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Abstract: Extreme climate shocks cause agricultural yield reductions and increase long-term climate
risk, altering farmers’ long-term production decisions and affecting green agricultural development
(GAD). We take the 2008 snow disaster in China as an extreme climate shock, calculate the GAD
index by the entropy weighting method, and use the difference-in-difference method to study
the extreme climate shock’s impact on GAD. The results show that: (1) Extreme climate shocks
are detrimental to GAD, with the snow disaster decreasing China’s GAD level by 3.07%. (2) The
impacts of extreme climate shocks are heterogeneous across climate and economic zones, with greater
impact in humid and developed regions. (3) Extreme climate shocks affect GAD mainly by reducing
farmers’ willingness to cultivate, and increasing energy consumption, fertilizer, and pesticide input.
(4) Extreme climate shocks do not reduce agricultural yields in the long run. Still, they reduce the
total value of agricultural production and decrease the quality of agricultural products expressed in
terms of unit value. The findings of this study have policy implications for developing countries in
coping with extreme climate shocks and promoting GAD.

Keywords: extreme climate shocks; agricultural green development; environmental pollution; en-
tropy weight method

1. Introduction

With the increase in global warming and pollution, green development has become a
common goal pursued by many countries. Agriculture is constrained as a sector closely
related to the natural environment, while its production methods can significantly affect
the environment and climate. Pursuing GAD and reduced land and water resources by
fertilizers and pesticides are important issues for developing countries, including China.

An important way to achieve a green revolution in agriculture is to increase the long-
term benefits of green agriculture for farmers [1]. In the long term, uncertainty from climate
change is an important constraint to agricultural investment and green development.
Extreme climate shocks will bring huge exogenous shocks to agricultural production and
lead to long-term climate risks in the affected areas. This impact can change farmers’
production methods, because rising climate risks will reduce long-term expected returns,
leading farmers to prefer short-term production and reducing their willingness to engage
in green production. The study of the impact of extreme climate shocks on GAD is of
great theoretical and practical significance for realizing the green revolution in developing
countries. However, most scholars have focused on the factors influencing GAD [2,3] or the
impact of climate change and disasters on agricultural production [4]. There are relatively
few studies examining the impact of extreme climate shocks on GAD.

The 2008 snow disaster in China is one of the major meteorological disasters suffered
by China in the 21st century. The abnormal atmospheric circulation caused by the La
Niña phenomenon in 2007 led to intense rainfall in southern China and triggered snow
disasters in early 2008 [5,6]. The snowstorm affected 20 provinces in the north and south
of China, with 11.87 million hectares of crops affected and 1.69 million hectares of crop
failure. This disaster is one of China’s most serious climate disasters in the 21st century and
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has greatly hindered China’s agricultural development. The snowstorm reduced farmers’
incomes, destroyed much of the agricultural infrastructure, and forced many farmers to
work outside. As farmers did not expect such a serious climate disaster in winter, this
snow disaster has increased the future climate risk, increased the cost and risk of green
agriculture, and affected farmers’ future production decisions. The 2008 snow disaster
in China provides a natural experiment for us to study the relationship between extreme
climate shocks and GAD.

We conduct an empirical analysis using a sample of 2086 counties in China in the
period of 2000–2018 to study the impact of extreme climate shocks on GAD. To measure
the level of GAD, we refer to the existing literature [7–9] and use the entropy weight
method (EWM) to calculate the composite indicators of GAD. The empirical analysis
was conducted using a difference-in-difference (DID) method based on the degree of
damage to each county during the 2008 snow disaster. On this basis, heterogeneity analysis
was conducted, and the mechanism was analyzed in terms of willingness to cultivate,
production input, and agricultural pollution.

This paper has the following innovations: (1) We examined the impact factors of
GAD from an extreme climate perspective and provided empirical evidence that extreme
climate shocks impede GAD in the long term. (2) We found heterogeneity in climate
extremes’ impact on GAD due to climate and economic development differences. In humid
zones and economically developed areas, extreme climates have a greater impact on GAD.
(3) We investigated the impact mechanism of extreme climate shocks on GAD and found
that extreme climate shocks mainly hinder GAD by reducing farmers’ willingness to
cultivate, increasing energy consumption in agricultural production, and increasing fer-
tilizer and pesticide inputs. At the same time, we found that farmers increase fertil-
izer and pesticide inputs to make up for short-term losses, which protects yields but
reduces the proportion of green products in the long run and reduces the quality of
agricultural products.

2. Literature Review and Theoretical Analysis
2.1. Literature Review

There is little literature on the impact of extreme climate shocks on GAD. The relevant
studies mainly focus on three areas: GAD, climate change and green development, and the
impact of climate change on agricultural production.

In terms of GAD, scholars believe that the connotation of GAD is the combination of
agricultural productivity improvement and environmental protection [2,10–12]. As increas-
ing agricultural income is a prerequisite for green agricultural production, investment in
land and intensification are important [3]. Fertilizers and pesticides are the most important
input factors in the influence of GAD [13]. Recent studies have concluded that soil N2O
emissions are also an important indicator for measuring the level of GAD [14]. Some
scholars believe that the impact of transgenic technology on GAD is uncertain [15]. In
contrast, others believe that new plant breeding technologies (NPBTs) are an important
way to promote GAD [16]. In terms of the green revolution in agriculture, many scholars
believe that the standards of the green revolution in agriculture at this stage cannot be
implemented in developing countries [17,18].

In the area of climate change and green development, scholars believe that climate
change exacerbates the risk of agricultural production, thus it is harmful to water re-
sources [19], hygiene [20], and ecology [19,21]. In terms of coping strategies, existing
research considers that green adaptation strategies can make cities more tolerant of climate
change stresses [22], and climate-smart agriculture is beneficial to GAD [23]. Meanwhile,
the issuance of green bonds is also an effective strategy [24]. However, the current alloca-
tion of funds for international organizations to combat climate change does not sufficiently
consider all parties’ needs [25]. At the same time, some scholars believe that social and
political barriers are important reasons for the slow green development [26].
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Current research remains diverse on the impact of climate change on agricultural
production. Most scholars believe climate change will increase extreme weather [27,28]
and reduce agricultural output [4]. Representative findings include that increased tem-
perature and reduced rainfall due to climate change will reduce agricultural output in
arid regions [29,30], and abnormal increases in rainfall in wet areas can also hinder crop
growth [31,32]. Therefore, the negative impact of climate change on agriculture is signifi-
cantly heterogeneous across regions [33]. However, some scholars disagree. Some scholars
who have studied wheat cultivation in the United States believe that the effects of climate
change are overestimated [34]. At the same time, other scholars believe that climate change
is an important factor in promoting agricultural restructuring and expansion [35]. The
divergence of scholars on the impact of climate change indicates the necessity of in-depth
research on the impact of extreme climate shocks on GAD.

