
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REVIEW ARTICLE
published: 31 October 2013

doi: 10.3389/fonc.2013.00273

Disruption of prostate epithelial differentiation pathways
and prostate cancer development
Sander B. Frank 1,2 and Cindy K. Miranti 1*
1 Laboratory of Integrin Signaling and Tumorigenesis, Van Andel Research Institute, Grand Rapids, MI, USA
2 Genetics Graduate Program, Michigan State University, East Lansing, MI, USA

Edited by:
Andreas Birbach, Medical University
of Vienna, Austria

Reviewed by:
David Ian Quinn, University of
Southern California, USA
Beatrice S. Knudsen, Cedars Sinai
Hospital, USA

*Correspondence:
Cindy K. Miranti , Laboratory of
Integrin Signaling and Tumorigenesis,
Van Andel Research Institute, 333
Bostwick Avenue NE, Grand Rapids,
MI 49503, USA
e-mail: cindy.miranti@vai.org

One of the foremost problems in the prostate cancer (PCa) field is the inability to distin-
guish aggressive from indolent disease, which leads to difficult prognoses and thousands
of unnecessary surgeries. This limitation stems from the fact that the mechanisms of
tumorigenesis in the prostate are poorly understood. Some genetic alterations are com-
monly reported in prostate tumors, including upregulation of Myc, fusion of Ets genes to
androgen-regulated promoters, and loss of Pten. However, the specific roles of these aber-
rations in tumor initiation and progression are poorly understood. Likewise, the cell of origin
for PCa remains controversial and may be linked to the aggressive potential of the tumor.
One important clue is that prostate tumors co-express basal and luminal protein markers
that are restricted to their distinct cell types in normal tissue. Prostate epithelium contains
layer-specific stem cells as well as rare bipotent cells, which can differentiate into basal
or luminal cells. We hypothesize that the primary oncogenic cell of origin is a transient-
differentiating bipotent cell. Such a cell must maintain tight temporal and spatial control
of differentiation pathways, thus increasing its susceptibility for oncogenic disruption. In
support of this hypothesis, many of the pathways known to be involved in prostate differ-
entiation can be linked to genes commonly altered in PCa. In this article, we review what
is known about important differentiation pathways (Myc, p38MAPK, Notch, PI3K/Pten) in
the prostate and how their misregulation could lead to oncogenesis. Better understanding
of normal differentiation will offer new insights into tumor initiation and may help explain
the functional significance of common genetic alterations seen in PCa. Additionally, this
understanding could lead to new methods for classifying prostate tumors based on their
differentiation status and may aid in identifying more aggressive tumors.

Keywords: prostate cancer, differentiation, Myc, Pten, notch, p38MAPK

INTRODUCTION
Prostate cancer (PCa) is the most common non-skin cancer and
second leading cause of cancer deaths in American men (1). Treat-
ment for locally confined PCa is highly effective and typically
involves radiation therapy or removal of the prostate gland. Such
treatment, however, is not without considerable financial cost and
a potentially negative impact on quality of life for the patient.
Gleason grade, as determined by biopsy, is a moderate predic-
tor of tumor aggressiveness, but even small, low grade tumors
can become aggressive and metastasize (2). Researchers are cur-
rently working to understand and create better criteria to identify
which primary tumors will be indolent and which will be aggres-
sive (3). The ability to clearly identify which tumors are most
likely to metastasize would potentially save thousands of men from
unnecessary surgery when they are more likely to ultimately die
of other causes (4). At the same time, the ability to accurately
and reliably identify aggressive tumors would aid physicians and
patients in deciding how to administer treatment. When detected
too late or left untreated, PCa becomes metastatic and the primary
therapeutic option becomes androgen deprivation. Despite initial
effectiveness, androgen deprivation therapy invariably leads to the

emergence of castration resistant disease which is incurable and
accounts for the vast majority of the nearly 30,000 PCa deaths each
year (1).

Whether contemplating cancer or a mechanical watch, it is
impossible to fix something without understanding how it broke.
Through years of work, PCa researchers have identified what
is broken but are still working to understand how it broke.
Although we know which oncogenes and tumor suppressors
are most frequently altered in PCa, we do not understand how
they drive tumor initiation (i.e., oncogenesis) (5). Without a
thorough understanding of oncogenesis researchers will con-
tinue to struggle for a comprehensive understanding of PCa. The
PCa field is currently stuck with a host of critical but unan-
swered questions: why are these particular genes mutated so
frequently in PCa? How do the alterations drive oncogenesis?
Does the timing and order of these mutations dictate tumor
aggressiveness?

There are a few oncogenes and tumor suppressors that are
mutated across a wide range of cancers, such as Ras and p53
(6, 7). However, most cancers contain a distinctive set of “dri-
ver mutations,” thus revealing multiple oncogenic routes that are
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highly dependent on not only the specific pathways disrupted
but also the cell of origin (8). Many of the genes commonly
altered in PCa are also involved in normal epithelial differen-
tiation. With these observations in hand, we hypothesize that
prostate oncogenesis arises as a defect in epithelial differentiation.
Unfortunately, research is lacking in understanding the detailed
signaling mechanisms of normal prostate differentiation. In this
review we will describe key genes that are altered in PCa and what
is known about their roles in epithelial differentiation. Addition-
ally, we will propose some hypothetical models for how oncogenic
alterations of these important pathways could potentially drive
a normal trans-differentiating prostate epithelial cell to become
tumorigenic.

PROSTATE BACKGROUND
Prostate adenocarcinoma arises from the epithelia of the gland.
Prostate epithelium is organized in a bilayer of basal and lumi-
nal cells along with a few rare embedded neuroendocrine cells
(Figure 1). The epithelium is surrounded by a laminin (LM5,
LM10) and collagen (COLIV, COLVII) matrix and fibromuscu-
lar stromal cells which transmit signals to regulate the epithelium
(9). The prostate epithelium contains layer-specific markers, with
the basal layer characterized by p63, basal keratins (K5, K14), and
integrins (α6β4, α3β1) among others. The luminal layer contains
markers such as TMPRSS2, luminal keratins (K8, K18), and andro-
gen receptor (AR). Prostate tumors are characterized by a loss of
basal cells and reduced matrix diversity (i.e., loss of LM5 and
COLIV) (Figure 1). Moreover, tumor cells generally express a
luminal phenotype driven by AR. However, tumors also express
basal integrins, especially α6β1 which is an abnormal pairing that
drives PCa growth and survival (10, 11). Similarly, tumor cells
often co-express basal and luminal keratins, such as K5 and K8
(12–14). Other basal markers reportedly expressed in tumor cells
include Bcl2, EGFR, and Met (15–20). The co-expression of a sub-
set of luminal and basal markers supports the hypothesis that
prostate tumors arise from the disruption of differentiation path-
ways which normally restrict basal and luminal marker expression
to their respective cell types. However, the cell of origin, i.e., the

cell that is the oncogenic target that gives rise to the tumor, has not
been clearly identified in PCa.

The struggle to define a clear cell of origin is complicated by the
fact that the mechanism of prostate epithelial differentiation is not
well understood. In the adult prostate, luminal cells are regularly
shed and replaced by cells from the basal layer through differen-
tiation (21). A simplistic view of this observation is that a basal
progenitor or stem cell gives rise to the both basal and luminal
populations through a transient-differentiation or amplification
process (12, 22–24). However, findings from mouse models paint a
more complicated picture of basal, luminal, and bipotent progeni-
tors. Ousset et al. utilized cell lineage tracing to clearly demonstrate
the existence of layer-specific epithelial progenitor cells in the
developing mouse prostate (25). Wang et al. demonstrated that a
luminal progenitor, marked by expression of Nkx3.1, resists lumi-
nal regression induced by castration and repopulates the majority
of the mouse prostate during regeneration with androgen (26).
On the other hand, using tissue recombination and renal capsule
implants, Leong et al. showed that a single prostate stem cell is
able to produce both epithelial layers (27). The Witte group also
identified basal stem-like cells in the mouse prostate that produce
both basal and luminal cells (28–31). Other researchers also iden-
tified a small population of bipotent progenitor cells that give rise
to both basal and luminal cells (25, 26). These rare bipotent cells
are marked by their co-expression of basal and luminal keratins
(K5/K8) and are also found in the developing human prostate
(25, 32). Thus, the mouse studies support the idea there are at
least three different prostate epithelial progenitor populations, but
which ones initiate PCa still remains unresolved.

Several studies demonstrate either basal or luminal progenitors
can be the initiating cancer cell. The Witte group demonstrated
that oncogenic disruption in the basal cell population drives
tumor formation in mice (33–35). On the other hand, two groups
reported that both basal and luminal epithelial cells can give rise
to tumors upon knockout of PTEN (14, 36). Thus, mouse stud-
ies suggest distinct stem cell populations may be responsible for
tumor initiation and seemingly disfavor the transient amplifica-
tion theory. However, introduction of genetic mutations early in

FIGURE 1 | Prostate epithelial gland structure. The normal prostate
epithelium is composed of a bilayer of basal and luminal cells and a few
rare neuroendocrine cells. The epithelium is separated from the
underlying stroma by a basement membrane containing laminins (LM5,
LM10) and collagens (COLIV, COLVII). Basal cells express integrins that
specifically interact with the basement membrane, namely α6β4, α3β1,
and α2β1 as well as basal keratins K5 and K14. Luminal cells do not

express integrins, but do express AR and keratins K8 and K18. A
prominent characteristic of prostate tumors is the loss of basal cells
and a loss of LM5 and COLIV. Correspondingly, the integrins that
interact with these matrices, α3β1 and α6β4 are lost via loss of the α3
and β4 subunits, leaving integrin α6β1 which prefers the LM10 matrix.
Similarly, tumor cells often co-express basal and luminal keratins, such
as K5 and K8.
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development and puberty in mice does not reflect the normal
situation in humans were oncogenesis occurs in a fully differen-
tiated gland. Moreover, the signals and cell types that regulate
gland maintenance vs. development may be different. Transgenic
mouse models rely on Cre recombination via commonly used
“layer-specific” promoters, such as K5 or Nkx3.1. Thus, these
studies still leave open the possibility that it is not a pure basal
or luminal cell that becomes oncogenic, but rather a bipotent
or transient-differentiating cell expressing multiple layer markers.
Better understanding of prostate differentiation will be required
to validate the transient-differentiating hypothesis of oncogenesis.

