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Abstract COVID-19 pandemic has proven to be a dra-

matic challenge, introducing huge clinical differences that

demand extensive investigations. Severe and critical

patients may present coagulopathies and microthrombi,

which results in varied complications, or acute respiratory

distress syndrome that leads to fatality. Although the lung

to be the major site of clinical manifestations, COVID-19

has shown extrapulmonary manifestations, especially on

the heart and kidney, directly linked to worse disease

outcomes. According to the fast-moving of clinical

description and scientific publications, the injuries in

multiple organs and systemic inflammation appear to be

caused by a deregulated immune response, and the NLRP3

inflammasome could be a relevant influencer in this

imbalance. However, until now, the precise drivers of the

pathophysiology of these injuries remain unknown. In this

review, we discuss how inflammasome seems to be directly

involved in the clinical profile of patients infected with

SARS-CoV-2 and shed light on the mechanisms that lead

to fatality.
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Introduction

Since the emergence of a novel b-coronavirus (b-CoV) in
late December 2019, the entire world is facing an

unprecedented crisis. As a reflection of high spread

capacity, Coronavirus disease 19 (COVID-19), caused by a

virus named SARS-CoV-2, has become pandemic and has

caused over 165 million cases and 3 million global deaths

[1].

Different from other current strains of coronavirus that

causes a simple common cold, in the last decades, other

coronavirus (CoVs) have been reported in severe respira-

tory outbreaks in 2002–2003 and 2012, causing severe

acute respiratory syndrome coronavirus (SARS-CoV) and

Middle East respiratory syndrome (MERS), respectively.

SARS-CoV-2 is responsible for a range of variable symp-

toms [2] that can progress to critical illness and death [3].

Despite of SARS-CoV-2 exhibit genetic and phylogenetic

similarities with SARS-CoV and MERS-CoV, this virus

has singularities that made it to be treated as a global

emergency [4].

In a genomic perspective, the virus is constituted by

non-structural and structural proteins as spike (S), used for

binding to angiotensin-converting enzyme 2 (ACE2) on

surfaces of host cells; membrane protein (M), linked with

virus morphogenesis and assembly; the envelop protein

(E), a transmembrane protein important for ionic trans-

portation; and the nucleocapsid (N) where the RNA strand

is located [5].

To protect the body against the virus, the innate immune

system uses pattern-recognition receptors (PRRs) for the

detection of foreign structures called pathogen-associated

molecular patterns (PAMPs) [6]. Among the large family

of PRRs, the NOD-like receptor (NLR) has notoriety due

to its wide recognition of intrinsic or extrinsic stimuli,
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operating as cytoplasmatic sensors. The primary function

of NLR is to participate in a multiprotein complex, known

as inflammasome, able to activate the pro-inflammatory

cytokines such as IL-1b and IL-18 [7].

Until now, several factors may explain COVID-19

severity, however, dysregulated inflammation and cytokine

storm is implicated with tissue damage to the airways [8].

Severe patients show high levels of pro-inflammatory

cytokines (such as IL-1b, IL-2, IL-6, IL-18, IFN-c, TNF-
a), and chemokines (CXCL8 CXCL10, macrophage

inflammatory protein 1a (MIP1a), MIP1b and MCP1)

[9, 10]. Although the importance of strong immune

response for pathogens control, these biomolecules, along

with others immune effectors, promote unbalanced

responses in COVID-19; this mechanism of disease

aggravating is also observed in SARS and MERS [11].

The clinical presentations of individuals range from the

total absence of symptoms to mild, moderate, severe, or

critical disease. The main symptoms reported are fever,

fatigue, and dry cough. Laboratory data presented lym-

phocytopenia (83.2%) thrombocytopenia (36.2%), leu-

copenia (33.7%), elevated levels of C-reactive protein,

alanine aminotransferase (ALT), aspartate aminotrans-

ferase (ALT), creatine kinase and also increased d-dimer

[9].

Given the high number of patients across the world,

understand the pieces in the puzzle of excessive inflam-

mation and clinical outcome is urgently needed. Therefore,

insights about the influence of relevant biologic proteins

like inflammasome are necessary for design therapies and

unravel the mysteries of pathophysiology.

