaceae was
measured phenotypically. Furthermore, despite the detection of antibiotic resistance
genes coding for acquired resistance enzymes, it remains unclear whether these resistan-
ces are due to acquired AMR genes or if mutational events on the targets of the antibiotics
could also be implicated. Hence, concerning the statistical relevance of the correlation
between gentamicin and MccJ25 resistance, an in-depth study of the mechanisms of ami-
noglycoside resistance should be performed in these isolates, mostly those related to
mutations in the antibiotic target, to detect potential microcin-antibiotic resistance interac-
tions. Moreover, a larger collection of gentamicin-susceptible and gentamicin-resistant iso-
lates could be analyzed in the future.

Secondly, we investigated whether it was possible to enhance microcin activity by
combining them between each other or with a collection of antibiotics. This is a standard
method to circumvent antibiotic resistance and in keeping with the comprehensive aim of
this study, we chose antibiotics covering a wide range of mechanisms (membrane degra-
dation, inhibition of cell wall biosynthesis or of protein synthesis by targeting the 30S and
50S ribosome, etc.). There were no observations of any antagonistic effects, yet no obser-
vation of a highly significant synergy (FIC , 0.5). The most promising consortia were
observed between microcins and antibiotics. MccJ25 presented the most enhanced inter-
actions, with the best FIC indexes measured for combinations with chloramphenicol and
colistin. Colistin interacts with the bacterial cytoplasmic membrane changing its perme-
ability (57), which could explain its ability to enhance MccJ25 activity, presumably by
increasing the microcin uptake, which would then rely on both import through FhuA and
SbmA and membrane permeabilization. At high concentrations, MccJ25 has also been
observed to cause membrane perturbations and disruption of the cytoplasmic membrane
gradient (55), which could also contribute to the synergy between colistin and this micro-
cin. MccJ25 and chloramphenicol both inhibit protein synthesis but using different mecha-
nisms, i.e., by blocking transcription through binding to RNA polymerase for MccJ25 (54)
and by targeting translation for chloramphenicol, which reversibly binds to the 50S ribo-
somal L16 protein (58). These combined effects could explain the synergetic effect
between MccJ25 and chloramphenicol. Tetracycline, kanamycin, and gentamicin, all 30S
inhibitors (59, 60), present a lower FIC index when combined to MccJ25. This suggests that
combinations of MccJ25 with 50S inhibitors are more beneficial than with 30S inhibitors.

Given that there is a finite number of entry pathways into a target cell, there was over-
lap in the mechanisms of the tested compounds. For instance, MccJ25 and rifampicin
share the FhuA and SbmA receptors they use for uptake, and RNA polymerase as their cy-
tosolic target, yet no antagonism was observed between them. According to Mathavan et
al. (61), MccJ25 occupies a location within FhuA similar to that of ferrichrome, its natural
ligand. Moreover, ferrichrome and the antibiotics rifampicin and albomycin were also
shown to occupy similar sites within FhuA (62). Furthermore, while MccJ25 targets the b ’

RNA polymerase sub-unit (63), rifampicin targets the b sub-unit (64). These different mech-
anisms at the level of the RNA polymerase interaction coupled with the lack of tight
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structural specificity of FhuA for its ligands could explain the lack of antagonism between
MccJ25 and rifampicin. On the other hand, SbmA also presents the ability to accommo-
date and transport various substrates including antimicrobial peptides such as MccB17
(65) and proline-rich AMPs (66). Indeed, the use of SbmA is shared by both MccB17 and
ciprofloxacin on one hand and MccJ25 and ciprofloxacin on the other. Both consortia
recorded similarly partially synergetic effects at 0.56 and 0.59, respectively. The lack of an-
tagonism despite sharing SbmA as a receptor has also been recorded for ciprofloxacin and
rifampicin (67, 68), suggesting that both SbmA and FhuA structural specificity is not a limit-
ing factor when designing drug combinations. It could be hypothesized that the use of
these consortia, would increase the potential of cross-resistance emergence. Nevertheless,
combining ciprofloxacin and rifampicin was shown to reduce the frequency of resistance
emergence in comparison with ciprofloxacin alone, which was attributed to rifampicin kill-
ing any ciprofloxacin resistant subpopulation (67).

No significant enhancing effects were recorded by combining MccE492 with antibi-
otics. MccE492 activity relies on simultaneously disrupting mannose transport and
inner membrane pore formation through binding to the mannose permease (45). This
suggests that microcins with a cytoplasmic target are more prone to exert synergic
activities with antibiotics.