While studies in the mouse are highly informative, translation
of these findings to understanding the human organ is compli-
cated due to a lack of models for studying human oncogenesis.
The mouse model is useful for genetic manipulations, but it is
not without limitations (37, 38). For example, mice are not prone
to develop spontaneous PCa like humans. Secondly, although the
mouse and human prostate have similar cell types, the structure is
different; the mouse prostate is lobular while the human is compact
and consists of zones (39, 40). Additionally, there are far fewer basal
cells in the mouse prostate and some luminal cells directly contact
the basement membrane, unlike in humans where there is a con-
tinuous layer of basal cells. Based on these important differences,
there is reason to consider that signaling mechanisms for differ-
entiation in human and mouse epithelial cells may be different.
As an alternative to transgenic mouse models, some researchers
are using human prostate cells and xenografts in mice to study
prostate development and differentiation. The Cunha group found
that human basal cells can be induced to form a basal and luminal
bilayer when combined with rat urogenital sinus mesenchyme and
implanted in the mouse renal capsule (41). The Witte group devel-
oped a similar method to isolate and genetically modify epithelial
progenitor cells from human prostates (42). The isolated progeni-
tor cells were infected with virus to allow manipulation of desired
oncogenes/tumor suppressors, and then the cells were implanted
into mice along with stroma. Using this approach, they found that
the induction of Akt and Erg in human basal progenitors is suf-
ficient to induce prostate intraepithelial neoplasia (PIN), a PCa
precursor lesion, when xenografted into mice (33). Other groups
are inducing the differentiation of primary basal cells in vitro,
including our group which has developed a reliable in vitro differ-
entiation model that recapitulates many aspects seen in vivo (17,
43–45). These reports demonstrate that human basal cells can be
induced to differentiate into luminal cells in vitro, thus providing
a model to study epithelial differentiation in a controlled setting
using human cells. The ability to manipulate cells in vitro during
differentiation and then implant them into mice provides a use-
ful approach to study how manipulation of trans-differentiating
human prostate epithelial cells can become tumorigenic.

Based on the slowly building knowledge of normal prostate dif-
ferentiation, as well as findings from other epithelial tissues, it is
becoming apparent that many of the pathways involved in normal
epithelial differentiation are misregulated in PCa. In this review,
we will describe some of these key pathways that are involved
in both differentiation and cancer, with the goal of illuminating
how prostate oncogenesis in humans may arise from a disrup-
tion of normal differentiation. Furthermore, aggressive tumors

are pathologically characterized by a less differentiated phenotype,
and the aggressiveness of the tumor may be tied to its cell of origin
(14, 36). Better understanding of prostate differentiation pathways
will help us understand how the normal cellular process goes awry
in cancer. This understanding may one day lead to classification of
prostate tumors based on the state of their altered differentiation
pathways.

COMMON GENETIC ALTERATIONS IN PROSTATE CANCER
While there are still no widely accepted subcategories of PCa, there
are well established genetic alterations associated with the disease.
Fundamentally, prostate tumors rely on AR signaling. While AR
mutations are rare in primary tumors, castration resistant tumors
utilize a variety of genetic alterations to upregulate AR signaling
(46–48). Beyond the AR alterations in advanced tumors, three
of the most common genetic alterations in PCa are: overexpres-
sion of Myc, loss of the tumor suppressor Pten, and fusion of
Ets genes with upstream AR regulated promoter sequences (e.g.,
TMPRSS2-Erg) (49, 50).

The Myc gene is commonly amplified in PCa (Table 1) and
protein levels correlate with poor prognosis (51). Myc is a well-
studied oncogene that drives the expression of thousands of
targets, including genes required for cell growth and cell cycle pro-
gression. Myc overexpression in the mouse prostate is sufficient
to drive adenocarcinoma but not metastasis (52). The importance
of Myc in PCa is well established, though not entirely understood,
and will be discussed in further detail in the next section.

Another prevalent aberration in PCa is loss of the tumor sup-
pressor Pten (Table 2), a negative regulator of the PI3K pathway.
At least one copy of the Pten locus is lost in up to 65% of prostate
tumors and complete loss of Pten protein is seen in ∼60% of late

Table 1 | Myc overexpression in PCa.

Tumor type Method Citation

% 8q GAINa

38 Primary+LN met SNP, qPCR Liu et al. (108)

27 Primary+LN met CGH Lapointe et al. (53)

72 CRPC CGH Nupponen et al. (54)

% 8q24 GAINa

9 Primary (LG) FISH Gurel et al. (50, 55)

28 Primary (HG) FISH Gurel et al. (50, 55)

% Myc GAINa

77 CRPC FISH Nupponen et al. (54)

21 Primary DNA array Edwards et al. (56)

63 CRPC DNA array Edwards et al. (56)

Myc IHC SCORE

2.6 Normal IHC Gurel et al. (50, 55)

8.6 LG-PIN IHC Gurel et al. (50, 55)

25.8 HG-PIN IHC Gurel et al. (50, 55)

27.1 Primary IHC Gurel et al. (50, 55)

14.9 Met IHC Gurel et al. (50, 55)

aPercentage of tumors displaying the change.

LN, lymph node; CRPC, castration-resistant PCa; LG, low grade; HG, high grade;

Met, metastasis.
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Table 2 | Pten loss in PCa.

Tumor type Method Citation

% Gen Dela (1×)

39 PIN FISH Yoshimoto et al. (67)

20 Primary FISH, CGH Verhagen et al. (61)

30 Primary Sequencing Barbieri et al. (59)

31 Primary FISH Yoshimoto et al. (62)

36 Primary FISH Lotan et al. (60)

65 Primary Sequencing, PCR Gray et al. (57)

% Gen Dela (2×)

5 Primary FISH Yoshimoto et al. (67)

6 Primary FISH Yoshimoto et al. (62)

22 Primary+CRPC FISH, PCR Verhagen et al. (61)

20 Met FISH Yoshimoto et al. (68)

% MUTATIONa

4 Primary Sequencing Barbieri et al. (59)

8 Primary Sequencing Verhagen et al. (61)

14 Primary Sequencing Gray et al. (57)

% PROTEIN LOSSa

12 PIN IHC Lotan et al. (60)

40 Primary IHC Lotan et al. (60)

40 Primary IHC Verhagen et al. (61)

60 Met IHC Lotan et al. (60)

aPercentage of tumors displaying the change.

Del (1×), deletion of one chromosome; (2×), deletion of two chromosomes;

Gen Del, gene deletion; CRPC, castration-resistant PCa; Met, metastasis.

stage tumors (57–62) Loss of one copy of Pten greatly increases
PCa progression in the TRAMP mouse model and Pten dosage
has a marked impact on tumor latency and progression (63, 64).
Moreover, complete loss of PTEN in the mouse prostate is suffi-
cient to drive adenocarcinoma (65, 66). The role of Pten in PCa
and differentiation will be discussed in further detail in a later
section.

Activation of the Ets pathway is also a common occurrence
in PCa (Table 3), most frequently through the fusion of the
oncogene Erg downstream of the androgen-regulated promoter
of TMPRSS2 (69, 70). Specific genetic rearrangements that drive
tumor progression are relatively rare in solid cancers, but the
TMPRSS2-ERG fusion is a notable exception and is observed in
about 50% of prostate tumors (53, 62, 71–74). The identifica-
tion of additional fusions of AR-driven promoters to other Ets
members (as well as other targets) strongly suggests this type of
rearrangement is a major driver of PCa (75–80). This has impor-
tant implications about the role of AR in PCa development and
may explain the dependency on AR for tumorigenesis. In the nor-
mal secretory epithelium,AR is primarily required for maintaining
secretory functions and is not intrinsically required for survival or
proliferation of the secretory epithelium (81, 82). In fact, AR is
inhibitory to cell proliferation in normal cells (83, 84). But an
opposite response is triggered in tumor cells, where both prolif-
eration and survival depends on AR. The trigger is unknown, but
prostate-specific oncogenes driven by AR are likely to be part of
the answer.

Table 3 |TMPRSS2/Erg fusions in PCa.

% With fusiona Tumor type Method Citation

13 PIN qPCR Furusato et al. (73)

20 PIN FISH Perner et al. (74)

45 Primary FISH Yoshimoto et al. (62)

50 Primary FISH Perner et al. (74)

67 Primary qPCR Furusato et al. (73)

30 Met FISH Perner et al. (74)

aPercentage of tumors displaying the change.

Met, metastasis.

Thus, the contribution of AR-driven Ets activation and the
mechanisms that drive tumor initiation and tumor progression
are in need of much further investigation. The Ets family of
transcription factors can potentially regulate a wide range of cel-
lular processes, including development, differentiation, invasion,
and proliferation (85). Sun et al. reported that the TMPRSS2-
Erg fusion activates Myc and prevents terminal prostate epithelial
differentiation in the VCaP PCa line (77). Additionally, Yu et al.
reported that Erg and AR-binding sites have considerable overlap
and Erg functions in part by disrupting AR binding to its target
genes in VCaP cells (76). Moreover, Yu et al. found that Erg acti-
vates EZH2, which is part of the polycomb repression complex
and in turn down regulates an AR-driven differentiation program.
The authors propose that TMPRSS2-ERG is likely to be an early
mutational event that drives selection of cells with hyper activated
or mutated AR to overcome the antagonistic effects of Erg acti-
vation on AR (76). Conversely, Chen et al. using transgenic mice
and reported that Erg activation aids AR signaling by increasing
AR binding to target genes, though only in the context of Pten loss
(86). The Chen et al. group suggest that an explanation for the
difference in their findings from those of Yu et al. is that the latter
did their studies in VCaP cells, which retain Pten expression. If the
Chen et al. finding is to be believed, then Ets activation may be a
later event that must follow Pten loss. There are multiple mouse
models of Erg overexpression, but only some of them produce
PIN and none develop adenocarcinoma (75, 87–89). In the most
aggressive model, overexpression of the N-terminal truncated Erg
fusion product in luminal cells (via a modified probasin promoter)
produces PIN in about 40% of mice but still fails to drive ade-
nocarcinoma (75). The combination of Erg overexpression with
single-copy loss of Pten drives progression to adenocarcinoma but
does not result in metastasis (87, 88). These findings from mouse
models further support the idea that Ets activation is a later event
in PCa progression and must follow Pten loss. More research on Ets
and its specific function in PCa tumorigenesis and/or progression
are required to fully understand the significance of this common
mutation.