The existing literature is deficient in the following aspects. First, there is a lack of
literature directly studying the impact of extreme climate shocks on GAD. Only a few
scholars have studied the impact of extreme weather on agricultural efficiency from a
sustainable development perspective [36,37]. However, the existing literature on the
measurement and influencing factors of the level of GAD provides the foundation for
measuring GAD. The studies on the impact of climate change provide the theoretical
foundation. These results make it possible to study the impact of extreme climate shocks
on the green development of agriculture. Second, the research methodology is insufficient,
as the existing literature is more generalized and case based. At the same time, the relevant
empirical analysis does not sufficiently consider the endogeneity issue, therefore, more
rigorous empirical evidence is needed. Based on the above reasons, the 2008 snow disaster
in China was taken as an extreme climate shock. The impact of extreme climate shock
on GAD was studied by constructing a GAD index through the entropy weight method.
In the empirical method, we use the difference-in-difference method (DID) to solve the
endogeneity problem, obtain the causal effect of extreme climate shocks on GAD, and
conduct robustness tests in several aspects to guarantee credibility of the results.

2.2. Theoretical Analysis: How Extreme Climate Shocks Affect GAD

Extreme climate shocks reduce agricultural output in the short term and increase long-
term climate risks [38]. Since agricultural production cycles are long and dependent on the
climate, extreme climate shocks can significantly affect farmers’ production decisions and
GAD [39]. Second, the rise of long-term risks in agriculture makes farmers who continue
to engage in agriculture more inclined to secure short-term output [40], which leads to
increased energy consumption and pollution in agriculture, ultimately reducing the level
of GAD (shown in Appendix A Figure A1). Figure 1 shows the mechanisms of extreme
climate shocks on GAD.
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2.2.1. Decreasing Willingness to Cultivate

Extreme weather shocks first affect farmers’ willingness to cultivate. Unlike climate
change, which affects agricultural production in the long term, extreme climate shocks can
wreak havoc on agricultural production in the short term by reducing agricultural yields
and damaging some agricultural facilities [41] and reducing agricultural incomes and
production conditions [40]. Extreme climate shocks increase the GAD between agricultural
and non-agricultural incomes, leading some farmers to choose to work outside and transfer
or abandon their land [38], thus reducing the utilization rate of arable land. The lack of
maintenance of abandoned land leads to soil erosion, which continues to discourage GAD.

2.2.2. Increasing Agricultural Energy Consumption

For agricultural production, water is the most important input resource. Due to the
scarcity of water resources, developing water-saving agriculture in areas lacking large
amounts of rainfall is conducive to protecting groundwater resources and the environment,
preventing land desertification. It is one of the most important measures for GAD. Water-
saving agriculture is conducive to sustainable development in the long term but can reduce
yields in the short term. After facing extreme weather shocks, farmers may abandon
water-saving agriculture to compensate for losses and turn to large amounts of river and
groundwater extraction for irrigation [42], resulting in increased energy consumption for
agricultural production [36]. The pumps required for pumping water rely on electricity
and diesel drive. Their massive use is detrimental to water conservation and increases
environmental pollution [43], thus reducing GAD.

2.2.3. Increasing Agricultural Pollution

Reducing fertilizer and pesticide inputs to protect the environment is one of the
core connotations of GAD. Although reducing fertilizer and pesticide inputs will reduce
agricultural yields in the short term, in the long term, it will help safeguard soil fertility
and provide green agricultural products, thus improving product quality and prices and
ultimately increasing farmers’ income. An important factor in the promotion of green
agriculture is the increase in long-term benefits [1]. When extreme climate shocks occur, the
long-term future climate risk increases and the expected rate of return of green agriculture
decreases [40], thus reducing farmers’ willingness to develop green agriculture. When
farmers face stronger future climate risks, they focus more on short-term gains [39], which
will increase fertilizer and pesticide inputs [11], exacerbate agricultural pollution, and
reduce the level of GAD.

3. Methods
3.1. Difference-in-Difference Model

We use the difference-in-difference method to analyze the impact of the snow disaster
on the level of GAD, and the regression equation is as follows:

greenit = β0 + β1Rains
i × Postt + Xit + δi + γt + εit (1)

where greenit is the dependent variable, representing the GAD index of county i in year
t. Referring to the classic literature [44], we use rainfall fluctuations Rains

i in each county
during the snowstorm (January 2008) as a proxy variable for the degree of disaster. Postt
is the time treatment variable and, when the time is before 2008, Postt equals 0, and vice
versa, it equals 1; Xit is the control variable; δi and γt represent county fixed effects and
time fixed effects; εit represents the error term.

3.2. Calculation of GAD Index

We use the entropy weighting method (EWM) to calculate a comprehensive index of
the level of GAD. Combining previous scholars’ studies [45,46] and agricultural production
backgrounds, we calculate the GAD index from five aspects: Agricultural endowment,
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agricultural production efficiency, agricultural production energy consumption, agricul-
tural pollution, and environmental protection. The details and definitions of all variables
are shown in Table 1.

Table 1. Calculation of green agricultural development (GAD) index.

Primary Indicators Secondary Indicators Measurement Method Direction

Agricultural endowment

Arable land Total arable land area Positive

Water resources Water resources per capita Positive

Forest resources Forest coverage rate Positive

Agricultural production efficiency

Agricultural productivity Per capita output of major
agricultural products Positive

Agricultural output efficiency Primary industry value-added/
Agricultural population Positive

Arable land utilization Sown area/arable land area Positive

Effective irrigation rate Effective irrigated area/Sown area Positive

Mechanization level Agricultural machinery power/
Sown area Positive

Agricultural energy consumption

Diesel consumption Agricultural diesel consumption/
Primary industry value-added Negative

Electricity consumption Electricity for agriculture/Primary
industry value-added Negative

Water consumption Water for agriculture/Primary
industry value-added Negative

Agricultural pollution

Fertilizer input Total fertilizer input/Sown area Negative

Pesticide input Total pesticide input/Sown area Negative

Plastic film input Total agricultural plastic film
input/Sown area Negative

Environmental protection

Afforestation area Afforestation area Positive

Erosion control Soil erosion control area Positive

Farmland governance Flood removal area/Sown area Positive

Referring to previous scholars [47], we calculate the GAD index in four steps.
The first step is to standardize all metrics, where j represents the jth variable.

