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Besides its contribution to the development of rheumatic diseases, the gut microbiota
interact with anti-rheumatic drugs. The intestinal microbiota can directly metabolize many
drugs and indirectly change drug metabolism through a complex multi-dimensional
interaction with the host, thus affecting individual response to drug therapy and adverse
effects. The focus of the current review is to address recent advances and important
progress in our understanding of how the gut microbiota interact with anti-rheumatic
drugs and provide perspectives on promoting precision treatment, drug discovery, and
better therapy for rheumatic diseases.
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INTRODUCTION

Although much of the mechanism is yet to be learnt, current evidence indicates that microbes might
be vital environmental factors in initiating and propagating the onset of autoimmune rheumatic
diseases. For a long time, specific infectious microorganisms have been suspected to trigger
rheumatic diseases in genetically susceptible individuals—for example, Mycobacterium
tuberculosis was once postulated to cause rheumatoid arthritis (RA), leading to the gold salt
remedy to treat the communicable disease (1). This concept was abandoned because of the lack of
evidence to prove this was the case. Other bacteria, such as Porphyromonas gingivalis (P. gingivalis)
and Proteus mirabilis (P. mirabilis), were also considered to be candidate pathogens to cause RA
(2–8) as well as Klebsiella pneumoniae, Salmonella, and Yersinia as pathogens for spondyloarthritis
(9, 10). However, none of these was proven to directly cause these diseases.

Findings of recent studies rather suggest that dysbacteriosis in microbiome contributes to a range
of chronic conditions, such as inflammatory bowel disease (IBD) (11), diabetes (12), multiple
sclerosis (13), autism (14), various cancers (15–17), and rheumatic diseases (18).

Dysbacteriosis is the alteration of bacterial composition from healthy status to disease, and this
has been well documented in several studies in patients with RA. Vaahtovuo et al. (19) found that,
compared with fibromyalgia, patients with early RA had significantly fewer bifidobacteria and
bacteria of the Bacteroides-Porphyromonas-Prevotella group, Bacteroides fragilis subgroup, and
Eubacterium rectale–Clostridium coccoides group. Scher et al. (20) reported an expansion of
Prevotellaceae but a reduction of Bacteroidaceae in new-onset-RA patients. The disbacteriosis in
RA patients was further confirmed and expanded in oral microbiota (21). Interestingly, medically
treated arthritic animals in preclinical models and RA patients in clinical remission can restore their
gut flora composition (21, 22). These findings highlight the importance of gut microbiota ecological
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balance to the wellbeing of the host and imply that certain
bacteria are beneficial to the host by countering the potential
harmful bacteria. On the other hand, these raise the points as to
how medications affect the community of microbiota and vice
versa. The term pharmacomicrobiotics has been introduced for
studies investigating the effect of microbiome variations on drug
disposition, action, and toxicity (23). This review will focus on
our current understanding of the interaction between disease-
modifying anti-rheumatic drugs (DMARD) and the
gut microbiota.
HOW DOES MICROBIOTA INFLUENCE
RHEUMATIC DISEASES?

It is assumed that bacteria first colonize the body of most infants
soon after birth. However, several studies reported that bacterial
DNA were found in the placenta (24, 25), meconium (26), and
amniotic fluid (27). This has put forth an idea that mothers are
transferring bacteria to the fetus in the womb before birth to
establish a fetal–maternal microbiome relationship.
Interestingly, activated memory CD4+ T cells developed in
fetal circulation (28). The important question raised by these
findings is that the placenta is not a totally sterile environment as
we thought; the fetus may harbor microbes, which possibly shape
our immune system during the earliest days of life even
before birth.