As will be discussed in this review, pathways that are frequently
altered in PCa (Myc, Pten, Erg) can be tied to normal prostate
differentiation. Likewise, key epithelial differentiation pathways
(p38MAPK, Notch) are also misregulated in human and mouse
models of PCa. We propose the hypothesis that the ties between
oncogenesis and differentiation are evidence that PCa arises from a
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transiently differentiating prostate epithelial cell. Moreover, while
these differentiation pathways may not be direct drivers of PCa, we
believe they are critical for oncogenesis via potential misregulation
of Myc and PTEN during aberrant differentiation. In this review,
we will discuss what is known about Myc, p38MAPK, Notch, and
Pten and their roles in both cancer and differentiation with the goal
of providing new insight into understanding PCa oncogenesis.

Myc
Myc BACKGROUND
The general importance of Myc in PCa is well established, but it
is less clear precisely how Myc drives tumor initiation and pro-
gression (51). In addition to its oncogenic role, Myc is also crucial
for promoting epithelial differentiation (90, 91). Knowledge about
normal prostate differentiation is limited, and much of it is based
on mouse studies. More detailed investigations into the role of
Myc in prostate differentiation may help us understand how its
misregulation leads to PCa.

There are three genes in the Myc family: c-Myc, N-Myc, and
L-Myc. c-Myc (Myc) is the best studied and most relevant in
PCa. Myc is a basic helix-loop-helix transcription factor that
typically functions as a heterodimer with a cofactor from the
Max or Miz families (92). Transcriptional regulation by Myc is
mediated through recruitment or activation of basal transcrip-
tion machinery, promoting RNA Polymerase II elongation, or
through recruitment of chromatin modifying enzymes (93, 94).
The Myc/Max heterodimer is usually a transcriptional activator
complex that competes with Mad/Max dimers for binding at E-box
sites, the classic regulatory element recognized by Myc complexes.
Myc also represses genes by binding with Sp1 or Miz1, which
together repress transcription by blocking p300 (95, 96). Alter-
nately, Myc can repress targets post-transcriptionally via activation
of miRNAs (97, 98).

Myc is downstream of many pathways and is tightly regulated
at the mRNA and protein levels (95, 99). Myc mRNA and protein
have short half-lives and higher activity is usually associated with
lower stability (100). Myc potentially regulates thousands of genes,
with one estimate predicting as much as 15% of the genome (101,
102). While there are thousands of potential targets for Myc, its
functional role in cellular processes is highly dependent on the
level of expression, duration of activation, and expression of its
cofactors.

Myc IN PROSTATE CANCER
The vast majority of prostate tumors overexpress Myc (Table 1),
which correlates with poor prognosis (51, 103, 104). While Myc
mRNA is elevated in as many as 80% of prostate tumors, there is
less certainty about Myc protein levels (51). The De Marzo group
published a study showing that Myc protein expression is very
low in normal prostate epithelium but higher and more nuclear
localized in PIN and prostate tumors (55). The most common
mechanism of Myc overexpression is through amplification of the
gene locus, usually through gain of 8q. The narrower Myc region
8q24 is more selectively amplified in late metastatic tumors (50,
53, 105–108). However, early prostate tumors also overexpress Myc
but rarely have Myc amplifications, suggesting other mechanisms
driving Myc overexpression which are less well understood (51).

Myc amplification is specifically observed in castration resistant
tumors (54, 56). Bernard et al. demonstrated that Myc overex-
pression in the hormone-sensitive LNCaP line confers resistance
to androgen deprivation or AR knockdown (109). Conversely, AR
knockdown decreases Myc expression, indicating Myc is down-
stream of AR. In another study, the ability of AR to upregulate
Myc was ligand independent (110). Alternatively, Myc reportedly
upregulates AR, suggesting there may be feedback mechanisms
between the two proteins (111, 112).

Another potential mechanism for Myc upregulation is via β-
catenin, the downstream target of Wnt signaling. Constitutive
β-catenin is sufficient to upregulate Myc and induce prostate
tumor formation in a mouse model (113). Furthermore, the APC
gene (an antagonist of β-catenin) is often silenced by hyperme-
thylation in at least 50% of human prostate tumors (114, 115).
However, the specific role of APC and β-catenin in human PCa is
still unclear and it is unknown if the potential oncogenic activity
is due to Myc upregulation. As will be discussed later, some groups
report increased Notch signaling in prostate tumors, which may
also drive transcription of Myc (116, 117).

Myc overexpression in the mouse prostate with a weak pro-
moter drives low grade PIN but not adenocarcinoma (118). Using
stronger variants of the probasin promoter to regulate Myc overex-
pression in luminal cells, researchers were able to drive progression
to adenocarcinoma though not metastasis (52). In this model,
when Myc is driven by the endogenous probasin promoter (Lo-
Myc) mice take much longer to develop tumors than those with
a stronger promoter (Hi-Myc) (52). Finally, mice with knock-
out of Mxi1 (a Myc antagonist) show prostate dysplasia but do
not develop adenocarcinoma (119). All together, these models
demonstrate that Myc can drive PCa in the mouse, and the level of
Myc expression is related to the aggressiveness of carcinoma that
develops.

Myc has many potential oncogenic and tumor-promoting tar-
gets. One group of genes known to be regulated by Myc is cell cycle
regulators, such as E2F members, cyclins, and cyclin-dependent
kinases (120). Additionally, Myc can regulate cell growth by upreg-
ulating tRNAs and rRNAs (120). Other important targets of Myc
include stem cell genes, such as hTert and EZH2 (51, 76, 120).
Myc is one of the four original genes whose overexpression was
initially used to create pluripotent stem cells, along with Oct4,
Sox2, and Klf4 (121). Although overexpression of Myc was later
found not to be necessary for stem cell induction, Myc activity is
required for embryonic stem cell self-renewal (122–125). Another
key point regarding Myc is that the level and timing of its expres-
sion is critical for deciding what function the protein will play,
for example deciding whether Myc drives proliferation or stem
cell maintenance (120). However, which of these targets is critical
for PCa development and progression is not clear. In summary,
Myc amplification is common in late metastatic tumors and can
act as a driver in mouse models but specific mechanisms of Myc
regulation and downstream targets are poorly understood.

Myc IN PROSTATE DIFFERENTIATION
Beyond its multifaceted role in cancer, Myc is also important
for differentiation. A shift from Myc/Max to Mad/Max binding
is associated with terminal differentiation (126, 127). Transient
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expression of Myc aids induced pluripotent stem cell transforma-
tion while sustained expression stimulates down regulation of inte-
grin α6 and drives differentiation of embryonic stem cells (128).
In keratinocyte differentiation, Myc protein is expressed in the
basal layer and decreases during differentiation of the suprabasal
layers (129, 130). On the other hand, knockdown of Myc prevents
in vitro keratinocyte proliferation while transient overexpression
induces premature terminal differentiation (131–133). Overall a
short, high spike in Myc appears to be required for proliferation,
while a more moderate and extended increase in Myc is character-
istic for differentiation (91). The role of Myc specifically in prostate
differentiation has not been well investigated. Preliminary data
from our lab indicate Myc follows a pattern of moderate increase
over a brief period that is required during prostate epithelial dif-
ferentiation in our in vitro model using primary human basal cells
(unpublished data).

One mechanism by which Myc triggers differentiation is
through its control of a cell adhesion program. About 40% of
the genes downregulated upon Myc activation in mouse skin are
involved in cell adhesion and cytoskeleton, including integrins α6,
β1, and β4 (132). Integrin loss as the cells from the basal layer rise
into the upper layers triggers keratinocyte differentiation (134).
This adhesion profile is largely regulated via Miz1, given that a Myc
mutant unable to bind Miz1 loses the ability to suppress integrin
α6 and β1 transcription (132).

Another mechanism by which Myc may regulate differentia-
tion is via interactions with chromatin remodeling proteins (94,
135, 136). Chromatin modifications are often associated with cell
programing, such as patterns for stem or terminally differenti-
ated cells (136, 137). Pellakuru et al. published a study looking at
Myc and H3K27me3 in prostate differentiation and cancer (136).
H3K27me3 is a marker of polycomb activity, which induces het-
erochromatin and gene repression. The group reported that basal
prostate cells have lower levels of H3K27me3 than luminal cells
as determined by immunostaining with human tissue sections
(136). Furthermore, using a tissue micro array they also found
that cases of human PIN show decreased H3K27me3 compared
to normal luminal cells. Levels of H3K27me3 are also decreased
in prostate tumors from Hi-Myc mice. Additionally, they showed
that Myc knockdown in the PC3 and LNCaP PCa lines leads to an
increase in H3K27me3 (136). The authors were unable to provide
a mechanism for how Myc controls H3K27me3, but they previ-
ously reported that Myc upregulates EZH2, which is the catalytic
member of the polycomb complex and is often overexpressed in
PCa (136, 138). However, EZH2 overexpression does not correlate
with higher H3K27me3 levels in this study, which led the authors
to propose that regulation of EZH2 activation may be a separate
event (136). Seemingly answering the idea proposed by Pellakuru
et al. a later study reported that EZH2, upon phosphorylation at
Ser21, plays a non-polycomb role in castration resistant PCa acting
as an AR coactivator (139).

Myc CONCLUSION
Myc amplifications are very common in advanced prostate tumors
but Myc is also upregulated in early tumors through currently
unknown mechanisms (51). Normal upregulation of Myc is
required for proliferation and differentiation, and it is the level and

timing of Myc expression that largely determines which of those
decisions the cell will make (91). The upregulation of Myc seen
in PCa may explain how tumors arise from a transient amplifying
or differentiating prostate cell which requires a temporary upreg-
ulation of Myc expression. However, additional oncogenic events
are required to prevent terminal differentiation and death due to
the oncogenic stress of sustained Myc activation (95). As typically
happens with other cancers, loss of p53 can relieve apoptotic stress;
however, p53 loss is a rare event in primary prostate tumors and
is usually only seen in a small subset of metastatic tumors (140).
Thus, other yet to be identified mechanisms must be involved in
PCa development. Abnormal Myc expression and its role in regu-
lating a cell adhesion program may also help explain why prostate
tumors show a large general loss in integrin and matrix expression,
except for the retention of the tumor-promoting integrin α6β1
pairing (11, 132, 141). Additionally, prolonged Myc activation in
a transient-differentiating cell may drive changes in chromatin
structure, as evidenced by the fact that basal and intermediate
prostate cells show low levels of heterochromatin markings com-
pared to tumors (136). There is accumulating evidence to suggest
that Myc contributes to an altered differentiation program in PCa,
but more studies are required to work out particular mechanisms.

p38MAPK
p38MAPK BACKGROUND
The three classic branches of mitogen-activated protein kinase
(MAPK) signaling are p38MAPK (p38), Erk, and Jnk. MAPK
signaling involves kinase cascades that control a wide range of
functions in the cell including proliferation, stress response, and
differentiation (142). The MAPK pathways can regulate gene
expression through a variety of mechanisms at the RNA and
protein levels. Erk signaling is most classically associated with
growth factor signaling, while Jnk and p38 are commonly asso-
ciated with stress responses to insults such as inflammation
and radiation (143). p38 and Jnk have specific direct upstream
kinases: MKK3/6 activate p38 and MKK4/7 activate Jnk (though
MKK4 can potentially activate p38 in some cases) (142). How-
ever, p38 and Jnk share some common activating kinases further
upstream, such as Ask1 and Tak1 (143). This upstream con-
vergence makes identifying the contribution of each pathway
difficult. In epithelial differentiation, upstream p38 activation is
via the receptor tyrosine kinase FGFR2, specifically the FGFR2b
(FGFR2IIIb) isoforms, by KGF (FGF7) or FGF10 ligands (43, 144,
145). MAPKs are also negatively regulated by a host of MAPK
phosphatases, which are dual-specificity protein phosphatases that
inactivate MAPK members (146). While the MAPK pathways share
some overlapping features, p38 has a distinctive role in epithelial
differentiation (142).