Positive indicators : zitj =
yitj − minj

{
yitj
}

maxj
{

yitj
}
− minj

{
yitj
} (2)

Negative indicators : zitj =
maxj

{
yitj
}
− yitj

maxj
{

yitj
}
− minj

{
yitj
} (3)

The second step is to calculate the entropy value.

eit = −k
n

∑
j=1

pitjlnpitj (4)

pitj =
zitj

∑n
j=1 zitj

, k =
1

lnn
(5)
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The third step is to calculate the entropy weights.

wit =
1 − eit

T − ∑T
t=1 eit

(
0 ≤ wit ≤ 1,

T

∑
t=1

wit = 1

)
(6)

The fourth step is to calculate the comprehensive index of GAD.

greenit =
n

∑
j=1

witzitj (7)

3.3. Independent Variables

We take the DID variable Rains
i × Postt as the core independent variable. The co-

efficient β1 represents the effect of the snow disaster on the dependent variable greenit.
Different from the standard DID, this paper uses a continuous variable: Rainfall fluctua-
tions Rains

i of each county during the snow disaster (January 2008) as a variable to identify
its degree of disaster, thus better identifying the impact of the snow disaster on each region.
A larger Rains

i represents more rainfall in the county during January 2008. Since this is the
coldest month of the year, an abnormal increase in rainfall would increase snowfall in the
area, thus exacerbating its risk of snow disaster. We use the z-score method to calculate the
rainfall fluctuations of each county during the snow disaster.

Rains
i =

rains
i − rains

i
σs

i
(8)

where rains
i represents the total rainfall of county i in January 2008, rains

i and σs
i represent

the mean and standard deviation of rainfall of county i in January from 2000 to 2007.

3.4. Control Variables

Although the 2008 snow disaster was a manifestation of climate change, the degree of
disaster in different regions may still be related to their economic and social characteristics.
Developed regions may have better responses to reduce losses. Therefore, we consider
factors that are potentially relevant to both disaster and GAD as control variables: Total
population (POP), agricultural machinery power (Machinery), primary industry value-
added (First), secondary industry value-added (Second), total government expenditure
(Expand), and total social investment (Invest). All control variables are taken as logarithms
in the empirical analysis. County-level fixed effects control factors that do not change
with time during the sample period, such as terrain and slope. Time fixed effects control
factors that do not change with county-level factors such as sea level rise and the world
economic crisis.

4. Data Sources and Descriptive Statistics
4.1. Sample and Data Source

We use a sample of 2086 counties in China from 2000 to 2018 for empirical analysis
and use the entropy weighting method (EWM) to construct the variables in Table 1 into a
GAD index. Each variable used to construct the GAD index is obtained from the China
County Statistical Yearbook, the China Statistical Yearbook, the China Rural Statistical
Yearbook, and the Statistical Yearbook of every province. The China County Statistical
Yearbook contains data on control variables such as population, agricultural machinery
power, primary industry output value, secondary industry output value, government
expenditure, and total social investment.

Rainfall data are from the FLDAS Noah Land Surface Model L4 Global Monthly
0.1 × 0.1 degree (FLDAS). We first obtain the monthly rainfall for each county from
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2000–2018 based on latitude and longitude matching and then use the z-score to calculate
the annual rainfall fluctuations for each county.

Raintotal
it =

12

∑
m=1

rainmit − rainmi
σmi

(9)

Rainwet
it = ∑

m=wet

rainmit − rainmi
σmi

(10)

where i represents the county, t represents the year, and m represents the month. Raintotal
it

represents the total rainfall fluctuations of county i in year t. Rainwet
it represents the total

rainfall fluctuations in the rainy season of county i in year t. rainmit represents the total
rainfall in month m of county i in year t. rainmi and σmi represent the mean and standard
deviation of rainfall of county i in month m from 2000–2018. The main variable definitions
and data sources are shown in Table 2.

Table 2. Main variable definitions and data sources.

Variable Definition of Variables Data Sources

Green Green agricultural development index China County Statistical Yearbook, China Statistical Yearbook &
Statistical Yearbook of every province

Rain Rainfall fluctuations FLDAS Noah Land Surface Model L4 Global Monthly

Production Output per capita of major corps China County Statistical Yearbook and China Rural
Statistical Yearbook

Perfirst Per capita primary industry value-added China County Statistical Yearbook

Arable rate Arable land utilization rate China Rural Statistical Yearbook and Statistical Yearbook of
every province

Fertile Fertilizer input per hectare China Rural Statistical Yearbook and Statistical Yearbook of
every province

Pesticide Pesticide inputs per hectare China Rural Statistical Yearbook and Statistical Yearbook of
every province

POP Total population China County Statistical Yearbook

Machinery Total agricultural machinery power China County Statistical Yearbook

First Primary industry value-added China County Statistical Yearbook

Second Secondary industry value-added China County Statistical Yearbook

Expend Total government expenditure China County Statistical Yearbook

Invest Total social investment China County Statistical Yearbook

Note: Abbreviation POP denotes population. FLDAS is Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System.

4.2. Descriptive Statistics

Since we identified the degree of damage in each county based on the rainfall fluctu-
ations during the snow disaster (January 2008), to better demonstrate the balance of the
sample, we treated the counties whose rainfall fluctuates above the median (0.3) during
the snow disaster as the treatment group and the rest of the counties as the control group.
Descriptive statistics are shown in Table 3. We can see from Table 3 that the difference
between the main variables of the treatment group and the control group is relatively
small, which indicates that whether each county or city is affected by the snow disas-
ter has nothing to do with its own economic characteristics. The samples of the control
group and the control group have good stability, which can ensure the validity of the
empirical results.
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Table 3. Descriptive statistics for the main variables.