The enormous and diverse community of gut microbiota
constitutes a distinct network that is vital to make the immune
system work functionally, but how the dynamics of microbiome
shape autoimmune diseases is unclear. Firstly, the alien
microorganisms become the fruitful sources of antigenic
variation to interact with immune cells to maintain
homeostasis (29). Approximately 70–80% of the immune cells
of the body populate in our gastrointestinal tract. As a result of
the coevolution, microorganisms and intestinal immune cells
form a bidirectional relationship. Multiple autoimmune and
inflammatory diseases, such as RA, are classically considered T
cell-mediated disorders (30). The microbiota and its metabolite-
associated signals are responsible for the activation, polarization,
and function of CD4+ T cells, including T-bet+ T helper type 1
(Th1), GATA3+ Th2, retinoic receptor-associated orphan
receptor (ROR)-gt+ Th17, and FOXP3+ T regulatory (Treg)
cells (31). A landmark study highlighted that segmented
filamentous bacteria (SFB) alone is sufficient to induce the
differentiation of lamina propria Th17 cells in mice (32).
Notably, mono-colonization with SFB in germ-free mice
rapidly induces the onset of autoimmune arthritis and
reinstated the lamina propria Th17 cell compartment (33).
However, SFB is not found to be colonized in humans.
Additionally, a similar sequence between specific microbial
peptides and host autoantigens, resulting in the production of
cross-reactive T cells targeting both parts, has long been
recognized as the molecular mimicry that may be another
potential mechanism for the involvement of the microbiome in
rheumatic disease (34–36).
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Aside from T cells, microbial exposures can activate B
cells and induce immunoglobulin (37–40). Antinuclear
antibodies (ANA) are a hallmark feature of systemic lupus
erythematosus (SLE) (41). Lymphotoxin-deficient mice
show the development of ANA by 3 months of age,
including anti-U1-ribonucleoprotein, anti-Sm, anti-Scl70/
topoisomerase-I, anti-centromere protein B, anti-SSA/Ro52,
and anti-Jo1 antibodies. Treating lymphotoxin-deficient mice
with antibiotics or in a germ-free condition (42) reduced the
prevalence of ANA compared to their littermates (43).
Antibodies directed against dsDNA have been associated with
SLE disease severity. A recent study reported that serum anti-
Ruminococcus gnavus strain-restricted antibodies correlated
directly with SLE disease activity index (SLEDAI) score and
anti-native DNA levels but inversely correlated with C3 and C4
in lupus patients (44). Fecal transplantation from lupus mice to
germ-free recipients resulted in enhanced intestinal immune
response and upregulated expression of antibody titers against
dsDNA (45). Oral gavage of Roseburia intestinalis into a mouse
model of spontaneous antiphospholipid syndrome in NZW ×
BXSB F1 triggered the development of anti-human b2
glycoprotein protein I antibodies and thrombotic events (46).

Taking these data together, the above-mentioned studies
indicate that commensal microbiota play a role in impacting
on the physiological state of the immune cell subsets and are
prone to increase the susceptibility to autoimmune responses
and reprogramming of immune cells. It must be emphasized that
the autoimmunity-triggering effect of these bacteria is the result
of a defective counter-mechanism from other commensal
microbiota. Prebiotics and probiotics are intended to impact
dysbacteriosis and restore the balance between harmful and
beneficial bacteria.
DIALOGUE BETWEEN THE GUT
MICROBIOTA AND THE RHEUMATIC
THERAPEUTICS

Since the long-term use of anti-rheumatic drugs and the individual
response of patients may vary greatly, the ultimate aim of
rheumatologists is to maximize clinical outcomes and minimize
their side effects.Most anti-rheumatic drugs are orally administrated
and under the process of commensal microorganisms that alter the
bioavailability of the drug in the intestine directly or indirectly.With
the advent of pharmacomicrobiomics, it has drawn a growing
interest to profile interactions between drugs and gut bacteria
(47–49).

The metabolism of drugs by trillions of gut microbiota is
multidimensional—for example, the prodrug sulfasalazine (SSZ)
can hardly be absorbed in the upper intestine, and the majority of
this agent is metabolized by the bacterial enzyme azoreductase
into its active components sulfapyridine and 5‐aminosalicylic
acid (ASA) functionally targeting colon sites (50). The intestinal
microbiota harbor diverse b-glucuronidase enzymes that
manipulate the pharmacokinetics of oral drugs. Bacteria such
as Clostridium, Peptostreptococcus, and Staphylococcus are able to
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secrete b-glucuronidases (51), which release glucuronic acid
(GlcA) sugars from complex carbohydrates. Some chemicals,
like nonsteroidal anti-inflammatory drugs (NSAIDs), are
conjugated to GlcA (52, 53). Targeting luminal bacterial
b-D-glucuronidase can reduce NSAID-related intestinal
mucosal injury through halting the hydrolysis of NSAID
glucuronides (54).