Inflammasome and viral infection

Structurally, inflammasome complex is a scaffold of pro-

teins formed by central domain called the nucleotide-

binding and oligomerization domain (NOD), a domain with

leucine-rich repeats (LRRs) and an N-terminal protein–

protein interaction domain that need to interact with

Apoptosis-associated speck-like protein (ASC) which

contains a caspase activation and recruitment domain

(CARD) to attached pro-caspase-1 and allow its activa-

tion. After activation, caspase-1 promote proteolytic

cleavage of pro-IL-1b and pro-IL-18 in its mature forms

and stimulates its secretion [7].

To develop an efficient response against viral particles,

the host immune system uses PRRs as TLR3, TLR7, and

TLR8 for the detection of PAMPs. The SARS-CoV-2 RNA

is recognized by those receptors and also by RIG-I/MDA5,

that work as a cytosolic sensor, promoting a signalling

cascade that leads to nuclear factor kappa B (NF-jB)
activation. Consequently, this transcription factor is

translocated to the nucleus which could induce IFN type I

and other pro-inflammatory cytokines [12, 13].

It has been shown that proteins E, ORF3a e ORF8b from

SARS-CoV activate NLRP3, the inflammasome more

expressed in pulmonary tissue. Viroporin of E protein

formed ionic channel that facilitates the leakage of Ca 2?

into the cytosol. Due to the sensitivity to ionic imbalances,

inflammasome is activated. On the other hand, ORF3a

promotes ubiquitination mediated by a factor-binding

domain associated with receptor 3 (TRAF3), as well as

expressing the pro-IL-1b gene and the secretion of IL-1b,
both of which are necessary for inflammasome activation.

Finally, ORF8b activates NLRP3 through direct interaction

of the leucine-rich repeat domain, even functioning as ion

channels. These cytosolic changes trigger a second step for

inflammasome activation [14] (Fig. 1a).

Among the other contributors to inflammasome activa-

tion, the ROS seems to play a significant role in COVID-19

patients [15–17]. Upon SARS-CoV-2 binding ACE2, occur

multiple modifications on host homeostasis, including the

promotion of inflammatory response and the downregula-

tion of ACE2 receptor. Thus, occur deregulation in the

renin-angiotensin system and increase of angiotensin II,

resulting in the generation of ROS and raise of oxidative

stress. Moreover, ROS can interfere through NF-kB and

activate the NLRP3 and increase the expression of pro-IL-1

and pro-IL-18 [18–20].

Excessive activation of the inflammasome and release of

IL-1b and IL-18 can trigger immune cascades as the dis-

charge of pro-inflammatory cytokines, chemokines, and

cell migration, promoting the accumulation of immune

cells and lung damage [21]. In COVID-19, there is a

complex crosstalk between these components that needs to

urgently elucidate especially because when analyzing the

patients’ serum, high levels of IL-1b and LDH were

observed, which are indicative of the inflammasome acti-

vation [22–24].

As an effort to maintains the proper response, inflam-

masome activation is tightly regulated. To protect the body,

the immune system prevents unnecessary or hyperactiva-

tion through different mechanisms, including some pro-

teins and post-translational modifications. CARD-only

proteins and PYRIN-only proteins (POP) are small cyto-

plasmatic proteins that act as regulators with the function in

decrease inflammation. Likewise, CARD16, CARD17, and

CARD18 inhibit caspase 1 and negatively regulate the

inflammasome. Conversely, the target of POP1 and POP2

is ASC—NLRP3 interaction, and as a consequence, the

NLRP3 activation is suppressed [25–28].

Furthermore, the recognition of Trp73 on NLRP3 by

FBXL12 and SCF E3 ligase complex leads to ubiquitina-

tion and proteasomal degradation. Moreover, TRIM31

appears to be an inflammasome suppressor through
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feedback positive because induces Lys48-linked ubiquiti-

nation. Besides, the Ser295 in NLRP3 is an important site

to phosphorylation by protein kinase A (PKA) and subse-

quent inhibition of inflammasome activation [29, 30].