There are four isoforms of p38: MAPK14 (p38α), MAPK11
(p38β), MAPK12 (p38γ), and MAPK13 (p38δ). They share about
60% gene homology and have some compensatory ability, though
they also have differential target preferences (142). p38α is the
most prevalent and ubiquitously expressed, while p38β is mod-
erately expressed in many tissues and p38γ/δ are more tissue
specific. The p38 kinases can signal through many different effec-
tors, including other kinases, phosphatases, transcription factors,
and mRNA binding proteins (142). Due to this range of potential
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Frank and Miranti Prostate differentiation and cancer

targets, p38 can regulate gene expression at the transcriptional,
post-transcriptional, and post-translational levels.

p38MAPK IN PROSTATE CANCER
There are a handful of studies which investigated p38 signaling in
PCa (Table 4). Unfortunately, most studies only interrogate p38α

(generally referred to as p38). In the TRAMP mouse model of PCa,
Uzgare et al. reported that p38 is highly activated in PIN lesions
and more well-differentiated tumors but is absent in late stage and
metastatic tumors (147). However, most other studies report that
p38 activation correlates with PCa progression and treatment with
a p38 inhibitor in a rat PCa model led to decreased angiogenesis
and reduced tumor formation (148). Utilizing 25 primary prostate
tumors and a combination of immunoblotting, ELISA, and IHC,
Royuela et al. reported that phospho-p38 (p-p38) is upregulated
in prostate tumors (149). Based on immunoblot analysis, tumors
showed ∼50% higher expression of p-p38 than normal prostate.
Furthermore, about 17% of normal prostate epithelium stains
positive for p-p38 while nearly 90% of the tumor samples were
positive (149). Additionally, a report by Lotan et al. demonstrated
that MKK4 and MKK6 proteins are minimally expressed in nor-
mal prostate luminal cells, moderately expressed in basal cells,
and highly upregulated in PIN lesions from human and mouse
(TRAMP model) (150). However, this study did not look specifi-
cally at the active (phosphorylated) MKK proteins and also found
that total MKK4/6 levels are not statistically different in low vs.
high grade tumors (150). Ricote et al. looked at upstream (MKK6)
and downstream (ATF-2, Elk-1) p38 targets in PCa progression
(151). They reported that MKK6 is not detected in normal prostate
samples, but it appears upregulated in PCa. Also, they detect p-
ATF-2 and p-Elk-1 protein in normal basal cells but expression
of both is higher in PCa (∼2.5- and ∼3-fold, respectively). ATF-2
and Elk-1 are also potential Jnk targets, but the authors did not
detect any Jnk in the PCa samples so they attributed all of the ATF
and Elk activation to p38 (151). Together, these reports suggest
upregulated p38 activity in PCa progression, at least in part due to
upregulation of the upstream activating kinases, such as MKK6.

MKP-1 (DUSP1) is a nuclear MAPK phosphatase that antag-
onizes Jnk and p38α/β activation (146). Several reports indicate
MKP-1 is overexpressed in early prostate tumors but is downreg-
ulated in high grade and castration resistant tumors, as well as a
portion of PIN lesions (153–157). MKP-1 can be activated by p38
in a negative feedback mechanism, so it is possible that down regu-
lation of MKP-1 may be a necessary precursor to p38 upregulation
in more advanced PCa tumors (158).

IL-6, a key regulator of inflammation, is also linked with PCa
and p38 signaling (159–162). Ueda et al. reported that IL-6 acti-
vates transcription of AR targets in a p38-dependant manner in
LNCaP cells (159). Ricote et al. reported that TNFα, a cytokine and
known activator of MAPK stress response, induces apoptosis in
LNCaP cells but not PC3. Moreover, TNFα activates p38 in LNCaP
cells, and p38 inhibition increases apoptosis (152). Building on
that finding, Gan et al. reported that LNCaP cells can be sensi-
tized to docetaxel by blocking p38, which prevents p53 activation
and apoptosis (163). Moreover, this was not observed with PC3
or DU145 cells, which do not have functional p53. These findings
were supported by a second group which further investigated the

Table 4 | p38 Signaling pathway in PCa.

Tumor type Method Citation

p-p398α PROTEINa

1.0 Normal WB Royuela et al. (149)

1.2 BPH WB Royuela et al. (149)

1.5 Primary WB Royuela et al. (149)

1.0 Normal IHC Royuela et al. (149)

3.5 BPH IHC Royuela et al. (149)

5.0 Primary IHC Royuela et al. (149)

MKK4 PROTEINb

0.3 Normal IHC Lotan et al. (150)

2.4 HG-PIN IHC Lotan et al. (150)

0.7 Normal IHC Lotan et al. (150)

1.9 Primary IHC Lotan et al. (150)

MKK6 PROTEINc

1.0 Normal IHC Lotan et al. (150)

2.6 HG-PIN IHC Lotan et al. (150)

0.9 Normal IHC Lotan et al. (150)

2.0 Primary IHC Lotan et al. (150)

29.0 BPH WB Ricote et al. (151, 152)

70.0 Primary WB Ricote et al. (151, 152)

p-Elk-1 PROTEINc

13 Normal WB Ricote et al. (151, 152)

47 BPH WB Ricote et al. (151, 152)

34 Primary WB Ricote et al. (151, 152)

p-ATF-2 PROTEINc

5 Normal WB Ricote et al. (151, 152)

14 BPH WB Ricote et al. (151, 152)

22 Primary WB Ricote et al. (151, 152)

% MKP-1 PROTEINd

100 PIN ISH Loda et al. (153)

94 Primary (LG) ISH Loda et al. (153)

28 Primary (HG) ISH Loda et al. (153)

0 Met ISH Loda et al. (153)

100 BPH IHC Rauhala et al. (154)

12 Primary IHC Rauhala et al. (154)

3 CRPC IHC Rauhala et al. (154)

aRelative to normal samples.
bIHC score,+1,+2,+3.
cAverage intensity.
dPercentage of tumors staining in medium to high range.

CRPC, castration-resistant PCa; LG, low grade; HG, high grade; Met, metastasis.

role of p53 in docetaxel resistance in the same cell lines (164). Thus,
over-activation of p38 is likely to trigger an apoptotic response
without additional pathway alterations to compensate, which may
include p53 loss in a subset of late PCa tumors but also likely
involves other unknown mechanisms.

Though the FGFR2b receptor is crucial for differentiation,
there are reports suggesting that growth factors such as EGFR
and IGF1R can also activate p38 (165–167). Prostate tumors
often show downregulation of FGFR2b and KGF (FGF7) and
upregulation of other FGFs and FGFRs which drive prolifera-
tive (168). Overexpression of FGF10 in mouse prostate stromal
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Frank and Miranti Prostate differentiation and cancer

cells causes adenocarcinoma when combined with normal mouse
prostate epithelia and implanted in the mouse renal capsule (169).
Furthermore, the degree of tumor progression correlated with
the amount of FGF10-expressing stroma implanted, suggesting a
dose-dependent function of FGF10 (169). Additionally, the FGF10
driven tumors are more resistant to androgen deprivation. This
group also found that blocking FGFR1 activation in the epithelium
with a dominant-negative mutant rescued oncogenic transforma-
tion, while dominant-negative FGFR2 only moderately reduced
invasion (169). Moreover, another study reported that FGFR1 acti-
vation in prostate epithelium could drive PCa in the mouse (170).
Whether the ability of FGF10 or FGFR1 to drive tumorigenesis is
dependent on p38 was not determined. Thus, it is likely that the
oncogenic potential of FGF10 is not through FGFR2b. Together,
these findings support the idea that FGFR2b, which is a poten-
tial tumor suppressor in the prostate, inhibits tumor formation
by driving differentiation (via p38) instead of proliferation (via
other MAPKs or PI3K) (171). Moreover, alternate mechanisms of
upstream p38 activation may contribute to PCa progression.

p38MAPK IN PROSTATE DIFFERENTIATION
p38 Promotes differentiation in a range of tissues including intes-
tine, lung, bone, and cornea (172–175). Most research has focused
on p38α and much less is known about the expression of specific
p38 isoforms in the prostate. Our lab detected mRNA for all four
isoforms in human prostate epithelia, but protein only for p38α

and p38δ (unpublished data); the latter is often associated with
endocrine glands but is also expressed in other epithelial cells such
as keratinocytes (176). p38α knockout in mice is embryonic lethal,
while p38γ or p38δ knockout results in apparently normal mice
(177, 178). Despite the lack of an obvious phenotype, Schindler
et al. that found p38δ−/− mice have normal skin but are resistant
to skin tumor formation (179). While p38δ may have overlapping
functions with p38α, there is evidence that it also has some unique
functions that are not well defined (179, 180).

How p38 regulates epithelial differentiation is not well under-
stood. In muscle differentiation, p38α/β (and possibly p38γ)
activate MyoD and Mef2 transcription factors and the SWI-SNF
chromatin remodeling complex, both of which are required for
muscle differentiation (181). Other roles for p38 include inhibiting
proliferation, which is a necessary prerequisite for differentiation
(182–184). More specifically, p38 activity represses Erk and Jnk,
which is reported to be a cellular switch from proliferation to dif-
ferentiation (180, 183, 185). While p38 is essential in a range of
differentiation models, investigation of its role in prostate differ-
entiation is lacking, as is an understanding of the contribution of
specific isoforms. However, p38 and its role in other differentiation
models may serve as a good starting point for further investigation
within the prostate.