Aside from the mechanism of microbial enzymes to affect
their biotransformation, a recent study emphasized that drug-
metabolizing microbial proteins can contribute to the in vivo
drug metabolism of gnotobiotic mice and provide evidence that
metagenomics and genomics sequence data can explain the
capacity of both isolated gut bacteria and complete
communities to convert specific drugs (55). It was found that,
at 7 h after oral gavage of dexamethasone to germ-free mice or
gnotobiotic mice mono-colonized with Clostridium scindens (C.
scindens), dexamethasone was significantly reduced and
androgen metabolite increased in gnotobiotic mice mono-
colonized with C. scindens in the caecum. This phenomenon
was also found in prednisone, prednisolone, cortisone, and
cortisol and demonstrated that C. scindens metabolizes
endogenous steroid hormones.

A recent study screened 1,197 drugs against 40 representative
gut bacterial strains and found that 24% of the drugs affected the
in vitro growth of bacteria (56). Therefore, the mechanistic
understanding of gut microbiota and drugs is still complex;
however, manipulating the microbiota in order to promote a
better response needs to be further investigated.
INTERACTION BETWEEN MICROBES
AND CORTISONE

Since compound E was introduced by Philip Hench to treat RA
successfully (57), glucocorticoids become the strong, broad-
spectrum anti-inflammatory and immunosuppressive approach
in the art of healing in a range of inflammatory rheumatic
diseases (58–60). However, the exact mechanisms of how this
first-line therapy impacts on anti-inflammatory pathways are
still obscure, and the long-term safety of glucocorticoids is still
challenging in rheumatic diseases (59, 61). Recently, a number of
corpus have highlighted dysbiotic gut microbiota in SLE (44, 62–
64); a reduction of species richness diversity was noted in
patients with lupus, with reductions in taxonomic complexity
most pronouncedly related to SLEDAI (44). Glucocorticoids are
a mainstay therapy to manage flares and remission in SLE (65).
The study by Mukherji and co-workers showed that oral gavage
with prednisone appeared to have the most significant
proportion of Bacteroidetes and Firmicutes than the control
group in MRL/lpr mice. In total, thirty-three bacterial taxa
were significantly changed in the prednisone treatment group,
and Rikenella, Mucispirillum, Oscillospira, and Bilophila were of
relatively lower abundance at the genera level; Prevotella and
Anaerostipes were enriched as well (66). Additionally, this study
also identified that glucocorticoids downregulatedMucispirillum,
which positively correlated with SLEDAI, and it was previously
Frontiers in Immunology | www.frontiersin.org 3
reported to degrade colonic mucin in the intestines (67).
Oscillospira, Rikenella, and Bilophila were positively associated
with anti-dsDNA.

Meanwhile, another study screened the gut microbiota in
glucocorticoid therapy among patients with SLE. Generally, the
observed diversity of bacterial communities was similar between
healthy controls and SLE patients with glucocorticoid therapy
but statistically different between healthy controls and SLE
patients without glucocorticoid therapy. SLE patients treated
with glucocorticoids restored the ratio of Firmicutes to
Bacteroidetes and increased a group of core bacteria genera,
including Lactococcus, Streptococcus, and Bifidobacterium, which
were reduced in the SLE without glucocorticoids. SLE treated
with glucocorticoids reduced activity-related glycan metabolism
via increasing the abundance of Bacteroides in lupus (68).

Taken together, these findings suggest that glucocorticoid
therapy has the potential ability to modulate the gut microbiota
composition of lupus through some bacteria-based
corticosterone synthesis pattern which is still far from clear.
Meanwhile, they open up many novel questions and further
emphasize the need for novel, more effective treatments for SLE
that minimize or eliminate the need for glucocorticoids. Low-
dose glucocorticoids are commonly used in combination with
other DMARDs to treat RA. How the gut microbiota are affected
by glucocorticoids in RA is a subject that is of interest to
investigate. Numerous studies have highlighted gut dysbiosis
during the different phases of RA, although the variability of
results could be subjected to the analysis technology, geographic
factors, and clinical progression.