Immunomodulatory interventions to treat COVID-19 is

largely debated and different strategies are applied in

clinical trials such as Canakinumab [31], and anti-IL-1b
that have NLRP3 inflammasome as a molecular target,

Anakinra [32], an IL-1 receptor antagonist, and JAK1/

JAK2 inhibitors [33] that interrupt the mediates cytokine

signaling pathways. Additionally, some natural compounds

as colchicine are frequently used to treat inflammatory

diseases due to its ability to inhibit inflammasome, and

serving as an example for the wide possibilities of thera-

peutic strategies [34, 35]. Until now, few clinical trials

registered at NIH intend to study anti-inflammasome

strategies focus specifically in COVID-19 positive patients.

Neutrophils and pulmonary injury

As the first line of defence against pathogens, neutrophils

play an important role against viral infections [36]. How-

ever, IL-1b activated by the NLRP3 inflammasome can

recruit and activate neutrophils, inducing ‘‘NETosis’’,

which consists of a type of cell death, producing wire-like

extracellular structures, called neutrophil extracellular traps

(NETs). NETs mainly play a protective role, forming

mesh-like structures to trap pathogens, and they consist of

DNA, modified histones and cytotoxic proteins, including

myeloperoxidase (MPO), and cathepsin [37, 38].

Although there is indeed an important function of kill

foreign pathogens, the uncontrolled production of NETs

has been strongly implicated as a causal factor associated

with acute lung injury (ALI), acute respiratory distress

syndrome (ARDS), coagulopathy, multi-organ failure, and

autoimmune diseases, besides activating even more

inflammasomes [39, 40]. In COVID-19, severely ill

patients have a higher neutrophil count in blood plasma and

80% of these cells presented NETs structures [41].

Prior reports suggested that NETs released from neu-

trophils activated by SARS-CoV-2 promotes lung epithe-

lial cell death [42–44]. The increased level of NETs was

also reported in post-mortem analyses of lung tissue from

COVID-19 patients treated, or not, in intensive care units

(ICU), supporting his involvement in mediating tissue

injury [45]. It is important to reinforce the relationship of

NETs in several inflammatory diseases such as rheumatoid

arthritis [46], diabetes [47], and sepsis [48]. According to

the results from a recent research, necroinflammation

linked with NETs play a central role in the cytokine storm

growth, sepsis and multi-organ failure during COVID-19.

Furthermore, patients with comorbidities increases neu-

trophil infiltration sustaining an inflammatory cascade that

leads to the migration of more immune cells, the release of

cytokines, inflammasome activation, damage to the lungs,

increasing disease severity [43]. Other study identified high

levels of citrullinated histones H3 (Cit-H3) and MPO-DNA

complexes, markers directly associated with NETs, and

cell-free DNA, higher in patients on mechanical ventilation

[49].

Based on the researches so far, it is evident the impact of

NETs on disease outcome, therefore, the inhibition of these

extracellular traps represents a potential therapeutic target

for SARS-CoV-2.

Influence of inflamassoma on ards

The central role of inflammation in the aggravation of

COVID-19 cases is extensively reasoned through different

perspectives and the involvement of inflammasome has

been carefully presented [50, 51]. Robust evidence

demonstrates an association between over-activation of the

inflammasome complex with the worsening of clinical

features of patients, although it is necessary a detailed

investigation about additional mechanisms surrounding this

process [52, 53]. Nevertheless, patients in critical stage

reveal increased levels of IL-1 and IL-18, which is related

to inflammasome [54–56] (Fig. 1).