Combining two by two, the microcins did not reveal much synergetic effects, with the
exception of McC and MccB17. This could be due to the narrow spectrum of activity of
microcins. It must be noted that our results show different spectra of activity of the micro-
cins, coupled with the lack of antagonism when combining different microcins. It could
thus be beneficial to use microcin consortia, not necessarily for synergetic effects, but to
cover a wider spectrum of pathogens. It must be noted, however, that the frequency of
natural resistance emergence to microcins is still poorly studied. Yet, both the lack of an-
tagonism and enhancing effects between microcin and antibiotics shown in this study
appear promising, especially in the case of colistin, due to the toxicity of the latter.

To summarize, the microcins tested were effective against the collection of
Enterobacteriaceae isolates within the range of concentrations tested. McC exhibited the
widest range of activity, whereas MccJ25 accounted for the lowest MIC values.
Furthermore, both McC and MccJ25 activities presented the highest variation in type of
inhibition. Finally, all the tested combinations exhibited significantly varying FIC indexes,
with microcin-antibiotics combination having the most synergetic effects observed.

MATERIALS ANDMETHODS
Bacterial strains and plasmids. The E. coli, K. pneumoniae, and S. enterica isolates along with their

serotypes and resistance profiles to antibiotics are listed in Tables S1, S2, and S3, respectively. These
strains were obtained from the collection of the University of La Rioja (Logroño, Spain) and from
Agriculture Canada’s pathogen collection and their phenotypes and genotypes of resistance were
known from previous studies. The E. coli strains used for heterologous production of microcins together
with their microcin-encoding plasmids, and the indicator strains used for susceptibility assays are listed
in Table S4. Two reference indicator strains were also used, E. coli ATCC 25922 and S. enterica subsp.
enterica serovar Newport ATCC 6962 (later termed S. Newport ATCC 6962).

Production and purification of microcins. The microcin producing strains were cultured in LB me-
dium or in M63 minimal medium (for 1 L, 3 g KH2PO4, 7 g K2HPO4, 2 g (NH4)2SO4, 1 g Casamino Acids)
supplemented with glucose (2 g/L), thiamine (1 mg/L), and MgSO4 (0.2 g/L). Ampicillin (Amp) or chlor-
amphenicol (Chl) were added as selection factor when appropriate, at 50 mg/mL and 34 mg/mL, respec-
tively. For all microcins, an overnight culture of the producing E. coli strain was grown at 37°C and 200
rpm and used at 1% to inoculate 500 mL of supplemented M63 medium, for an overnight culture in 2 L
erlemneyers at 37°C and 200 rpm. The cultures were centrifuged at 12,000 rpm and 4°C for 20 min. For
McC, MccJ25, and MccE492, the culture supernatants were collected. For MccB17, the pellet was col-
lected and suspended in 25 mL acetic acid 100 mM, EDTA 1 mM, and heated at 100°C under shaking at
80 rpm. The resulting suspension was then centrifuged at 4,250 g and 4°C for 20 min for collection of
the clear supernatant. The culture supernatants of strains producing McC, MccE492, and MccJ25 and pel-
let extract of strain producing MccB17 were treated by solid phase extraction on a Sep-Pak C18 35 cc
(Waters) for MccB17, McC, and MccJ25, or on a Sep-Pak C8 35 cc (Waters) for MccE492. In all cases, the
cartridges were conditioned with methanol, acetonitrile (ACN), and 0.1% trifluoroacetic acid (TFA) (A1,
for McC, MccB17 and MccJ25) or formic acid (FA) in milliQ water (A2, for MccE492), successively. After
loading the supernatants, the cartridges were washed with A1 or A2 and then eluted with A1 or A2 to-
gether with increasing the amount of ACN. McC, MccB17, MccJ25, and MccE492 were eluted with 10%,
25%, 30%, and 40% ACN, respectively. The modified form of MccE492, in which the C-terminal Ser
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residue is connected to three N-(2,3-dihydroxybenzoyl) units through a b-D-glucose moiety (44), was
purified. The SPE fractions were then concentrated and submitted to reverse phase high performance
liquid chromatography (RP-HPLC), using mobile phase A1 (for McC, MccB17 and MccJ25) or A2 (for
MccE492) together with ACN. McC, MccB17, and MccJ25 were purified from SPE fractions on a Mandel
Shimadzu 2D HPLC system, using a C18 Phenomenex column (Luna 10 mm, 250 mm � 21.10 mm) at
6 mL/min, and a gradient from 0% to 50% ACN in 20 min, and to 100% ACN in 10 min. MccE492 was
purified on a biocompatible RSLC HPG-3400RS chromatographic system (Thermo Fisher Scientific), on a
Luna C18(2), 250 � 4.6 mm, 100 Å, 5 mm column (Phenomenex) at 1 mL/min, using a gradient from 32%
to 42% ACN in 22 min, and to 100% ACN in 1 min.