Unlike other growth factors, KGF (FGF7) is an epithelial-
specific differentiation factor that is typically secreted by sur-
rounding stroma (186–188). KGF and FGF10 bind the same
receptor, FGFR2b, and share many overlapping functions includ-
ing upstream activation of p38 signaling (43, 144, 145). KGF or
FGF10 is sufficient to drive prostate differentiation in vitro (17,43).
In mouse knockout models, FGF10 and FGFR2 are both required
for proper development of the prostate (189, 190). Additionally,

FGF10 overexpression can drive tumor formation as previously
discussed, suggesting that the dosage of FGF10 is very important
for proper prostate homeostasis (169). Thus, FGFR2b signaling
through p38 is likely a critical step for prostate differentiation and
aberrant expression of FGF ligands and receptors promotes PCa.

p38MAPK CONCLUSION
p38 activation correlates with PCa progression in many reports
(149) (Table 4). Activation of p38 in PCa may be due to a com-
bination of upregulated upstream kinases (MKK3/6) and down-
regulated MAPK phosphatases (150, 155–157). MKP-1 (DUSP1),
which targets p38α/β, is often downregulated in late stage PCa
tumors, which suggests p38δ may act as an early oncogenic activa-
tor while p38α is a late contributor. However, p38δ appears to play
a tumor suppressive role in mouse skin and it would be useful to
investigate p38δ in prostate tumors to see if its loss correlates with
p38α overexpression (179). Alternatively, the role of p38 in PCa
may be dictated by its activating receptor. This idea is supported by
observations in PCa showing that more aggressive prostate tumors
shift from expression of FGFR2b to FGFR2c, which would prevent
differentiation and induce proliferative signals (171). Before the
loss of FGFR2b, over activated p38 may drive basal cells to differ-
entiate prematurely, which may partially explain the lack of basal
cells in PCa tumors and the mixture of basal and luminal markers
in cancer cells.

NOTCH
NOTCH BACKGROUND
Notch is well known for its role in cell fate decisions, such as stem
cell renewal, development, and differentiation (191). There are
four Notch transmembrane receptors in rodents and mammals,
Notch1–4, that are activated by transmembrane ligands on adja-
cent cells (192). In mammals, there are five classic ligands from
two families: Jagged (Jag1/2) and Delta-like (Dll1/3/4). Recent
work demonstrates that Notch signaling can also be activated by
a variety of non-canonical proteins, such as Dlk1/2, LRP1, and
TPS2 (193). The Notch receptor protein undergoes an initial cleav-
age event upon emergence from the ER and is then transported
to the cell membrane. Upon ligand binding a second cleavage is
initiated by ADAM10 and a final cleavage by the γ-secretase com-
plex. The cleaved C-terminal receptor fragment, known as the
Notch Intracellular Domain (NICD), translocates to the nucleus
where it binds the repressive CSL protein [also known as RBPJκ,
CBF1, Su(H), or Lag1] (192). The NICD/CSL complex recruits
co-activators such as Mastermind-like (MAML1/2/3) and p300
which trigger a switch from repression to activation of the classic
Notch target genes of the hairy and enhancer of split (Hes) fam-
ily: Hes1-7 and Hey1/2/L (194). After activating transcription, the
NICD fragment is quickly degraded and the Hes/Hey factors typ-
ically function in negative feedback loops by repressing their own
transcription, thus critically controlling the temporal regulation
of Notch. Notch also directly activates transcription of other tar-
gets, including p21/CDKN1A and Myc (195). While there is some
overlap, the four different NICDs have some differential prefer-
ences for ligands and downstream targets, though these details
are not thoroughly resolved (192, 196, 197). Adding to the com-
plexity, Notch and CSL are reported to have some independent
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Frank and Miranti Prostate differentiation and cancer

functions and do not always require each other for signaling (198–
201). There are additional mechanisms of Notch regulation, such
as endosomal and proteosomal turnover of the receptor as well
as post-translational modifications of the ligands and receptors;
these regulatory mechanisms will not be discussed in depth here
but can be found in a variety of reviews (192, 194, 202).

NOTCH IN PROSTATE CANCER
The Notch pathway is misregulated in many cancers, though the
type of misregulation is tumor and cell-type specific (203, 204).
The most studied model is T-cell Acute Lymphoblastic Leukemia,
where Notch signaling is over activated in the majority of tumors
(205–207). In other cancers, such as cutaneous and lung squamous
cell carcinoma, Notch is understood to be a tumor suppressor
(208). Notch1 loss drives skin cancer progression in mice in a
non-cell autonomous matter due to loss of barrier cell function,
which triggers an immune and growth cytokine response within
the tumor microenvironment (209).

Within the PCa field, there are conflicting reports about
whether the Notch pathway is tumor suppressive or oncogenic
(191, 210, 211). Supporting the case for Notch as a tumor sup-
pressor, Belandia and colleagues reported that Hey1 and HeyL are
excluded from the nucleus upon the transition from benign to
carcinoma in human prostate samples (212, 213) (Table 5). Fur-
thermore, the same group showed that Hey1 and HeyL bind to
AR and potentially function as AR co-repressors in the LNCaP
line (213). Other studies similarly found a decrease in Notch1 and
Hey1 protein in human PCa tumors compared to normal tissue
(214, 215).

Conversely, several reports demonstrate increased levels of Jag1
and Notch1 protein in high grade PCa tumors, implicating Notch
as an oncogene (116, 117, 216, 218) (Table 5). Bin Hafeez et al.
observe higher Notch1 protein staining in more aggressive prostate
tumors: 64% positive staining for Gleason grade 4 tumors, 30%
for high grade PIN, and 5% for normal tissue. Moreover, knock-
down of Notch1 in PC3 cells decreases metastatic gene expression
and decreases invasion in vitro (117). Furthermore, knockdown of
CSL, which ablates downstream Notch activity, leads to decreased
proliferation in PC3 PCa cells (219). Other groups reported that
siRNA knockdown of Notch1 or Jag1 in PC3 cells decreases PC3
growth and colony formation, in part due to an increase in cell
death (220, 221).

While most research has focused on Notch1 or overall Notch
activity, there are also a few papers reporting a specific role for
Notch3 in PCa. Using prostate tumors with known patient out-
come, Long et al. found Notch3 mRNA levels positively correlate
with PCa recurrence (222). Moreover, of a 12-gene mRNA panel,
Notch3 has the second highest prognostic ability for recurrence
(222). Ross et al. reported that Notch3, Jag2, and Presenilin1 (a
catalytic subunit of the γ-secretase complex) mRNA transcripts
are upregulated in high grade prostate tumors (157). Notch is also
implicated in PCa via a role in hypoxia. Exposure of LNCaP, PC3,
and DU145 cell lines to prolonged hypoxia leads to down regula-
tion of Notch1/2 mRNA and protein but has no effect on Notch3
(223). A follow up report found that hypoxia also induces changes
in cholesterol and lipid rafts in the cell membrane, which increases
colocalization of Notch3 and γ-secretase, leading to increased

Table 5 | Notch signaling in PCa.

Tumor type Method Citation

% Hey1 NUCLEARa

93 BPH IHC Belandia et al. (212)

20 Primary IHC Belandia et al. (212)

% HeyL NUCLEARa

100 BPH IHC Lavery et al. (213)

22 Primary IHC Lavery et al. (213)

Jag1 PROTEINb

1.0 BPH IHC Zhu et al. (116)

2.1 HG-PIN IHC Zhu et al. (116)

0.9 Primary (LG) IHC Zhu et al. (116)

3.0 Primary (HG) IHC Zhu et al. (116)

3.8 Met IHC Zhu et al. (116)

1.0 BPH IHC Santagata et al. (216)

1.2 Primary IHC Santagata et al. (216)

1.6 Met IHC Santagata et al. (216)

NOTCH1 PROTEINb

1.0 BPH IHC Zhu et al. (116)

1.4 HG-PIN IHC Zhu et al. (116)

1.0 Primary (LG) IHC Zhu et al. (116)

2.2 Primary (HG) IHC Zhu et al. (116)

4.4 Met IHC Zhu et al. (116)

NICD1 PROTEINb

3.6 Normal – basal IHC Whelan et al. (215)

2.7 Normal – luminal IHC Whelan et al. (215)

1.1 Primary IHC Whelan et al. (215)

% NOTCH3 PROTEINc

23 Primary (GG <3) IHC Danza et al. (217)

95 Primary (GG >4) IHC Danza et al. (217)

aPercentage of tumors with nuclear staining.
bRelative to benign samples.
cPercentage of tumors with high staining.

LG, low grade; HG, high grade; Met, metastasis; GG, Gleason grade.

NICD3 expression (217). The study also measured Notch3 protein
levels in PCa tumor sections and found Notch3 protein levels cor-
relate positively with Gleason grade, thus supporting the Notch3
mRNA correlation reported by Long et al. (217, 222).

NOTCH IN PROSTATE DIFFERENTIATION
When it comes to cell fate decisions, Notch signaling is critical
across most cell types. The Notch pathway has been studied in
the prostate to some extent, but knowledge about specific mecha-
nisms and signaling pathways is lacking. Many studies have been
conducted in the mouse which, as discussed earlier, has some sig-
nificant structural differences from the human. Treatment of rat
prostates ex vivo with a γ-secretase inhibitor prevents lumen for-
mation and treatment with the inhibitor in vivo prevents prostate
regeneration following castration (220). A similar finding was
reported for mouse prostates treated with γ-secretase inhibitors
(224). As for receptor-specific studies, Notch1 is the most studied.
Wang et al. used an interesting model where they made a trans-
genic mouse with a lethality gene (bacterial nitroreductase) under
control of the Notch1 promoter, which would only be lethal in the
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presence of an inducing chemical (220). They took early devel-
oping mouse prostates and grew them ex vivo with or without
the inducer and found that ablation of Notch1-expressing cells
prevents proper organoid development and differentiation (220).
In a follow up study, they utilized γ-secretase inhibitors and an
interferon-inducible Notch1 mouse (Mx-Cre/Notch1flox) to study
the effect of Notch1 loss on prostate development (214). They
found that induced Notch1 knockout (in all cells of the prostate
including the stroma) leads to increased proliferation and prostatic
hyperplasia as well as co-expression of basal and luminal keratins
(214). Moreover, Wu et al. utilized transgenic mice to investigate
Notch in prostate development, reporting that Nkx3.1-Cre driven
CSL knockout leads to decreased proliferation and differentiation
defects in the prostate (225). Conversely, Notch1 constitutive acti-
vation (via PB-Cre or Nkx3.1-Cre driven NICD1) in the mouse
prostate causes increased proliferation and hyperplasia (225). Both
of these studies suggest that Notch signaling is required for proper
differentiation, while Notch1 specifically appears to be crucial for
maintenance of a proper and distinct basal layer. Notch1 also reg-
ulates p63, which is a classic basal cell marker in the prostate
and a regulator of cell adhesion, including integrins (226–228).
Therefore it is intriguing to consider that Notch signaling dur-
ing prostate differentiation may need to strike a balance between
downregulating adhesion through p63 while Notch1 must also
maintain homeostatic basal cells. The balance between multiple
Notch receptors and downstream targets may in fact be crucial for
regulating the decision to stay basal or differentiate.