Perturbed microbiome can be normalized after a combination
of DMARDs, which may include corticosteroids in RA patients
(21). However, it is difficult to dissect how corticosteroids
contribute to the collective effects of DMARDs in combination.
INTERACTION BETWEEN MICROBES
AND METHOTREXATE

Although originally designed as an anti-cancer therapy,
methotrexate (MTX) is now the cornerstone drug for the
treatment of various rheumatic diseases and the first-line
anchor drug for the treatment of RA over decades (69–71).
The possible pharmacological and anti-inflammatory
mechanism of this drug is to antagonize folate-dependent
processes to suppress the synthesis of purines and pyrimidines,
inhibit nuclear factor-kB, Janus kinase signal transducer, and
STAT signaling pathway, and promote adenosine signaling (72).

Gastrointestinal side effect is commonly induced by
MTX therapy due to the intestinal barrier damage (73–75).
Dietary restriction dramatically increased the survival rate of
mice exposed to lethal doses of MTX administration. Dietary
restriction may suppress intestinal inflammation by upregulating
protective intestinal bacteria (Lactobacillus genus). However,
ablating the gut microbiota through applying broad-spectrum
antibiotics eliminates the beneficial effect achieved by
dietary restriction. Moreover, administration of probiotic with
December 2021 | Volume 12 | Article 796865
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Lactobacillus rhamnosus GG partially mimicked the rescue effect
of a dietary restriction (76). Another study indicated that the
number of Bacteroides fragilis in feces was dramatically
decreased in low-dose-MTX-treated mice, while gavage with B.
fragilis could profoundly ameliorate the MTX-induced
inflammatory process (77). In a pharmacokinetic study, a low
dose (10 mg/kg) of MTX altered the microbial profile that
induced a higher abundance of Firmicutes over Bacteroidetes
and the reverse at high dose (100 mg/kg) in Sprague–Dawley
rats. The relative abundance of Firmicutes was positively
correlated with 2,4-diamino-N-10-methylpteroic acid, which is
the MTX degradation produced via the excretion of the intestinal
bacterial enzyme carboxypeptidase glutamate 2 after MTX
treatment at 48 h (78). The microbiota composition also
changed after monotherapy with MTX, with a lower
abundance of Enterobacteriales compared with non-treated
patients with RA (79). Zhang et al. reported patients with
restored RA-related gut and oral microbiome abundance of
microbial linkage groups (MLGs) similar to the normal
situation after MTX treatment. Enriched gut and oral MLGs
also negatively correlated with clinical parameters such as C-
reactive protein, anti-citrullinated protein antibodies, and
rheumatoid factor (21).

It is well known that MTX response varies among patients
with RA, that is, around half of patients fail to achieve an
adequately clinical response after MTX therapy (69). A recent
study analyzed the gut microbiomes of drug‐naïve, new‐onset-
RA patients and observed that the overall bacterial diversity is
distinct between MTX responders and non-responders. These
non-responders had significantly enriched communities than the
responders. A further study revealed a significant increase of
MAP-kinase signaling, DNA replication, fatty acid degradation,
and ABC transporters in non-responders, as well as a significant
decrease of lipopolysaccharide and folate biosynthesis. These
data suggest that the human gut microbiota was able to
metabolize oral MTX (80). Furthermore, the baseline
abundance of gut microbiome features is of great value in
predicting treatment outcomes in response to MTX. Notably, a
microbiome‐based model by machine learning techniques could
suggest a possible future clinical response of the gut microbiome
on MTX metabolism (80).