Variable
Affected Counties Non-Affected Counties

Mean SD Mean SD

Green 0.39 0.18 0.39 0.17
Production 509 284 642 531

Perfirst 3156 2689 3847 3847
Arable rate 146 51 145 52

Fertile 347 133 312 103
Pesticide 10.28 7.90 9.99 6.68

POP 478 386 476 325
Machinery 356 4362 430 5145

First 1475 1594 1696 1617
Second 4903 10,867 5662 9868
Expend 1510 1967 1576 1971
Invest 6245 10,720 7067 11,532

Note: The meaning, calculation method, and data source of each variable are shown in Table 2. Green is an index
and has no unit. The units of other variables are as follows: Production (kg per capita); Perfirst (Renminbi (RMB)
per capita); Arable rate (%); Fertile and Pesticide (kg per hectare); POP (thousands of people); Machinery (million
watts); First, Second, Expand, and Invest (million RMB).

5. Results
5.1. Baseline Estimations

The baseline estimations are shown in Table 4. Columns (1)–(5) take the interaction
terms of the January 2008 rainfall fluctuations Rains

i and the time dummy variable Postt as
the DID variables, and report the estimations including different fixed effects and control
variables. At the same time, to verify the credibility of the results, we consider the counties
with rainfall fluctuations greater than 0.3 in January 2008 as the treatment group, and the
remaining counties as the control group. After interacting with the time dummy variable
Postt, a new DID variable is formed. The specific results are shown in Table 4, column (6).
At the same time, the results of the control variables show that the coefficients of total
population (POP), secondary industry value-added (Second), and total social investment
(Invest) are not significant, indicating that these factors have no effect on the level of
GAD. The coefficients of agricultural machinery power (Machinery), primary industry
value-added (First), and total government expenditure (Expand) are significant. However,
after controlling for these factors, the coefficient of the explanatory variable Rains

i × Postt
did not change significantly, indicating that these factors will not lead to biases in the
baseline results.

Column (1) reports the results that do not contain the control variables and only control
the time fixed effects. The results show that the coefficient of Rains

i × Postt is −0.008 and
is significant at the level of 1%, which preliminarily indicates that the snow disaster has
reduced the level of GAD. Column (2) reports the results after adding county-level fixed
effects. The results show that the coefficient of Rains

i × Postt is −0.013 and is significant at
the level of 1%, indicating that the negative impact of the snow disaster on the level of GAD
is related to the characteristics of each county, which may be heterogeneous. Columns
(3)–(5) are the results after adding different control variables. The results show that the
magnitude and significance of the coefficient of Rains

i × Postt change very little, indicating
that the impact of the snow disaster is very exogenous. Column (6) uses different Rain*Post
variables for analysis, and the results show that the coefficient is still significantly negative,
which preliminarily shows that the baseline estimations are robust. However, considering
that the counties and cities with rainfall fluctuations around 0.3 in column (6) are artificially
divided into treatment groups and control groups, the impact of the snow disaster will be
overestimated. Therefore, we mainly analyze column (5) in the baseline results.
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Table 4. Baseline estimations: Impact of the snow disaster on the GAD index.

Variables
(1) (2) (3) (4) (5) (6)

Green Green Green Green Green Green

Rains
i × Postt −0.008 *** −0.013 *** −0.013 *** −0.012 *** −0.012 *** −0.018 ***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.002)

POP −0.007 0.012 0.012 0.004
(0.008) (0.008) (0.009) (0.009)

Machinery 0.003 0.007 *** 0.007 *** 0.007 ***
(0.002) (0.002) (0.002) (0.002)

First −0.031 *** −0.028 *** −0.029 *** −0.027 ***
(0.002) (0.002) (0.002) (0.002)

Second −0.005 *** 0.001 0.001 0.001
(0.001) (0.001) (0.001) (0.002)

Expend −0.042 *** −0.043 *** −0.043 ***
(0.002) (0.002) (0.002)

Invest 0.001 0.0004
(0.001) (0.001)

County fix No Yes Yes Yes Yes Yes

Time fix Yes Yes Yes Yes Yes Yes

Obs 39,270 39,270 38,354 38,331 38,142 38,186

R2 0.694 0.695 0.698 0.700 0.701 0.699

Counties 2078 2078 2077 2077 2077 2086
Notes: *** denotes significance at 1%. All control variables, individual fixed effects, and time fixed effects are
included in all specifications. Obs denotes observations.

The baseline regression results show that the snow disaster has significantly reduced
the level of GAD. Taking the result of column (5) as an example, it shows that the snow
disaster caused an average decrease of 0.012 in the GAD index in the long run. Based
on the average value of the GAD index of 0.39 in the total sample, the level of GAD has
dropped by 3.07%. At the same time, we found that other control variables have little effect
on the level of green agriculture except for agriculture-related variables. This result shows
that the GAD does not completely depend on the overall economic level and government
intervention is relatively independent.

5.2. Robust Checks

To further verify the robustness of the baseline estimation, we conduct robust checks
from the following ten aspects.

5.2.1. Parallel Trend

To test the effectiveness of the DID method, we conducted a parallel trend test on the
sample, and the results are shown in Figure 2.

The results in Figure 2 show that before the snow disaster, there was no significant
difference in the level of GAD between the control group and the treatment group. After
the snow disaster, the GAD level of the treatment group was significantly lower than that
of the control group in the second and sixth phases. This result shows that there is no prior
effect, which satisfies the parallel trend hypothesis.

5.2.2. Adding Time Trend

Some scholars believe that the time trend item is of great significance in the time
series [10], and adding the time trend item can better control some factors that change over
time. Column (1) in Table 5 reports the results after adding the time trend item. The results
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show that at the 1% level, the coefficient of Rains
i × Postt is significantly negative, and the

coefficient value (−0.012) is the same as the baseline estimations.
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Table 5. Considering time trend, municipalities, concurrent events, and climatic factors.

Variables

(1) (2) (3) (4) (5)

Time Trend Municipalities Land
Transfer Rainfall1 Rainfall2

Green Green Green Green Green

Rains
i × Postt −0.012 *** −0.012 *** −0.011 *** −0.012 *** −0.013 ***

(0.001) (0.001) (0.001) (0.001) (0.001)

Obs 38,142 37,440 32,140 38,006 38,006

R2 0.701 0.702 0.413 0.707 0.705

Counties 2077 2040 2076 2077 2077
Notes: *** denotes significance at 1%. All control variables, individual fixed effects, and time fixed effects are
included in all specifications. Obs denotes observations.