Studies on other Notch receptors in the mouse prostate are
limited; though there are some studies in other tissues. For
instance, Notch3 knockout mice develop normally (229). The
NICD3 appears to be a weaker activator of downstream signaling
than NICD1 and may actually antagonize NICD1 by compet-
ing for CSL (230). Dang et al. reported that constitutive Notch3
expression (via NICD3) in mouse lung epithelium prevents ter-
minal differentiation and causes metaplasia and reduced epithelial
branching (231). In esophageal differentiation, Notch1 activates
Notch3, which in turn activates Hes5 and drives differentiation
(232). In skin differentiation, Notch1/2/3 have all been detected
in the interfollicular epidermis, but there is a shift in ligands
from Jag2 in the basal layer to Jag1 in the upper layers (233).
Moreover, in the hair follicle Notch1 is expressed primarily in
the bottom of the niche, while the upper regions mainly express
Notch2 or Notch3 (233). Such a mechanism where there is a
shift in Notch receptor, ligand, and/or downstream targets dur-
ing prostate differentiation is conceivable but has not yet been
investigated.

Due to the structural differences in the mouse vs. the human
prostate and the highly context-specific nature of the Notch path-
way, further studies are needed to understand the role of Notch
in human prostate tissue. For example, in mouse skin Notch1
and Notch2 are mainly expressed in the upper layers; however, in
human skin Notch1 is expressed in all layers and Notch2 is mainly
restricted to the basal layer (234). There have not been any reports
clearly and uniformly demonstrating which components of the
Notch pathway are expressed at the protein level in the normal
human prostate (191). However, Wang et al. reported mRNA for
all four receptors and most Hes/Hey members are expressed in
human prostate samples, but only Notch1 and Hey1 levels are

altered in PCa tumors (214). Notch1 is the most well-studied
receptor in the prostate and it is found predominantly in basal
cells of both mouse and human prostates (218, 235). Research on
the other receptors is much less abundant. Recently, one study
investigated Notch2 and Notch3 expression in PCa progression.
They found low levels of Notch3 staining in normal prostate
sections and decreased Notch2 expression with increasing tumor
grade but did not report whether they detected Notch2 in normal
prostate tissue (217). In a mouse model, Notch2 and Dlk1 protein
were detected in developing mouse prostate stroma but not the
epithelium (224). Understanding the specific role for each Notch
receptor in prostate will require further investigation.

NOTCH CONCLUSION
While it is established that the Notch pathway is important for
normal prostate differentiation, and it appears to be deregulated
in PCa, specific details are still ambiguous. The Notch field is still
working to define clear roles for the various ligands, receptors, and
downstream targets. Moreover, any resolved mechanism is likely
to be tissue and cell specific, as is common with this pathway
(234). The lack of an NICD3-specific antibody makes identify-
ing its contribution difficult to assess. Additionally, the transient
nature of NICD activation and turnover makes it difficult to detect
endogenous NICD via histological techniques or immunoprecip-
itation. Additionally, many studies rely on γ-secretase inhibitors,
which fail to distinguish the function of specific Notch recep-
tors. The same applies to studies that use knockdown of CSL to
ablate Notch signaling. The limitations of γ-secretase inhibitors
or CSL knockdown are apparent in a study from Yong et al. which
saw differential effects depending on which technique they used
(219). The explanations for such discrepancy are likely due to γ-
secretase involvement in other Notch-independent functions and
CSL-independent Notch signaling (200, 201). Specific knockdown
of individual Notch components is more arduous but allows for a
better understanding of the pathway.

There is conflicting data about whether Notch is acting as a
tumor suppressor or an oncogene in PCa. While the role of Notch1
in normal prostate differentiation has been investigated, specific
mechanisms remain elusive. One interesting idea is that Notch1
is known to transcriptionally upregulate Myc, which may explain
how Notch signaling can function as an oncogene (236). The link
between Notch-mediated repression of p63 could also explain why
prostate tumors show loss of p63 (227). Notch as a tumor suppres-
sor may be mediated through Hey2/L expression, which then acts
as an AR co-repressor. Based on the complexity of Notch signal-
ing, it is feasible that its role as an oncogene or tumor suppressor is
dependent on which receptors and downstream transcription fac-
tors are being activated. For example, if Myc is the primary target,
the pathway may be oncogenic; however, if HeyL is the primary
target, it may be tumor suppressive. Due to the complexity of the
Notch pathway, merely looking at a small selection of the ligands,
receptors, or downstream factors may only be providing a small
piece of the overall puzzle. As is seen with skin, temporal changes in
Notch ligand expression are characteristic of differentiation (233).
Perhaps the status of the Notch pathway in prostate tumors can
be indicative of the cell of origin or be used to grade relative
differentiation status. More thorough investigations of Notch sig-
naling may help clarify its function in differentiation and resolve
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Frank and Miranti Prostate differentiation and cancer

some of the conflicting findings about its role in oncogenesis and
tumor progression.

PI3K/Pten
PI3K/Pten BACKGROUND
The PI3K pathway regulates multiple processes in the cell includ-
ing metabolism, proliferation, and survival (237). Multiple aspects
of the PI3K pathway are frequently misregulated in many cancers
(238, 239). PI3K is a lipid kinase that targets phosphoinositides,
catalyzing the conversion of phosphatidylinositol 4,5-biphosphate
(PIP2) to phosphatidylinositol 3,4,5-triphosphate (PIP3). There
are three classes of PI3K genes that all target PIP2 but each class
varies by structure, regulation, and tissue specificity. PI3K class
I members are implicated in cancer and are the most ubiqui-
tously expressed. The class I PI3K family contains four members
(PIK3CA, PIK3CB, PIK3CG, and PIK3CD) that code for the cat-
alytic p110 subunit, while three other genes (PI3KR1-3) code for at
least five isoforms of the p85 regulatory subunit (238). The p110α

and p85α subunits are implicated most often in cancer (238, 239).
Activation of a variety of receptors induces recruitment of the reg-
ulatory subunit, p85α, which brings the catalytic subunit, p110α,
to the cell membrane to catalyze the conversion of PIP2 to PIP3.
PIP3 recruits Akt which is then phosphorylated by Pdk1 and the
mTORC2 complex. Activated Akt phosphorylates and activates the
mTORC1 complex, which in turn regulates a range of targets such
as S6K and 4EBP1, both of which are required for protein syn-
thesis (240). Akt also phosphorylates other proteins commonly
implicated in cancer, including GSK3β, BAD, MDM2, and p27
(CDKN1B) (238).

While mTORC1 activation by Akt can stimulate a negative
feedback mechanism, the primary negative regulator of the PI3K
pathway is Pten, a lipid phosphatase that converts PIP3 back to
PIP2 and thus antagonizes Akt activity (58). However, Pten has
functions beyond its role in regulating PI3K/Akt activity. First,
the phosphatase region of Pten is related to other tyrosine phos-
phatase proteins and dual-specificity protein dephosphatases (58,
241) and as such can also dephosphorylate proteins like focal
adhesion kinase (FAK) and cAMP response element binding pro-
tein (242, 243). Secondly, Pten has lipid-independent functions
within the nucleus such as DNA repair via activation of RAD51
(58, 244, 245). Pten also interacts with p53 to arrest cell growth
upon oxidative damage (246–248). Complete loss of Pten leads to
major defects in DNA repair (245, 249). Finally, Pten also regulates
cell polarity (250, 251).

Pten loss (via mutation, transcriptional repression, or deletion)
is common in many cancers, including PCa (58, 252). Because of
the ability for PTEN to regulate PI3K/Akt-dependent and inde-
pendent pathways, it has the capacity to impact many aspects of
cellular function, including DNA damage response, FAK activa-
tion, and cell polarity. Identifying the most important targets for
the establishment, maintenance, or progression of prostate tumors
is essential for a full understanding of PCa.

PI3K/Pten IN PROSTATE CANCER
Loss of Pten expression in PCa was first recognized in the late 1990s
and genetic loss of at least one allele occurs in as many as 65% of
metastatic prostate tumors (57, 253, 254) (Table 2). Homozygous

deletion of Pten occurs in <10% of primary tumors but occurs in
about 20–50% of metastatic, castration resistant tumors (60, 61,
68). Genomic loss of Pten correlates with late stage PCa tumors
and poor prognosis (60, 67, 255–257). Alterations in other mem-
bers of the PI3K pathway are less common than Pten loss. Akt
mutations are very rare and <5% of primary PCa tumors have
mutations in p110α (PIK3CA), though 1–15% have amplification
of the gene locus (5, 59, 258). Mutations in p85α (PIK3R1) are also
very rare, though genomic deletions of its locus on 5q are more
frequent and expression is downregulated in about 20% in pri-
mary tumors and 60% of metastases (5). Multiple studies looking
at Pten protein expression by IHC found that while Pten deletions
are readily apparent by protein loss, about 30–40% of tumors with
loss of Pten protein do not show genomic loss of the Pten gene
(60, 61, 259). While Pten deletions are quite common, mutations
in the gene itself are rare in primary prostate tumors (5, 260, 261).
Pten silencing by methylation is fairly common in other cancers
but is not widely reported in PCa (262). Inactivation of Pten via
alternate mechanisms, such as miRNA or competing-endogenous
RNA, was recently reported, indicating this mechanism might be
active in PCa (263–267).