For MTX working as the folate competitive antagonist, folate
has been given as an additional medication to reduce the adverse
events of MTX, like intestinal toxicity and liver function
abnormalities (81). Huang et al. reported that leucovorin
supplementation not only ameliorated MTX-induced intestinal
damage but also remodeled the MTX-induced composition of
the bacterial community alternation and increased the
abundance of Bifidobacterium. Oral gavage of Bifidobacterium
longum exerts a trophic effect on the intestinal mucosa to
ameliorated MTX-induced intestinal damage (82).

The impact of MTX on human gut microbiota has been
directly tested using a humanized mouse model (83). Germ-free
mice were colonized by stool samples from a healthy human
donor. MTX significantly altered the gut microbiota as soon as
day 1 of MTX administration, and it lasted for 4 days. A high
Frontiers in Immunology | www.frontiersin.org 4
dose of MTX (50-mg/kg dose for cancer treatment) significantly
decreased the Bacteroidetes phylum, while low-dose MTX (1 mg/
kg—dose for arthritis treatment) showed the same trend but with
a moderate effect. Interestingly, the route of administration of
MTX (oral vs. intraperitoneal injection) and rescue with folic
acid did not significantly affect the overall effect of MTX. The
perturbed growth of Bacteriodetes by MTX is confirmed in
culture. These findings are reflected in RA patients. Thus, new-
onset-RA patients who were responsive to MTX showed a
significant decrease in Bacteriodetes relative to those who were
not responsive to MTX (80).

Interestingly, the microbiota from MTX-treated and MTX-
responsive RA patients was able to transfer immunosuppressive
effects in gnotobiotic mice. The recipient mice showed a decrease
of multiple immune cells, including activated T cells, Th1 cells,
B cells, and myeloid cells in the spleen (83). Furthermore, a
reduction of activated T cells, Th17 cells, and myeloid cells
was also observed in the intestinal mucosa (83). The
immunosuppressive effects by MTX-exposed microbiota may
be attributed to the different abundance of one phylum
(Proteobacteria), 26 genera, and 41 amplicon sequence variants
(83). These results suggest that the effects of MTX on microbiota
can contribute to the immunosuppressive therapeutic effect of
MTX in the hosts. Further investigations are required to
delineate how the altered immune cell populations, especially
those in the intestinal mucosa, will affect the community of gut
flora. The interaction of MTX with the gut microbiota and the
effects on host immune activation are illustrated in Figure 1.
INTERACTION BETWEEN MICROBES
AND SULFASALAZINE

As Streptococcus found in milk was thought as the bacteriological
evidence to provoke RA (84), SSZ has been initiated to treat this
“infective polyarthritis” since the 1940s (85). Designed as a
compound, the most amount of SSZ reaches the colon and is
broken into 5‐ASA and sulfapyridine by gut organisms.
Although the pharmacological mechanism of action is obscure,
SSZ has anti-inflammatory and antibacterial properties to exert
beneficial effects on RA, ankylosing spondylitis (AS), and IBD
(86, 87).

The administration of antibiotics on germ-free rats showed
unchanged SSZ in their caecum and feces. When germ-free rats
are infected with four specific bacteria normally found in the
intestinal tract of rodents, the rats regain the ability to metabolize
SSZ as the conventional rats. These findings suggest that
intestinal bacterial metabolism is essential for activating SSZ
transformation (88).

Probiotics are “friendly” live microorganisms (bacteria or
yeasts) taken as food supplement that promotes favorable
benefits for the host by improving the intestinal microbial
balance. Co-administration of probiotic strains such as
Lactobacillus acidophilus, Bifidobacterium lactis, and Streptococcus
salivarius with SSZ modulates azoreductase activity and SSZ
metabolism in the colon (89). However, some clinical studies did
December 2021 | Volume 12 | Article 796865
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not claim that the short-term co-administration of probiotics could
exert beneficial effects on patients with RA (90) or IBD by changing
the metabolism of SSZ. These studies suggest that certain bacterial
species possess diazoreductase activity by producing more
extensive metabolism of SSZ.