5.2.3. Excluding Municipalities

As China’s four municipalities (Beijing, Tianjin, Shanghai, and Chongqing) have been
highly urbanized, the proportion of agriculture and the employed population are limited.
To avoid the impact of sample differences on the results, we excluded the county samples
belonging to these four municipalities. The results are shown in column (2) of Table 5.
The results show that after excluding the samples of municipalities, the coefficient of
Rains

i × Postt is −0.012, which is significant at the level of 1%, and the impact of the snow
disaster on the level of GAD is still significantly negative, which indicates that the impact
is not due to sample differences.

5.2.4. Concurrent Events

During the sample period (2000–2018), the Chinese government also implemented a
land transfer policy that promoted land resource optimization. As the land transfer policy
has improved the agricultural scale, it is conducive to long-term agricultural investment
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and green production. If the counties affected by the snow disaster also implemented the
land transfer policy later, it would have a confounding effect. To eliminate this confounding
effect, we constructed the land transfer policy variable based on when each province
promulgated the Law on Land Contract as the cut-off point and added it to the regression.
The estimated results are shown in Table 5, column (3). The results show that after adding
the land circulation variable, the coefficient of Rains

i × Postt is −0.011, which is significant
at the 1% level. It is consistent with the baseline results and shows that the impact of the
snow disaster on GAD does not come from the confounding effects of land transfer policies.

5.2.5. Climatic Factors

Although the snow disaster is a purely exogenous climate shock, the extent of the
disaster in each region is closely related to its rainfall fluctuations. Recent studies by
some scholars have found that rainfall fluctuations are no longer a random process due
to climate change but have a time trend [4]. The rainfall fluctuations significantly impact
agricultural production [47,48], so long-term rainfall fluctuations may be related to the
degree of disaster and the level of GAD. We calculated the annual total rainfall fluctuations
by Equation (9) and rainy season rainfall fluctuations by Equation (10) in each county from
2000 to 2018, and used them as control variables to control this influence. The results are
shown in Table 5, columns (4)–(5). The results show that after adding rainfall fluctuation
variables, the coefficient of Rains

i × Postt is −0.012, which is significant at the 1% level.
This result is the same as the baseline results, indicating that this impact did not have a
confounding effect due to rainfall fluctuations. We also considered the impacts of other
factors such as effective irrigation rate (see Table A1) and education (see Table A2) on GAD,
and the results are still robust.

5.2.6. Propensity Score Matching Method (PSM)

The main areas affected by the 2008 snow disaster in China were southern provinces.
These places are mostly hilly areas that are not conducive to large-scale production and
are traditional family farming areas. Therefore, there may be sample self-selection, that
is, the affected counties are also counties with a low degree of green agriculture. To avoid
self-selection bias, we selected samples by the PSM. We used Machinery, First, Second,
Expend, and Invest as matching variables and then matched the treatment group and the
control group for 1:1 neighbor matching to obtain new samples. The results of the PSM are
shown in column (1) of Table 6.

Table 6. Considering different indicators and methods.

Variables
(1) (2) (3) (4) (5)

PSM-DID Identify2 2SLS-Rainfall 2SLS-lat&lon Index2

Green Green Green Green Input

Rains
i × Postt −0.013 *** −0.024 *** −0.034 *** −0.041 *** −0.006 ***

(0.001) (0.002) (0.004) (0.002) (0.0004)

Obs 34,500 38,186 38,053 38,112 38,142

R2 0.726 0.700 0.701 0.703 0.800

Counties 2077 2086 2067 2075 2077
Notes: Econometric methods: PSM-DID (propensity score matching difference in difference method); 2SLS
(two stage least square method). Abbreviation lat&lon denotes longitude and latitude, see the text for specific
explanations. *** denotes significance at 1%. All control variables, individual fixed effects, and time fixed effects
are included in all specifications. Obs denotes observations.

The results in column (1) of Table 6 show that the coefficient of Rains
i × Postt is −0.013,

which is significant at the 1% level. The impact of the snow disaster on the level of GAD
is still significantly negative, which indicates that the baseline estimations are not due to
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the self-selection of the sample. The snow disaster has reduced the level of GAD because
extreme climate shocks have changed farmers’ production behaviors.

5.2.7. Replace Independent Variables

The baseline estimate is to identify the affected area based on the rainfall fluctuations
of the affected month. This guarantees the exogeneity of the independent variables, but it
cannot fully reflect the disaster situation in different regions. Some regions may have large
rainfall fluctuations but are not affected. To test the validity of the baseline estimation, in
this section, we change the DID identification method. Based on the actual disaster situation
of the Chinese provinces in the 2008 snow disaster, we analyzed the seven most severely
affected provinces (Anhui, Jiangxi, Hubei, Hunan, Guangxi, Sichuan, and Guizhou) as the
treatment group and the others as the control group. The results are shown in column (2) of
Table 6. The results show that after changing the DID identification method, the coefficient
of Rains

i × Postt is −0.024, and the impact of the snow disaster on the level of GAD is still
significantly negative, which indicates that the baseline results are robust.

5.2.8. Instrumental Variable Estimation

To test the exogeneity of DID identification, in this section, we use instrumental
variable estimation for discussion. We use the 2007 rainfall fluctuations and the latitude
and longitude as the instrumental variables (IVs) of the January 2008 rainfall fluctuations,
and use the two-stage least squares method (2SLS) for analysis.

First of all, the feasibility of using the 2007 rainfall fluctuations as the IV is shown by
the La Niña phenomenon that appeared in 2007 [5,6], which caused the precipitation in
the north and south of China to be much lower than normal. At the same time, as an ex
ante factor, there is no two-way causality between the La Niña phenomenon and the snow
disaster. At the same time, the La Niña phenomenon occurs in the Pacific Ocean, which is
far away from China, and is highly exogenous. Therefore, the rainfall fluctuations in 2007
can be regarded as an IV of the rainfall fluctuations in January 2008.

Secondly, the reason for adopting latitude and longitude as an IV is that the snow
disaster in 2008 was mainly concentrated in central China and south China. The snow
disaster is regional, so the disaster areas are significantly related to the geographical
location. The latitude and longitude are a completely exogenous factor, which guarantees
the exogeneity of the IV.