Peptide purification was monitored upon testing the antibacterial activity of the collected fractions
against two reference indicator strains (Table S4). Purity of the collected microcins was checked by ana-
lytical HPLC and LC-MS (Fig. S1) and determined as$ 95%. Quantification of the microcins was obtained
using BCA and Lowry assays.

Liquid chromatography–mass spectrometry. The purified peptides were analyzed by liquid chro-
matography–mass spectrometry (LC-MS) on a high-resolution electrospray—quadrupole—time of flight
(ESI-Q-TOF) instrument, using either a 1290 Infinity II UPLC (chromatography system connected to a
hybrid ion mobility Q-TOF instrument (6560, Agilent), for MccJ25, McC and MccB17, or an Ultimate 3000-
RSLC system (Thermo Fisher Scientific) connected to a Maxis II ETD ESI-Q-TOF instrument (Bruker
Daltonics), for MccE492. For the former LC-MS system, the separation was achieved on a Poroshell 120
EC-C18 column (2.1 � 100 mm, 2.7 mm, Agilent) at a flow rate of 400 mL/min, using an A2/ACN gradient
from 10% to 100% ACN over 15 min. For the latter system, the separation was achieved on a Polar
Advantage II Acclaim column (2.2 mm, 120 Å, 2.1 � 100 mm, Thermo Fisher Scientific) at a flow rate of
300 mL/min, using an A2/ACN gradient from 10% to 100% ACN over 15 min. The MS detection was per-
formed in positive mode.

Antibacterial assays. (i) Agar diffusion assays. The tested strains were cultured overnight in LB me-
dium at 37°C and 200 rpm before being inoculated at 1% into soft agar LB medium (0.75%). Wells were dug
out and 80mL of microcin were added in each well and the plates were incubated at 37°C overnight.

(ii) Measurement of minimal inhibitory and bactericidal concentrations (MIC and MBC). MIC
determination was carried out using the broth microdilution assay in 96-well plates and following the
Clinical and Laboratory Standards Institute (CLSI) guidelines. Two-fold serial dilutions of antibiotic were
obtained starting from stock solutions at 100 mg/mL. Plates were incubated at 37°C, and growth was meas-
ured as absorbance at 600 nm over a period of 18 h. The MIC was determined as the lowest concentration
that completely inhibited the bacterial growth. The MBC was determined by inoculating a MH agar surface
with 10mL from wells showing complete inhibition and incubating for 24 h at 37°C.

Antibiotic stock solutions were prepared following the CLSI guidelines and aliquoted in MilliQ water
for –20°C storage. Microcins were aliquoted in MilliQ water at 200mg/mL and stored at –20°C.

(iii) Measurement of FIC indexes. Interdependent effects analysis for all the tested combinations
was performed in triplicates against the two indicator strains E. coli ATCC 25922 and S. Newport ATCC
6962 (Tables S4 to S6), using the microdilution checkerboard method following the CLSI guidelines. The
FIC index was interpreted as follows (47): synergetic effect FIC # 0.5, partial synergy 0.5 , FIC # 0.75,
additivity 0.75 , FIC , 1, neutral 1 # FIC # 4, and antagonism FIC . 4. For the MccJ25, MccB17, and
MccE492 combinations with antibiotics, E. coli ATCC 25922 was used as indicator strain. For McC and
antibiotics combinations, S. Newport ATCC 6962 was used. Concerning the pairwise microcin-microcin
combinations, S. Newport ATCC 6962 strain was used for McC/MccJ25 and McC/MccE492 while E. coli
ATCC 25922 was used for the other combinations.

Statistical analysis. All statistical analyses were performed in R software version 4.1.1. Chi-square
test for independence was used to test for independence between antibiotic and microcin susceptibility.
Multivariate factorial analysis (MFA) was performed using FactoMineR (69) and graphical representations
were constructed using factoextra (70) and plotly (71) packages. Two groups of variables were consid-
ered: (i) microcin susceptibility, categorized into high (MIC # 10 mg/mL), low (10 , MIC # 50 mg/mL)
and no (MIC . 50 mg/mL) activity and (ii) antibiotic susceptibility, categorized into sensible (S) and re-
sistant (R). The bacterial species was considered as supplementary variable.
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