An earlier study showed a significant reduction of the total
counts of aerobic bacteria Escherichia coli and Bacteroides after SSZ
therapy and a high frequency of Bacillus, but there had been very
limited effects on the upper jejunal gastrointestinal flora in patients
with RA (91). Treatment with SSZ could alleviate the inflammation
and regulate bacterial composition with increasing short-chain
fatty acid-producing bacteria (Lachnospiraceae—Blautia), lactic
acid-producing bacteria (Lactococcus), Mycoplasma, and
decreasing proportions of Enterococcus and Proteobacteria in
2,4,6-trinitrobenzene sulfonic acid-induced colitis in rats (92).

These results indicate that, in addition to the conversion of
SSZ to active drug bacteria in the gut, changes in microbiota
composition by SSZ will also contribute to the anti-inflammatory
effects of SSZ.
INTERACTION BETWEEN MICROBES
AND HYDROXYCHLOROQUINE

Hydroxychloroquine (HCQ) was initially used to prevent and
treat malaria and then employed, for its anti-inflammatory
Frontiers in Immunology | www.frontiersin.org 5
properties, to successfully treat various rheumatic diseases,
such as SLE, RA, and other inflammatory rheumatic diseases
(65, 93, 94).

Previous studies investigated HCQ influence on gut microbiota
in Q-fever endocarditis patients. These patients, treated with
doxycycline and HCQ, presented significantly lower amounts of
Bacteroidetes and Lactobacillus compared with the controls (95).
Systemic rheumatologic conditions are prone to develop more
cardiovascular events compared to the general population (96).
HCQ administration was reported as a potentially beneficial
therapy for K/BxN mice with high-fat diet (HFD) in a mouse
model of RA that develops atherosclerosis. HCQ could alleviate
the HFD-induced dyslipidemia and atherosclerosis as well as
profoundly restored abnormal gut microbiota with a higher
abundance of Akkermansia and Parabacteroides and a lower
abundance of Clostridium sensu stricto cluster (97). The total
glucosides of paeony (TGP) is a traditional Chinese herb
medication which has been approved for a variety of rheumatic
disease for its anti-inflammatory and immunomodulatory
functions (98, 99). The TGP + HCQ group had increased
richness of microbiota and had significant changes of
Bacteroidetes and Firmicutes in NOD mice with Sjögren’s
syndrome. The proportion of Lactobacillus and Incertae of
phylum Firmicutes and Desulfovibrio of phylum Proteobacteria
was significantly increased, and the abundance of Bacteroides and
Alloprevotella of phylum Bacteroidetes and Pseudoflavonifractor of
FIGURE 1 | Interaction between gut microbiota and methotrexate (MTX). MTX inhibits bacterial dehydrofolate reductase and affects the growth of bacteria, bacterial
transcriptome, and metabolome. There are MTX-sensitive and MTX-resistant bacteria in the human gut. Therefore, MTX treatment affects the community of gut
microbiota. The change of gut microbiota post-MTX treatment can suppress immune cells in the periphery and in the intestinal mucosa. It is not clear whether MTX
will also affect interactions between gut bacteria and whether the change of immune cellular components will, in turn, affect the gut microbiota.
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phylum Firmicutes was significantly decreased in the TGP + HCQ
group compared with the control group. The abundance of
Akkermansia of phylum Verrucomicrobia was significantly
decreased in the TGP and TGP + HCQ groups compared with
the HCQ group. However, most of these studies do not test the
interaction of HCQ alone with gut microbiota alone. Recently, a
paper observed that oral gavage of high dose (100 mg/kg) HCQ for
2 weeks significantly increased the relative abundance of phylum
Bacteroidetes, whereas it decreased that of Firmicutes without
changing the intestinal integrity and the immunological
responses in mice (100).

Investigations into the direct effects of HCQ on gut
microbiota will be required to delineate whether HCQ directly
impacts bacteria growth or indirectly via the immune system of
the host.
BIOLOGICAL DISEASE-MODIFYING
ANTI-RHEUMATIC DRUGS

Bioengineered fusion proteins and therapeutic monoclonal
antibodies used to treat rheumatic diseases are collectively
called disease-modifying anti-rheumatic drugs (bDMARDs).
These include agents that inhibit tumor necrosis factor (TNF),
interleukin (IL)-1, 6, 17, and 23, T cell co-stimulation, B cell
growth factors, and B cell-depleting monoclonal antibody. The
targets of these bDMARDs are clearly defined.