Acute respiratory distress syndrome (ARDS) – the most

severe form of acute lung injury—is a dramatic syndrome

without specific treatments. Due to the absence of

biomarkers, the diagnosis of this severe form is based on a

combination of clinical manifestations [57] such as the

time for the onset of symptoms, radiographic changes

and the existence of bilateral opacity, the severity of the

PaO2/FiO2 rate, and the presence of edema [58]. Addi-

tionally, it is observed a remarkably increased vascu-

lar permeability, raised lung weight, and loss of aerated

tissue, which may result in severe hypoxemia and septic

shock [59, 60].

bFig. 1 Schematic representation of signaling pathways of pro-

inflammatory cytokines involved on COVID-19. a Inflammasome

assembly after PAMP and DAMP recognition activate caspase-1,

essential for the cleavage of pro-IL-1b and IL-18 into their active

form. After externalization, these cytokines can induce pyroptosis and

biding their respective receptors to promote the expression of pro-

inflammatory molecules. b Signal transduction of IL-6 after binding

IL-6 receptor and activates Janus Kinases (JAK) leads to activation of

different mediators to promote gene expression. The recognition of

TNFa by TNFR2 triggers different cascades which promotes inflam-

mation or gene expression mediated by NFk-B. In parallel, the biding

on TNFR1 causes subsequent apoptosis mediated by caspases
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Regardless of the new coronavirus, ARDS is, by itself,

an extremely complex problem [61]. Known for being an

ICU syndrome with a high mortality rate and difficult

diagnosis, this disorder becomes even more serious due to

the global proportions of SARS-CoV-2 infection. In fact,

among symptomatic individuals, it is estimated that 15%

develop critical conditions and become susceptible to the

emergence of ARDS [62, 63].

The innate immune response, after the virus entry in

permissive cells, is rapid and aggressively triggered to try

to eliminate the pathogen. However, in response to this

infection, occurs an exacerbated inflammation that

becomes responsible for tissue damage more expressive

than the viral replication itself. The severity of COVID-19

appears to be directly linked to this inflammatory dysreg-

ulation and massive release of cytokines. In some cases this

can lead to a state of hypercytokinemia, also known as

macrophage release syndrome, capable of

triggering ARDS and leading to multi-organ failure

[64, 65] (Fig. 2).

Among the ARDS hallmarks, the most significant is the

exacerbated and unregulated inflammatory response.

Simultaneously, several events occur to promote positive

feedback of inflammation pathways and, consequently,

there is an increase in pro-inflammatory mediators such as

chemokines and cytokines, determinant factors for

increasing disease severity and mortality [66, 67].

Recent insights into the pathophysiology of ARD-

S point to inflammasome as one of the main factors

responsible for the intense pulmonary inflammatory

response that cause tissue injury in affected patients

[68–70]. The inflammasome has also been correlated with

other lung diseases such as chronic obstructive pulmonary

disease (COPD), a gradual illness caused by exposure of

the airways to irritants, such as cigarette smoke, capable of

activating NLRP3, resulting in intense inflammation,

mucus production and dyspnea. In the sputum of human

Fig. 2 The clinical features of COVID-19 patients are resulting from

simultaneous events, promoting complex crosstalk between immune

components. When SARS-CoV-2 infect host cell through Spike

protein binding with ACE2 receptor, a wave of PAMPs and DAMPs

ensues, activating pathways that enable inflammasome activation and

leads to cleavage of IL-1b and IL-18, creating pro-inflammatory

signals and leads to airway inflammation. Consequently, occurs

platelet activation, fibrin deposition, and NETs release, which

promotes tissue damage. A cascade involving inflammasome assem-

bly and inflammation leads to ARDS development
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patients suffering from this disease, the levels of IL-1b
were significantly increased [71], and CPOD modelling

using NLRP3 knockout mice observed that gene absence

prevented the development of COPD in the animal exposed

to cigarette smoke for a long time [72].

The inflammasome is also considered as an important

mediator in pulmonary fibrosis characterized by a chronic

inflammatory process and scarring that hinders breathing.

Although there is no formally established cause for the

appearance of this disease, several agents that induce

fibrosis are capable of activating Inflammasome [73]. Also,

IL-1b secretion induces the production of TGF-b, a pro-

fibrotic cytokine, promotes neutrophil chemoattraction, and

contribute to epithelial damage [74]. Interestingly, TGF-b

was upregulated in SARS and MERS patients, and fibrosis

is also related in COVID-19 patients [75]. Although the

involvement of IL-1b in worsening ARDS has been known

for more than two decades, unravelling the key role of the

inflammasome complex in this process allows us to outline

assertive clinical management and new treatment

strategies.