The results using 2007 rainfall fluctuations as an IV are shown in column (3) of Table 6.
The coefficient of Rains

i × Postt is −0.034, which is significant at the 1% level. The results
using latitude and longitude as an IV are shown in column (4) of Table 6. The coefficient
of Rains

i × Postt is −0.041, which is significant at the 1% level. The results show that
after using two IVs for 2SLS, the impact of the snow disaster on the level of GAD is
still significantly negative. These results show that the conclusion that the snow disaster
reduced the level of GAD is robust.

5.2.9. Replace the Dependent Variable

In this part, we adopt another calculation method and construct a new GAD index
as the dependent variable for analysis. Specifically, we used two variables of agricultural
production consumption and agricultural pollution in Table 1 to construct a new GAD
index. This calculation method can eliminate the impact of agricultural productivity and
simply measure the degree of agricultural production consumption and pollution. The
specific results are shown in Table 6, column (5).

After adopting the new GAD index, the coefficient of Rains
i × Postt is −0.006 and is

significant at the 1% level. This result shows that after excluding factors such as agricultural
productivity and agricultural endowment, the snow disaster has increased agricultural
energy consumption and pollution, thereby reducing the level of GAD. It also shows that
the negative impact of the snow disaster on the level of GAD is robust.
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5.2.10. Placebo Tests

To test whether the baseline results were caused by some missing random variables,
we randomly divided the sample counties into a treatment group and a control group for
placebo tests. The sample includes 2086 counties from 31 provinces in China, of which
seven provinces were the most affected in the 2008 snow disaster. We randomly selected 11
from 31 provinces as the treatment group, and the others as the control group, constructed
a new DID variable for the placebo test, and repeated this process 500 times and 800 times,
respectively. The results of the placebo test are shown in Figures 3 and 4. The dotted lines
in the figures represent the baseline estimation (−0.012). Two placebo results show that the
coefficient of randomization was concentrated near 0, which is significantly different from
the baseline estimation. These results show that the negative impact of the snow disaster
on GAD does not come from the omitted random variables.
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5.3. Heterogeneity Analysis

The baseline results show that the snow disaster will reduce the level of GAD in
the long run. GAD levels have fallen by an average of 3.07% in the 10 years since the
snow disaster. Due to China’s vast territory, there are significant differences in climate
and economic factors in different regions, which will cause differences in the impact of
snow disaster on GAD. Therefore, we analyzed the heterogeneity from the four aspects of
climate, poverty, industrial structure, and economic development differences.

5.3.1. Climate Zone

Due to the impact of climate shocks, there is heterogeneity in different precipitation
areas [13,17,49] and, according to the climate characteristics of China, we divided the
samples into humid areas (annual precipitation > 800 mm), semi-humid areas (annual
precipitation 400–800 mm), and semi-arid areas (annual precipitation < 400 mm). The
results are shown in Table 7, columns (1)–(3).

Columns (1)–(3) in Table 7, respectively, report the results of humid, semi-humid, and
semi-arid areas. The results showed that after the snow disaster, the GAD index of the
humid area and the semi-humid area dropped by 0.008 and 0.017, respectively, while the
GAD index of the semi-arid area increased by 0.008. Combined with the average value of
the sample, the snow disaster reduced the GAD level in the humid area by 2.12%, the GAD
level in the semi-humid area by 4.29%, and the GAD level in the semi-arid area by 2%. This
result indicates that the impact of snow disasters on GAD has significant heterogeneity in
different climate regions. The inhibitory effect of snow disasters on GAD mainly occurs
in areas with abundant rainfall. The reason is that these areas are prone to floods due to
fluctuations in precipitation, causing greater damage to agriculture.

Table 7. Heterogeneity analysis 1: Climate and poverty.

Variables

Climate Zone Poor/Non-Poor

(1) (2) (3) (4) (5)

Humid Semi-Humid Semi-Arid Poor Non-Poor

Green Green Green Green Green

Rains
i × Postt −0.008 *** −0.017 *** 0.008 *** −0.005 *** −0.018 ***

(0.001) (0.002) (0.003) (0.002) (0.001)

Obs 18,858 14,373 4775 13,891 24,251

R2 0.751 0.718 0.783 0.684 0.714

Counties 1028 767 282 761 1316
Notes: *** denotes significance at 1%. All control variables, individual fixed effects, and time fixed effects are
included in all specifications. Obs denotes observations.

5.3.2. Poor and Non-Poor Counties

Agricultural development is greatly affected by government policies. In China, poor
and non-poor counties will receive varying degrees of government subsidies. Therefore,
the impact of the snow disaster on the GAD may be heterogeneous due to differences in
government subsidies and policies. According to the list of poor counties announced by the
Chinese government, we divided the sample into poor counties and non-poor counties for
heterogeneity analysis. The results are shown in Table 7, columns (4)–(5). The results show
that the snow disaster reduced the GAD index by 0.005 and 0.018 for poor and non-poor
counties, respectively, and their GAD levels by 1.28% and 4.63%, respectively. Therefore,
there is no significant heterogeneity. However, because the absolute value of the coefficient
in poor counties is significantly lower than in column (5), this indicates that the impact of
the snow disaster on the level of GAD is relatively moderate in poor counties.
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5.3.3. Agricultural and Non-Agricultural Counties

Counties with different industrial structures may be affected differently when faced
with extreme climate shock [42]. To test this difference, we divided agricultural counties
and non-agricultural counties for analysis according to the proportion of agricultural
employment in each county. The results are shown in Table 8, columns (1)–(2).

Table 8. Heterogeneity analysis 2: Industrial structures and economic development.

Variables

Agriculture/Non-Agriculture East/Middle/West

(1) (2) (3) (4) (5)

Agriculture Non-Agriculture East Middle West

Green Green Green Green Green

Rains
i × Postt −0.010 *** −0.014 *** −0.031 *** −0.015 *** 0.001

(0.001) (0.002) (0.002) (0.002) (0.001)

Obs 20,176 17,877 10,541 11,419 16,182

R2 0.690 0.718 0.719 0.726 0.736

Counties 1108 959 563 611 903
Notes: *** denotes significance at 1%. All control variables, individual fixed effects, and time fixed effects are
included in all specifications. Obs denotes observations.

