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ABSTRACT Klebsiella pneumoniae infection is a serious concern in hospital settings
due to the continuing emergence of multidrug-resistant strains. The study of K.
pneumoniae phages may help the development of new treatment strategies. Here,
the complete genome sequence of K. pneumoniae phage Patroon, a T3/T7-like
phage, is presented.

Klebsiella pneumoniae is a Gram-negative bacterium well known as an opportunistic
pathogen that causes pneumonia, septicemia, and urinary tract infection (1, 2). K.

pneumoniae infection is a serious concern in hospital settings due to the continuing
emergence of multidrug-resistant strains carrying the blaKPC gene (3). The study of K.
pneumoniae phages may help us develop new treatment strategies.

Phage Patroon was isolated from influent water from the municipal wastewater
treatment plant in Bryan, TX, in 2016, using a carbapenem-resistant (KPC�) K. pneu-
moniae clinical isolate of sequence type 258 as the host. Host bacteria were cultured on
tryptic soy broth or agar (Difco) at 37°C with aeration. Phages were isolated and
propagated by the soft agar overlay method (4). Phage genomic DNA was prepared
using a modified Promega Wizard DNA cleanup kit protocol, as described previously (5).
Pooled indexed DNA libraries were prepared using the Illumina TruSeq Nano low-
throughput (LT) kit, and the sequence was obtained from the Illumina MiSeq platform
using the MiSeq V2 500-cycle reagent kit, following manufacturer’s instructions, pro-
ducing 667,982 paired-end reads for the index containing the phage genome. The
quality of the reads was checked in FastQC 0.11.5 (https://www.bioinformatics
.babraham.ac.uk/projects/fastqc/), trimmed with FastX-Toolkit 0.0.14 (http://hannonlab
.cshl.edu/fastx_toolkit/download.html), and assembled in SPAdes 3.5.0 (6). The assem-
bled genome was closed with PCR using primers (5=-GCTGGTAAGGAAGTCGGTAAA-3=,
5=-GTCGTTAGTTAGGCGGTCATAG-3=) facing off the ends of the assembled contig and
Sanger sequencing of the resulting product, with the contig sequence manually
corrected to match the resulting Sanger sequencing read. Protein-coding genes
were predicted using GLIMMER 3.0 (7) and MetaGeneAnnotator 1.0 (8) and cor-
rected manually if needed. The tRNA genes were predicted using ARAGORN 2.36 (9).
Protein functions were predicted by comparing the sequence homology to proteins
found using BLASTp 2.2.28 (10), and conserved domains were analyzed using
InterProScan 5.15-5.40 (11). All the analyses were performed under default settings
using the CPT Galaxy (12) and Web Apollo (13) interfaces (cpt.tamu.edu).

The Patroon genome was assembled into a complete contig of 39,442 bp at
596.8-fold coverage. It contains 51 predicted coding sequences, with a coding density
of 89% and a GC content of 50.54%. At the DNA level, Patroon is most similar (87% to
88%) to other T7-like enterobacterial phages, such as Escherichia coliphage ECA2
(GenBank accession number KX130726), Yersinia sp. phage phiYeO3-12 (GenBank ac-
cession number AJ251805), and Salmonella sp. phage phiSG-JL2 (GenBank accession
number EU547803), as determined by the progressiveMauve algorithm (14). Patroon is
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a T3/T7-like phage with 47 and 45 Patroon proteins matching phages T3 and T7,
respectively, determined by BLASTp (E value � 0.001). Genes encoding proteins related
to phage morphogenesis, DNA replication, and recombination were identified. The lysis
proteins identified consisted of a class II holin, an amidase endolysin, and an embedded
i-spanin and o-spanin pair. The phage Patroon tail fiber gp44 (GenBank accession
number QBQ72909) is closely related at its N terminus to other T7-like tail fibers,
including the phage T7 tail fiber gp17. The C-terminal receptor-binding domain is
related to only a few other phage tail fibers based on BLASTp alignment, including
those of coliphage ECA2 (GenBank accession number ANN86232) and Yersinia sp.
phage phiYeO3-12 (GenBank accession number NP_052117).

Data availability. The genome sequence of phage Patroon was submitted to
GenBank under accession number MK608335. The associated BioProject, SRA, and
BioSample accession numbers are PRJNA222858, SRR8788210, and SAMN11259695,
respectively.
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