From the moment of viral infection, several events occur

in synergy leading to systemic irregularities perpetuating

the inflammatory imbalance [76, 77] (Fig. 1b). In parallel,

alveolar macrophages secrete pro-inflammatory cytokines

such as TNF-a and IL-1b maintaining an inflammation

cascade that results in the release of more PAMPs and

DAMPs capable of activating the inflammasome com-

plex. In addition, the presence of ARDS can result in the

release of mitochondrial DAMPs that signal and result in

increased vascular permeability and activation of poly-

morphonuclear cells, disseminating inflammation, and

possibly increasing patient mortality [78–80].

When analysing the peripheral blood of individuals

diagnosed with ARDS, it was observed a significant

increase in mRNA levels of CASP-1, IL-1b, and IL-18,

along with high levels of IL-18 in plasma in comparison

with control patients in treatment in ICU. Moreover,

severity and mortality was higher among the group with the

highest plasma level of IL-18, which in turn is related to

lactate levels, a biomarker widely used in the prognosis of

critically ill patients [66].

In a murine model of ARDS induced by mechanical

ventilation, IL-18 levels is increased in the lung, serum,

and bronchoalveolar lavage. In knockout animals for

CASP-1 or IL-18, there was less lung injury in response to

stress-induced by mechanical ventilation. These findings

demonstrate the participation of molecules linked to the

inflammasome in the development and severity of ARDS

[66].

Coagulopathies, inflammasome and COVID-19

In clinical practice, complications Related to coagulation

abnormality was extensively observed in patients with

COVID-19. The determination of coagulation markers as

D-dimer, fibrin, fibrinogen, prothrombin, and platelets have

become usual and fundamental for the determination of

coagulopathies [81].

According to the evidence available so far, imbalances

in coagulation is one of the most significant variables in

determining the COVID-19 disease severity. However,

researchers hypothesize that these occurrences, such as

pulmonary thromboembolism [82], is not directly caused

by virus entry but by the inflammatory response. Never-

theless, indirect events of SARS-CoV-2 infection, like

hypoxia, may predispose the patient to develop thrombotic

complications [83].

The most common homeostatic abnormality in COVID-

19 patients are mild thrombocytopenia [84], high D-dimer

levels [85], increased prothrombin time, and disseminated

intravascular coagulation (DIC)— more common in critical

patients [86].

A key point of interaction between inflammation and

coagulation appears to be activation of protease-activated

receptor (PARs) by tissue factor (TF), and at the end of this

long signalling pathway occurs platelet activation and fib-

rin deposition [87]. Pro-inflammatory cytokines like IL-1b,
IL-6, and TNF can induce TF expression in mononuclear

cells, creating coagulation activation feedback. In post-

mortem biopsy from the lung of four critically ill patients,

was observed platelet aggregation with clot formation and

fibrin deposition, validating the suggested hypotheses and

the clinical manifestations observed [88–91].

Platelets play a major role in homeostatic maintenance,

however, they have the unusual function of maturing pro-

IL-1b from your pre-mRNA [92]. Therefore it is another

synthesis pathway for this cytokine which, in addition to

participating in coagulation disorders, is a primary effector

in different biological processes. Additionally, platelets

also express NLRP3 and ASC, being capable of assembly

inflammasome and produce IL-1b [93]. This cell line is a

fundamental link between immune response and

coagulation.

When investigating the association between inflamma-

some activation and blood clotting, it was found that

inflammasome can trigger systemic coagulation, thrombo-

sis, and lead to fatality. In summary, the pyroptosis pro-

moted by inflammasome assembly induces pyroptotic

macrophages to release TF. Consequently, this protein

promotes disseminated coagulation and systemic disorders

[94]. Given the continuous growth of evidence where the

Inflammasome plays a role in addition to the immune
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system, the development of robust studies that explain the

unknowns linked to this protein complex is indispensable

(Table 1).