The results show that in both agricultural and non-agricultural counties, the impact
of the snow disaster on GAD is significantly negative, with a coefficient of −0.01 for
agricultural counties and −0.014 for non-agricultural counties, and the impact is similar.
These results show that the impact of extreme climate shocks on GAD does not have
significant heterogeneity in agricultural and non-agricultural counties. The reason for this
is that the extent of the snow disaster is not influenced by the industrial structure and
therefore there is no heterogeneity in the impact of the snow disaster.

5.3.4. Economic Development

Finally, considering the different levels of development in different economic regions,
we divided the sample into eastern, central, and western regions for heterogeneity analysis.
The eastern part has the highest level of economic development and the western part has
the lowest level [37]. The results are shown in Table 8, columns (3)–(5). The results show
that in the eastern and middle regions, the coefficients of Rains

i × Postt are −0.031 and
−0.015, respectively, which are both significant at the 1% level. It shows that the impact of
the snow disaster on the level of GAD is similar in the two regions. In the western region,
the coefficient of Rains

i × Postt is not significant and close to 0, indicating that the snow
disaster had almost no impact on GAD.

The above results indicate that the impact of the snow disaster on GAD has significant
heterogeneity in regions with different economic development levels. The snow disaster
reduced the GAD index by 0.031 and 0.015 in the eastern and central regions, respectively,
and had no effect on the GAD index in the western region. The reason is that farmers are
more bound by land, and climate shocks affect agricultural output more than the green
level in the western region.

6. Mechanism Analysis

The baseline results show that the snow disaster has significantly reduced the level
of GAD. According to the conclusions of the theoretical analysis part, extreme climate
shocks lead to lower agricultural incomes, causing agricultural production to be exposed to
long-term climate risks, changing farmers’ production decisions. To verify this mechanism,
we conducted empirical tests from three aspects of farming willingness, production energy
consumption, and agricultural pollution. The results are shown in Table 9.
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Table 9. Mechanism analysis of the snow disaster on GAD.

Variables

(1) (2) (3) (4)

Arable Rate Consumption Fertilizer Pesticide

Arable Rate Consumption lFertile lPesticide

Rains
i × Postt −2.013 *** 0.003 *** 0.013 *** 0.047 ***

(0.266) (0.0003) (0.001) (0.002)

Obs 37,375 38,142 38,142 38,142

R2 0.255 0.638 0.717 0.493

Counties 2077 2077 2077 2077
Notes: lFertile and lPesticide denote the logarithm of the input of fertilizer and pesticide per hectare. *** denotes
significance at 1%. All control variables, individual fixed effects, and time fixed effects are included in all
specifications. Obs denotes observations.

6.1. Farming Willingness

Extreme climate shocks have led to a decline in agricultural output and damage to
agricultural infrastructure, resulting in a widening GAD between agricultural income and
non-agricultural income. The opportunity cost of engaging in agricultural production has
increased. Therefore, the snow disaster will reduce the farming willingness of farmers in
the disaster-stricken areas, causing them to transfer or abandon farmland, thereby reducing
the utilization rate of cultivated land. The reduction in the utilization rate of arable land
has reduced the degree of farmland improvement, resulting in soil erosion, and may lead
to the occupation of part of the arable land, which is not conducive to the GAD. Based on
the above analysis, we use the utilization rate of cultivated land as a mechanism variable
to test this effect, and the results are shown in Table 9, column (1).

The results show that the coefficient of Rains
i × Postt is −2.013 and is significant at the

level of 1%, which indicates that the snow disaster has significantly reduced the utilization
rate of cultivated land. Specifically, after the snow disaster, the utilization rate of cultivated
land dropped by an average of 2.01%. Due to the irreplaceability of land in agricultural
production, the decline in the utilization rate of arable land will decrease the total input
of agricultural production, thereby reducing the total agricultural output. At the same
time, the deserted land leads to barrenness of part of the farmland, causing soil erosion
and desertification, which is not conducive to environmental protection and GAD.

6.2. Production Energy Consumption

Based on theoretical analysis, farmers who continue to engage in agricultural produc-
tion will be more inclined to pursue short-term gains due to greater uncertainty. One way
to pursue short-term gains in agriculture is to increase production input, such as water
resources, electricity, and other consumable resources, which leads to an increase in the
energy consumption of agricultural production. Based on this, we use the variables of
diesel, electricity, and water resource input per unit of agricultural output, and use the
entropy method to construct the agricultural production energy consumption index as a
mechanism variable for testing. The results are shown in Table 9, column (2).

The results show that the coefficient of Rains
i × Postt is 0.003 and is significant at the

level of 1%. The snow disaster has increased the energy consumption index of agricultural
production by 0.003. Considering that the average energy consumption of agricultural
production is 0.037, the snow disaster has increased the energy consumption of agricultural
production by 8%. This result shows that after extreme climate shocks, farmers are more
inclined to pursue short-term gains due to greater climate risks in the future, and will
increase agricultural water input. At this time, excessive extraction of river water and
groundwater became the choice of many farmers. The diesel and electricity required to
start the pumps have led to an increase in resource consumption, which ultimately leads
to an increase in the total energy consumption of agricultural production. These actions



Int. J. Environ. Res. Public Health 2021, 18, 12055 17 of 22

will have a negative environmental impact on economic development and reduce the level
of GAD.

6.3. Agricultural Pollution

Based on theoretical analysis, the snow disaster will increase the long-term climate
risk and decrease farmers’ willingness to protect the environment. This risk causes farmers
to invest more fertilizers and pesticides to ensure short-term benefits. We use the logarithm
of the input of fertilizer and pesticide per hectare as the mechanism variable for analysis to
test this mechanism. The results are shown in Table 9, columns (3)–(4).

The results show that the snow disaster increased the fertilizer input per hectare
by 1.3% and the pesticide input by 4.7% on average, which led to increased pollution in
agricultural production and lowered the level of GAD. Increased inputs of fertilizers and
pesticides indicate that farmers are more inclined to guarantee short-term harvests rather
than pursue long-term gains when facing greater climate risks in the future. This result
further validates the conclusion that extreme climate shocks affect the GAD by changing
farmers’ risk expectations.