Constitutive Akt expression in the mouse prostate, driven by
the probasin promoter, leads to PIN but not tumor invasion, as
is seen with total Pten knockout (65, 66, 268). These findings, in
addition to the fact that Pten deletion is more common than other
PI3K/Akt alterations, suggests that Pten contributes to prostate
oncogenesis through multiple mechanisms beyond activation of
PI3K/Akt signaling. Pten loss correlates with the TMPRSS2-Erg
fusion in human tumor samples (5, 259, 269, 270). Furthermore,
Erg activation combined with single-copy Pten loss accelerates PCa
progression from PIN to adenocarcinoma in mice (87, 88, 271). In
the TRAMP model, Pten haploinsufficiency in the prostate gives
rise to larger tumors and decreased survival rates compared to the
normal TRAMP mice (63). In humans, it is still not clear if the
prognostic association of single-copy Pten loss is due to Pten hap-
loinsufficiency or loss of heterozygosity, i.e., inactivation of the
second allele via an alternate mechanism (60).

PI3K/Pten IN PROSTATE DIFFERENTIATION
While loss of Pten in PCa is well established, knowledge about
how its loss contributes to tumor development and its role in
normal prostate differentiation is very limited (14, 17, 272, 273).
Nonetheless, PI3K and Pten are known regulators of epithelial dif-
ferentiation in a variety of other models (274–278). The Rivard
group reported that PI3K is required for E-cadherin assembly
at tight junctions, which in turn activates Akt, downregulates
Erk, and drives differentiation and survival (279–281). Calautti
et al. utilized mouse primary keratinocytes to demonstrate that
PI3K signaling is required for the initiation of differentiation and
survival of differentiated suprabasal cells (282). Moreover, they
found that PI3K signaling and differentiation require EGFR and
E-cadherin engagement (282). Supporting these findings, lumi-
nal prostate cells also require E-cadherin and PI3K signaling for
survival (17). However, the differentiated luminal cells, unlike
the basal cells, do not express or require EGFR (17, 283). Thus,
PI3K/Akt signaling is crucial for the emergence and survival of
differentiated epithelia.
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Most notable is the observation that Pten’s role in differentia-
tion extends beyond regulating PI3K/Akt signaling. In a mammary
ex vivo organoid model, Pten knockout causes disorganization
of the epithelial bilayer (284). Moreover, Akt/mTORC1 signal-
ing is necessary but not sufficient for proper differentiation in
this model (284). Groszer et al. found that loss of Pten drives
premature hematopoietic stem cell differentiation and increases
the number of leukemia initiating cells (285–287). Using a kid-
ney epithelium 3D culture model, the Mostov group found that
Pten and the balance between PIP2 vs. PIP3 levels is necessary
for establishing basal/apical polarity and lumen formation (250,
288). Upon siRNA knock down of Pten, the cells lost actin and
PIP2 enrichment at the apical membrane which is required for
recruitment of Annexin2 and subsequently Cdc42. Cdc42 then
recruits Par6, which together function in a complex with Par3 and
aPKC, which is known to regulate cell polarity (251, 289, 290).
Pten may be targeted to the apical membrane via its association
with tight junctions, though the precise mechanism is unknown.
It was also reported that integrin β1 and laminin were required
for establishment of basal polarity in the same kidney epithelium
model, thus demonstrating that Pten and integrins likely coop-
erate to establish cell polarity (291). The Rivard group, using an
intestine epithelium model, reported that Pten knockdown with
shRNA leads to a loss of cell polarity and disruption of adher-
ence junction formation (292). They followed up that study by
creating an intestine-specific Pten−/− mouse model and found
defects in differentiation in vivo (293). Thus, PI3K signaling and
Pten both appear to be required for epithelial differentiation.
PI3K may be primarily involved in survival of the differentiat-
ing cells while Pten appears to be important for establishing cell
polarity which is required for organization of epithelial structure.
Therefore, epithelial differentiation likely requires a delicate bal-
ance between Pten and PI3K activity; for example, Pten may be
higher in early differentiation to set up polarity and lower in
later differentiation to permit PI3K signaling for survival. Alter-
nately, Pten levels may remain constant throughout differentiation
with upregulation of PI3K signaling by other means in the new
luminal cell.

PI3K/Pten CONCLUSION
Downregulation of Pten aids tumor growth (238). However, com-
plete loss of Pten in normal cells can lead to cell arrest or apoptosis
(245). In PCa, the initial loss of one copy of Pten may aid growth
of the tumor, but other oncogenic events may be required for sur-
vival upon loss of heterozygosity. These additional events could
include upregulation of other survival pathways, or in later stage
tumors, loss of p53. Our lab previously reported that PCa cells
utilize the combination of AR and α6β1 to activate a survival path-
way independent of PI3K (11). Basal prostate cells do not require
PI3K for survival, but luminal cells do (17, 283). Thus, it is con-
ceivable that a transiently differentiating cell may not yet depend
on PI3K for survival but already be activating AR and beginning
to display the luminal phenotype. This hypothetical cell would
combine the tumorigenic benefit of PI3K independent survival
with AR activation, which in this context now becomes oncogenic.
Additionally, loss of Pten likely disrupts polarity leading to disorga-
nization of the bilayer, and altered homeostatic signaling between

the stroma and epithelium, ultimately disrupting differentiation,
which may be a prerequisite for tumorigenesis.

CROSSTALK AND ONCOGENESIS MODELS
OVERVIEW
As covered in this review, Myc, p38, Notch, and PI3K/Pten all
play key roles in regulating differentiation and are all misreg-
ulated during oncogenesis. Myc upregulation and Pten loss are
well established drivers of prostate oncogenesis. However, p38
and Notch have not yet been widely labeled as oncogenic drivers,
though we believe that their misregulation in a transiently dif-
ferentiating bipotent cell can contribute to misregulation of Myc
and Pten and help drive oncogenesis. All these pathways are capa-
ble of crosstalking with each other, which may help explain their
interconnected functions within the prostate. One of the great
challenges facing PCa researchers is to understand prostate onco-
genesis, which will allow better understanding of how to diagnose
and treat PCa. Though there is much more investigation required,
there is enough evidence in the literature to begin to formulate
some ideas about how PCa may arise from defective differentia-
tion. In this section we will review our hypothesized model for
how these pathways drive normal differentiation and summarize
potential mechanisms for how their misregulation and crosstalk
could alter Myc and Pten to drive oncogenesis.

MODEL OF NORMAL DIFFERENTIATION
We favor the model of a transient-differentiating bipotent epithe-
lial cell as the cell of origin for PCa. Based on the information
presented in the preceding sections, we present a model of prostate
epithelial differentiation (Figure 2). We hypothesize that the deci-
sion of a bipotent cell to differentiate toward a secretory phenotype
is determined by stromal KGF (FGF7) activation of p38 through
FGFR2b and MKK signaling. p38 affects a wide range of tar-
gets, including transcription factors, mRNA stability proteins, and
other kinases/phosphatases. One action of p38 is to limit prolifer-
ation through Erk, while another is to upregulate Notch1 and Myc
to drive differentiation. Upregulation of Pten, via a mechanism
that may include Notch1 or other p38 target, is initially required
to maintain chromosome stability and generate the PIP2 gradi-
ent at the apical membrane to establish cell polarity (Figure 2).
The establishment of polarity is critical for initiating a differential
gradient of Notch1 signaling basally to maintain stem-ness and
Notch2/3/4 signaling apically toward the emerging luminal cell.
Notch2/3/4 signaling in the emerging luminal cell downregulates
p63, which along with Myc, downregulates integrin expression.
Furthermore, as integrin expression diminishes in the transient-
differentiating cell, there is a switch from Erk-dependent survival
to a reliance on E-cadherin and PI3K survival pathways (17). Notch
signaling through Hes1 limits Pten expression to allow effective
PI3K/Akt signaling and survival of the luminal cell. Beyond pro-
moting survival, PI3K negatively regulates Ask1, the upstream
kinase required for p38 activation (272, 277, 294). Thus, PI3K
upregulation in luminal cells may be required to terminate the
p38 differentiation program (Figure 2).

A critical question yet to be addressed in prostate secretory
epithelial differentiation is how AR expression is upregulated. In
Figure 3, we outline the few known mechanisms for controlling AR
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FIGURE 2 | Hypothetical model for prostate epithelial differentiation.
Upstream KGF(FGF7) from the stroma activates p38 through FGFR2b and
MKK3/6, which plays multiple roles in differentiation, including inhibiting
proliferation through suppression of Erk and upregulating differentiation
determinants Notch1 and Myc. The transient-differentiating bipotent cell must
make a decision between sustaining Notch1 signaling to commit to a basal
phenotype or switching to Notch2/3/4 signaling to become luminal. The switch

may be mediated by elevated Pten, via an unknown mechanism, to generate
a PIP2 gradient at the apical membrane to establish cell polarity. Notch2/3/4
signaling in combination with Myc suppresses integrin expression allowing
cells to detach. Luminal cells become dependent on PI3K signaling for
survival as they lose matrix adhesion and integrin expression. Ultimately, Pten
is partially suppressed to allow PI3K/Akt-dependent survival of the terminally
differentiated luminal cell and the p38 differentiation program is terminated.

expression. Although, AR transcription is enhanced by androgen
through AR and Myc binding sites in its promoter (Figure 3ii),
this is not sufficient to induce AR expression in basal cells (17,
111). Low levels of AR mRNA or AR protein is detectable in
AR-negative tumor cell lines (295, 296), suggesting AR expres-
sion is sensitive to both mRNA and protein stability factors.
The mRNA PolyC-binding protein, HuR, binds polyC tracts in
the 3′ UTR of AR mRNA and HuR (Figure 3i) is a known
direct target of p38 (297–299). Thus, early signaling by p38 dur-
ing differentiation may directly stabilize AR mRNA (Figure 3i).
There are no reports linking Notch directly with AR expres-
sion, but stable AR protein expression requires loss of cell-matrix
adhesion (17). Thus, the extent to which Notch is involved
in reducing cell adhesion (300), would aid in enhancing AR
expression.