TNF inhibitors (TNFi) are the most effective treatments for RA,
spondyloarthritis, and IBD after the failure of traditional therapy
(101). Ample evidence indicates that TNFi therapy induces
mucosal healing and restores gut microbiota dysbiosis in clinical
and experimental models (102, 103). However, the interaction
between gut microbiota in patients with rheumatic disorders and
TNFi is not thoroughly investigated. Etanercept (ETN) therapy
showed major intestinal composition changes compared with
treatment-naïve RA patients who possessed more abundant
Lactobacillus as reported before (21, 104). Patients under
treatment with ETN present enriched Cyanobacteria, while
Deltaproteobacteria and Clostridiaceae were decreased than in
treatment-naïve patients (79). Cyanobacteria produce a source of
novel bioactive secondary metabolites that may help to modulate
the immune system and result in attenuating RA (105, 106).

The gut microbiota is always considered as a vital
environmental factor in triggering AS (107). ETN therapy
markedly reduced the incidence, arthritis progression, and
inflammatory cytokines, such as TNF and IL-17A, in the serum,
recovered intestinal barrier function as well as restored the gut
microbiota composition similar to that in naïve mice in a
proteoglycan‐induced AS model (108). A recent study observed
that TNFi treatment had better improvement in AS nonsmokers
than in AS smokers. The relative abundance of the microbiota is
more prone to be increased in AS nonsmokers after treatment with
TNFi for 6 months. In addition, some bacteria, including
Actinomyces, Agathobacter, Bilophila, Klebsiella, Lachnospiraceae_
NK4A136, Ruminococcaceae-UCG- 002, and Ruminococcaceae_
UCG-005, were sensitive to TNFi treatment in AS nonsmokers,
Frontiers in Immunology | www.frontiersin.org 6
while Bacteroides, Faecalibacterium, Lachnoclostridium,
Parabacteroides, Blautia, Butyricicoccus, and Escherichia-Shigella
were not. This suggests that these bacteria were tolerant to TNFi
treatment (109). Since TNFi do not work for all patients, one
challenge to clinicians is to investigate the biomarker that can
predict the clinical response to TNFi. Another recent study in
patients with spondyloarthritis treated by TNFi (most of which are
ETN) revealed no significant modification of a particular taxa after
3 months of treatment. It should be noted that the responder
patients showed only few mild differences in microbiota
composition at order level than in non-responder patients.
Interestingly, a higher proportion of the Burkholderiales order
before TNFi treatment was strongly correlated with the
responding patients after 3 months of treatment, suggesting that
certain intestinal bacteria can possibly predict the clinical response
as a biomarker for TNFi efficacy in patients with spondyloarthritis
(110). In Crohn’s disease, infliximab non-responders had a higher
abundance of baseline Blautia, Faecalibacterium, Roseburia, and
Negativibacillus genera, while a higher abundance of baseline
Hungatella, Ruminococcus gnavus, and Parvimonas was found in
infliximab responders (111). Clearly, more studies including a large
number of patients are required to replicate the findings in these
studies before profiling of microbiota as a biomarker for predicting
response to TNFi can be applied in clinical practice.
CONCLUDING REMARKS

Over a decade of intensive work on the biological activity of gut
microbiota spurs inspired enthusiasm to explore the involvement
of our resident bacteria in immune processes of the host. There is
ample evidence highlighting that gut microbiota interact
extensively with anti-rheumatic drugs. In addition to the well-
known effect of bacteria on the conversion of inactive prodrugs
to active drug, we now learned that DMARDs, such as MTX,
can directly affect the growth of gut flora. Furthermore,
alteration of the gut microbiota may also contribute to the
immunosuppressive effects of MTX. Clearly, further studies are
required to identify microbiota which can mediate immune
suppression in the host. The other clinically relevant aspect of
the interaction of microbiota with DMRADs is towards
personalized medicine. Identifying unique individual gut
microbial signature may help clinicians to choose a most likely
responsive drug for the patient and one devoid of adverse effects.
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