As farmers are more inclined to guarantee short-term harvests after extreme weather
shocks, extreme weather may not reduce the total output of agricultural products. However,
due to the long-term decline in the level of GAD, the reduction in green agricultural
products will reduce the overall quality of agricultural products. To verify this conjecture,
we use the total output of major agricultural products and primary industry value-added
as the explained variables to study the impact of extreme climate shocks on the output and
quality of agricultural products. The relevant results are shown in Table 10.

Table 10. The impact of the snow disaster on the output and quality of agricultural products.

Variables

(1) (2) (3)

Products Per Products Primary Value

lProduction lpro lFirst

Rains
i × Postt 0.068 *** 0.068 *** −0.019 ***

(0.004) (0.004) (0.002)

Obs 38,140 38,140 38,142

R2 0.074 0.093 0.875

Counties 2077 2077 2077
Notes: lProduction, lpro and lFirst denote the output of main agricultural products, the per capita output of
agricultural products, and the primary industry value-added (all logarithms). *** denotes significance at 1%.
All control variables, individual fixed effects, and time fixed effects are included in all specifications. Obs
denotes observations.

Columns (1)–(3) in Table 10, respectively, take the output of main agricultural products,
the per capita output of agricultural products, and the primary industry value-added (all
logarithms) as the dependent variables. The results show that after the snowstorm, the
output of major agricultural products increased by 6.8%, but the value of agricultural
output dropped by 1.9%. This result shows that the value of agricultural products per
unit has fallen by 8.15%. Although the output of agricultural products increased after the
snow disaster, the quality of agricultural products declined, which led to a decrease in
their value. This result verified our conjecture. After the snow disaster, farmers pursue
short-term harvests and increase the input of fertilizers and pesticides to increase the
output of agricultural products. However, due to the reduction in the proportion of green
agricultural products, the overall quality of agricultural products in the long-term declines
and the agricultural output value decreases.
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7. Conclusions and Policy Implications

Extreme climate shocks cause agricultural yield reductions and increase long-term
climate risk, altering farmers’ long-term production decisions and affecting GAD. This
impact is more significant with the increased levels of climate change. We use the difference-
in-difference method to study the impact of extreme climate shocks on GAD based on the
context of the 2008 snow disaster in China.

The conclusion shows that extreme climate shocks are one of the most important
factors hindering GAD. Additionally, the impact of extreme climate shocks is heterogeneous
across climate and economic zones. Taking targeted measures to cope with extreme climate
shocks is an important guarantee to promote GAD in China against the background of
intensifying climate change and more frequent extreme weather. Meanwhile, we find
that the mechanism by which extreme climate shocks reduce GAD is mainly to change
farmers’ income and expectations and extreme climate shocks have reduced the quality of
agricultural products in the long term. Therefore, government subsidies and agricultural
insurance can mitigate this effect and improve the quality of GAD.

Based on the above findings, we propose the following policy recommendations:
(1) Increasing investment in agricultural infrastructure to enhance farmers’ capacity to cope
with climate disasters. (2) Adapting to local conditions and making appropriate agricultural
policies in different regions, focusing on post-disaster reconstruction and security in areas
with plentiful rainfall and developed regions. (3) Providing agricultural disaster insurance
to protect against future extreme weather disasters, reducing farmers’ expected risks, and
protecting the income of green agriculture in the long term. (4) Subsidizing farmers who
adopt green production and increase the purchase price of green agricultural products.
Subsidies can compensate for the losses caused by extreme climate shocks. Increasing the
purchase price of green agricultural products can encourage farmers to continue to adopt
green production methods, thus safeguarding the quality of agricultural products and
promoting GAD.
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disaster on GAD.

Table A1. Considering the impact of irrigation efficiency.

Variables
(1) (2) (3)

Green Green Green

Rains
i × Postt −0.010 *** −0.010 *** −0.012 ***

(0.002) (0.001) (0.001)

Effective irrigation rate 0.0158 ** 0.0155 *** 0.0316 ***
(0.007) (0.002) (0.004)

County fix Yes No Yes

Time fix No Yes Yes

Obs 38,142 38,142 38,142

R2 0.151 0.700 0.701

Counties 2077 2077 2077
Notes: *** Denotes significance at 1%, ** at 5%. All other control variables are included in all specifications.

Table A1 column (1) shows that after adding Effective irrigation rate as a control
variable to the model, the coefficient of Rains

i × Postt is −0.01 and is significant at the 1%
level. After controlling for different fixed effects, the coefficient of Rains

i × Postt is −0.01 in
column (2) and −0.012 in column (3), both of which are significant at the 1% level. This is
consistent with the baseline result (−0.012), indicating that the snow disaster hindered the
GAD. The coefficient of Effective irrigation rate is significantly positive in columns (1)–(3).
This shows that the effective irrigation rate has a significant positive effect on GAD, but
has nothing to do with the snow disaster, so the omission of this variable will not affect the
baseline results.

The results in Table A2, column (1) show that when educational variables are added
and no fixed effects are controlled, the coefficient of Rains

i × Postt is −0.011 and is signif-
icant at the 1% level, which is consistent with the baseline results. After controlling for
different fixed effects, the coefficients of Rains

i × Postt are −0.01 and −0.011, respectively,
which are both significant at the level of 1%, indicating that the snow disaster hinders
GAD. The coefficients of Education in columns (1)–(3) are all significantly positive, which
indicates that education can promote GAD, but has nothing to do with snow disasters.
Therefore, if this variable is not controlled, the baseline regression results will not be biased.
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Column (4) shows that after adding Effective irrigation rate and Education at the same
time, the coefficient of Rain∗Post is significant at −0.011, which shows that the results of
this paper are robust. Although the effective irrigation rate and education are conducive to
GAD, since these two factors have nothing to do with snow disasters, they will not bias the
baseline results.

Table A2. Considering the impact of education.

Variables
(1) (2) (3) (4)

Green Green Green Green

Rains
i × Postt −0.011 *** −0.010 *** −0.011 *** −0.011 ***

(0.001) (0.001) (0.001) (0.001)

Education 0.008 *** 0.002 *** 0.003 *** 0.003 ***
(0.0004) (0.0003) (0.0003) (0.0003)

Effective irrigation rate 0.035 ***
(0.004)

County fix No No Yes Yes

Time fix No Yes Yes Yes

Obs 38,136 38,136 38,136 38,136

R2 0.161 0.700 0.701 0.702

Counties 2077 2077 2077 2077
Notes: *** Denotes significance at 1%. All other control variables are included in all specifications.
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