Conclusions

Emerging data has presented the variability of players

involved in COVID-19 severe or critical illness and until

now, evidences clearly demonstrated a major role of

hyperinflammation in worse prognosis. Because of this

imbalance, there is a feedback release of cytokine, PAMPs,

and DAMPs which leads to inflammasome activation and

maintenance of pro-inflammatory state promoting platelet

activation and coagulopathies, increased NETs release,

tissue injury and developing of ARDS. Inflammasome

complex has been indicated in pathophysiology of with

several symptoms observed in COVID-19 patients, and

considering the complex crosstalk involving immune

system and others biological components, is crucial eluci-

date the mechanism behind clinical manifestation. There-

fore, the inflammasome has relevance to understand the

heterogeneity of clinical features and to develop rational

design of therapies.
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Table 1 Major functions of cytokines important to pro-inflammatory state

Cytokine Function References

IL-1b Produced by monocytes/macrophages after PAMP or DAMP recognition by PRRs. Is a strong plasma marker of

inflammation and induces vasodilation and immune cell extravasation. Is involved in the upregulation of the

pleiotropic cytokine IL-6. The receptors for this cytokine could be found in different cell types, including B and T

cells, monocyte, macrophage, PMN, DCs, and epithelial cells

[94, 95]

1L-2 Mainly produced by CD4 T cells, is an autocrine growth and activator factor for subpopulations of T lymphocytes. Is

able to induce activation and proliferation of NK cells and activate B cells in presence of IL-4. The IL-2 production is

closely regulated by costimulatory signals (such as IFN-a and IL-1), and antigen recognition. It is an important

mediator of intercellular communication

[96, 97]

IL-6 Is produced by T cells, endothelial cells, fibroblasts, macrophages, and monocytes after infection or also in sterile

inflammation. Contributes to the regulation of metabolism, liver regeneration, activation of T cells, differentiation of

B cells. Is relevant for the regulation of acute-phase response due to the induction of proteins, including haptoglobin,

C-reactive protein, serum amyloid A, fibrinogen, and a1-antitrypsin. The cell targets of this cytokine are B cell, T

cell, basophil, neutrophil, and eosinophil

[98, 99]

IL-18 The active form is secreted by macrophages and DCs but also is constitutively expressed in PBMCs, macrophages,

epidermal keratinocytes, epithelial cells, osteoblasts, and chondrocytes. Plays a critical role in the activation of

hematopoietic cells and induction of IFN-c Th1, Th2, DCs, and cytotoxic T cells. It is important to defense against

intracellular pathogens through IFNc production and induction of Th1-mediated immune response. Triggers a Th2

response after induces the production of IL-4 and IL-13 in basophils, mast cells, NK cells, and T cells

[100, 101]

TNF-a It is indispensable for immunity and cell homeostasis. The active form is majority secreted by macrophages but can

also be produced by keratinocytes, astrocytes, fibroblasts, and smooth muscle cells. Their effect is mediated by the

receptors TNF-R1, universally expressed in all cell types, and TNF-R2, expressed on immune and endothelial cells.

This cytokine regulates cell survival (apoptosis and necroptosis), activates vascular endothelium, promotes

recruitment of immune cells, hyperalgesia, and tissue damage

[102, 103]

Type-I

IFN

This family includes IFN-a, b, e, j, and x. Are secreted for different types of infected cells. Activate innate immune

response promoting cytokine production and NK cell activation. The signaling triggered by these cytokines leads to

the expression of IFN-stimulated genes (ISGs) which encodes proteins important to restriction of replication and

recognition of pathogens. I IFNs are extremely context-specific, depending on the tissue, the microbial stimulus, the

receptor type for the nucleic acid sensor, and the subtype of IFN involved

[104, 105]

Type-II

IFN

This family includes IFN-a, b, e, j, and x. Are secreted for different types of infected cells. Activate innate immune

response promoting cytokine production and NK cell activation. The signaling triggered by these cytokines leads to

the expression of IFN-stimulated genes (ISGs) which encodes proteins important to restriction of replication and

recognition of pathogens. I IFNs are extremely context-specific, depending on the tissue, the microbial stimulus, the

receptor type for the nucleic acid sensor, and the subtype of IFN involved

[106, 107]
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