Alternatively, AR protein stability may be enhanced during
differentiation (Figure 3iii). Two mechanisms known to con-
trol AR protein stability are proteasomal degradation via ubiqui-
tinylation and caspase 3-mediated degradation (301). Numerous
AR-binding E3 ligases are known, but the upstream signals that
suppress or activate them are less clear. One pathway involves Akt-
dependent phosphorylation of Mdm2, which then targets AR for
degradation (Figure 3). More intriguing is the role of Pten in pro-
moting AR degradation by caspases (302). What is not clear is
when during differentiation these pathways would be active, since
they are antagonistic to each other and both result in AR loss. In
Pten-negative tumors, active Akt would degrade AR resulting in
AR loss. The reduced expression of AR in the prostate tumors of
Pten-negative mice supports this idea (35). However, there must
be a counteractive mechanism that keeps AR active in both tumors
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FIGURE 3 | Hypothetical mechanisms for AR upregulation during
differentiation. AR expression is tightly controlled both transcriptionally
and post-transcriptionally. Early in differentiation prior to stable AR
expression, p38 stimulates AR expression most likely by regulating mRNA
stability (i). Once low levels of AR are made, androgen (DHT) binding to AR
stimulates its binding to its own promoter through AR binding elements
(ARE). This requires the cooperation of signals from p38 that stimulate Myc
and Notch2/3/4 to suppress cell adhesion, ultimately elevating AR mRNA
transcription (ii). AR protein is degraded through two different mechanisms
(iii), the classical ubiquitinylation system and through caspase 3. Both Pten
and PI3K are reported to influence these degradation pathways; although
how these two contradictory signals are balanced is not clear.

and secretory cells. Thus, even tumor cells are forced to balance
signals to keep AR active.

MECHANISMS FOR ONCOGENIC Myc UPREGULATION
Genomic amplification of Myc is common in advanced tumors,
but early tumors must have alternate mechanisms of Myc upregu-
lation which are not well defined (51). A moderate but transiently
sustained increase in Myc expression is required for differentia-
tion, but something must happen to prolong Myc activation in
oncogenesis (91). Both p38 and Notch are essential for differen-
tiation and each can drive Myc expression. Thus, it is possible
that misregulation of either could sustain Myc activation during
tumorigenesis as depicted in Figure 4.

In the case of p38, one potential mechanism for increasing
Myc activity is through mRNA stability (Figure 4i). Myc mRNA
turnover is tightly controlled and p38 directly phosphorylates
stability proteins that bind mRNAs like Myc that have stability
control elements such as AU-rich or PolyC tracts (51, 303). p38
inactivates mRNA destabilizing proteins such as TTP,which upreg-
ulates Myc mRNA stability in rapamycin-treated cancer cells (304).
Conversely, p38 activates HuR (297). HuR reportedly binds Myc
mRNA, although there are conflicting reports as to whether this
increases or decreases Myc stability (305–310). p38 may indirectly
enhance Myc expression by increasing Notch ligand or recep-
tor mRNA stability in an analogous fashion (Figure 4ii) (236).
Notch1 has an AU-rich element and is stabilized via p38 activity in
a leech zygote model (311). Additionally, the Notch ligand Dll4 was
reported to be upregulated by HuR in mouse neuroepithelial cell
(312). Whether Myc, Notch1, or Dll1 is regulated by p38 through
mRNA stability in the prostate is unknown.

FIGURE 4 | Hypothetical mechanisms for Myc upregulation in prostate
oncogenesis. A tightly controlled increase in Myc expression is required for
differentiation, but prolonged and excessive Myc activity is oncogenic and
leads to increased proliferation, altered adhesion, and chromatin
remodeling. Constitutive activation of p38 and Notch1 are two possible
alternative mechanisms for upregulating Myc expression early in
tumorigenesis. Active p38 can regulate mRNA stability proteins, such as
TTP and HuR which affect Myc, Notch1, or Notch ligand mRNA half-life (i,ii).
Overactive p38 signaling could result from loss of MAPK phosphatases
(MKP), alternate growth factor receptor expression, or activation of MKKs
(iii). Independently, overexpressed Notch ligands could stimulate Notch1
leading to increased Myc transcription (iv). Activation of p38 may enhance
Erg/Ets fusion gene activity to drive Myc overexpression (v).

Several mechanisms could lead to aberrant p38 activation in
tumors (Figure 4iii). Alterations that reportedly upregulate p38
signaling in PCa include loss of MAPK phosphatases, upregula-
tion of upstream kinases MKK3/6, increased FGF10 expression
in the stroma, and increased expression of proliferation-driving
FGFRs (168). Prolonged p38 activation in a transiently differen-
tiating bipotent cell would derail differentiation by preventing
the required downregulation of Myc. Mutations that upregu-
late Notch1 signaling, such as increased ligand expression or
increased receptor mRNA stability, could also lead to sustained
Myc expression or activity (Figure 4iv).

The Ets fusion genes that are so prevalent in PCa pro-
vide another mechanism by which Myc could be upregulated
(Figure 4v). TMPRSS2-Erg upregulates Myc in VCaP cells (77)
and Etv4 binds Myc enhancers in PC3 cells (313). Etv4 knock-
down decreases Myc expression. However, Etv4 overexpression
in normal prostate epithelial cells did not alter Myc levels, sug-
gesting other oncogenic alterations are required for this crosstalk
(313). One of the downstream targets of p38 signaling is Elk-1, a
member of the Ets family, which is upregulated in PCa (151). Thus,
increased p38 signaling may be complementary or necessary for
full Ets activation in PCa.

In summation, due to the normal upregulation of Myc as a part
of differentiation, we hypothesize that alterations in one or more
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of these pathways would be enough to push Myc expression to
initially stimulate differentiation. But its failure to subsequently
be downregulated generates an oncogenic event resulting in only
a partially committed, yet proliferative, cell with an altered chro-
matin program and retained matrix adherence. This model will
need further testing to determine its relevance in human prostate
epithelial differentiation and oncogenesis.

MECHANISMS FOR ONCOGENIC Pten DOWNREGULATION
Another key oncogenic event in PCa is downregulation of Pten.
There are several potential mechanisms whereby misregulation of
normal differentiation signals could lead to Pten loss as outlined
in Figure 5. How Pten expression is controlled during differentia-
tion is not clear, but it is required to maintain epithelial integrity
and structure. In fact, downregulation of Pten may be a prerequi-
site to Myc-driven oncogenesis, since elevated and prolonged Myc
expression can induce apoptosis, potentially via Pten activation of
p53 and Rad51 (Figure 5i) (58, 95, 314).

About 30–40% of tumors with loss of Pten protein do not
show genomic loss of the gene, indicating alternate mechanisms
of inactivation (60). Crosstalk between Pten, Notch, and Myc
is reported in the literature and we hypothesize that oncogenic
action of Notch or Myc is sufficient to limit Pten expression early
in oncogenesis (Figure 5ii). One mechanism may be similar to
what is observed in Notch-driven T-ALL, where Hes1 and Myc
both transcriptionally repress Pten (315, 316). In T-ALL, Notch
inhibition kills cells by blocking Pten downregulation; however,
resistant cells develop alternate mechanisms to upregulate Akt
(316). In the prostate, NICD1 expression in mouse luminal cells

FIGURE 5 | Hypothetical mechanisms for Pten down regulation in
prostate oncogenesis. Myc or Notch1 could each act to suppress Pten
expression early in oncogenesis. Loss of Pten may be a prerequisite for
Myc upregulation to relieve Myc induced apoptosis (i). However, moderate
activation of Myc could also contribute to Pten downregulation, via either
transcriptional repression or induction of miR-19. Increased Notch1
signaling may also transcriptionally downregulate Pten (ii). Ultimely
downregulation of Pten can lead to more DNA damage, loss of polarity, and
increased PI3K/Akt survival signaling (iii). Loss of Pten can lead to
stimulation of p38 via activation of upstream MAPKs, such as Ask1, further
contributing to oncogenesis (iv).

(via the probasin promoter) leads to hyperplasia and decreases
Pten expression in both epithelial and stromal cells (225). Like-
wise, CSL knockout in luminal cells (via the Nkx3.1 promoter)
leads to increased Pten. Additionally, Myc activation of miR-19
targets and downregulates Pten in a mouse Myc-driven B-cell lym-
phoma model (317). Thus, under oncogenic conditions, upregu-
lated Notch or Myc suppresses Pten expression and potentially
drives tumor initiation (Figure 5ii) (223, 317).

We further hypothesize that Pten aids in temporally or spa-
tially controlling the Notch switch that commits the cell to either
the basal (Notch1) or luminal (Notch2/3/4) lineage (Figure 2).
The necessary oncogenic consequence of Pten inactivation would
be disruption of cell polarity, failure to maintain epithelial struc-
ture, and impaired differentiation (Figure 5iii). Because Pten is
also critical for controlling DNA damage, another consequence of
Pten loss would be increased susceptibility of the cell to mutation.

The best characterized result of Pten loss is increased survival
signaling through PI3K/Akt, which is consistent with the switch to
dependence on PI3K/Akt for normal secretory cell survival during
differentiation (17). Another consequence of PI3K/Akt activation
is suppression Ask1 (Figure 5iv), the upstream kinase required for
p38 activation (272, 277, 294). If suppression of p38 signaling due
to Pten loss occurs too early in the differentiation program, cells
will not complete the process and become arrested. However, PI3K
activation in tumor cells was shown to activate p38, which then
stimulates EGFR and creates a positive feedback loop further acti-
vating PI3K (318). The mechanism of how PI3K activates p38 is
not clear, but other oncogenic mutations may reverse the normal
regulation by Ask1 and activate p38. Whether any of these events
are major mechanisms for Pten loss or whether the downstream
consequences are critical for prostate oncogenesis has yet to be
demonstrated, but this model provides a sampling of potential
mechanisms that should be further investigated.

CONCLUSION
In conclusion, pathways known to be involved in normal prostate
differentiation (Myc, p38, Notch, and PI3K/Pten) can be linked
to PCa. These pathways have complicated interactions; multi-
ple functions, multiple targets, many levels of regulation, and
significant crosstalk. To better understand prostate oncogenesis,
these pathways need to be more thoroughly investigated in human
prostate models. Differentiation is a very tightly regulated process
where cells undergo major reprograming. We have provided a
few, though certainly not exhaustive, potential models for how
oncogenic disruption of specific differentiation pathways can drive
tumor initiation. We hypothesize that the oncogenic cell of origin
for PCa is not a committed basal or luminal stem cell, but rather
a transient-differentiating bipotent cell. The bipotent K5/K8 cells
found in both human and mouse prostates are the most likely
candidates for prostate oncogenic transformation (25, 32). These
cells must maintain very tight temporal and spatial control of
the differentiation pathways and thus may be the easiest targets
for oncogenic disruption. Only through better understanding of
oncogenesis will we find new ways to classify prostate tumors
and better predict tumor aggressiveness. Such discoveries will
ultimately provide physicians and patients with more information
when deciding how to treat this widespread disease.
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