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Abstract: Cyber-physical energy systems provide a networked solution for safety, reliability
and efficiency problems in smart grids. On the demand side, the secure and trustworthy energy
supply requires real-time supervising and online power quality assessing. Harmonics measurement
is necessary in power quality evaluation. However, under the large-scale distributed metering
architecture, harmonic measurement faces the out-of-sequence measurement (OOSM) problem,
which is the result of latencies in sensing or the communication process and brings deviations in data
fusion. This paper depicts a distributed measurement network for large-scale asynchronous harmonic
analysis and exploits a nonlinear autoregressive model with exogenous inputs (NARX) network
to reorder the out-of-sequence measuring data. The NARX network gets the characteristics of the
electrical harmonics from practical data rather than the kinematic equations. Thus, the data-aware
network approximates the behavior of the practical electrical parameter with real-time data and
improves the retrodiction accuracy. Theoretical analysis demonstrates that the data-aware method
maintains a reasonable consumption of computing resources. Experiments on a practical testbed
of a cyber-physical system are implemented, and harmonic measurement and analysis accuracy
are adopted to evaluate the measuring mechanism under a distributed metering network. Results
demonstrate an improvement of the harmonics analysis precision and validate the asynchronous
measuring method in cyber-physical energy systems.

Keywords: out-of-sequence measurement; cyber-physical energy systems; harmonic measurement;
data-aware

1. Introduction

Cyber-physical systems (CPS) aim at improving the system safety, security, sustainability and
efficiency in large-scale in-network applications, such as smart grids, medical and health, industrial
manufacturing, traffic control, smart buildings, etc. [1]. Such applications require sensing and
information analysis in a wide area network and claim higher safety and quality of the measurement
network. Beyond the traditional sensing network solution, cyber-physical systems combine the
communication, computation and control process and offer a better performance [2]. On the demand
side of the smart grid, the cyber-physical energy system (CPES) is dedicated as a special case of CPS
dealing with the electrical safety and quality problems among large-scale industrial and commercial
power utilization [3]. To provide the consumers with a secure and trustworthy power supply, the
distributed metering architecture is exploited for large-scale, hybrid network measurement [4].

On the demand side, the automated meter reading (AMR) system, which behaves only as one-way
manual centralized detection, is at the last gasp of its use corrections , while the advanced metering
infrastructure (AMI) with a distributed architecture and integrated electrical information analysis
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service is gradually taking its place [5]. For the prospect of the electrical metering system, the smart
grid is a promising solution for a less centralized and more consumer-interactive network. Within
this measuring framework, electrical characteristics are collected through scattered smart meters,
then meter data management systems dispose integrated computing and make deploying strategies
accordingly to ensure high quality power. Harmonic measurement is an essential part of power
quality assessment. Harmonics on the demand side mainly come from nonlinear appliances. Distorted
harmonics introduce fluctuations, sags and disequilibrium into the grid, leading to potential damages
and power failures. Fast and online harmonic analysis is significant in power grids and facing new
challenges under distributed metering architectures.

The out-of-sequence measurement (OOSM) problem is one of the challenges in large-scale
distributed sensor networks [6]. The AMI architecture contains thousands of electrical measuring
devices. Electrical data from different sensing nodes reaches the data management center with latencies
that result in temporal disorders of the data sequence, as shown in Figure 1. Data fusion, such as
harmonic analysis and identification, will be influenced by disordered measurement. In target tracking
sensor networks, OOSM methods have been developed and verified. OOSM has been implemented by
the Kalman filter and the particle filter. Bar-Shalom [7] introduced the OOSM in multisensor systems
and studied data retrodiction based on statistics theory. Bar-Shalom proposed an optimal method, A1,
and suboptimal methods, B1 and C1 [8], based on the Kalman filter for one-lag disorder, then developed
multi-lag OOSM Methods Al1 [9], Bl1 [10] and NBl [11]. Lanzkron proposed a two-step multi-lag
OOSM method [12]. Subhash proposed an augmented state Kalman filter with a Bayesian solution [13],
and Keshu improved the performance of this algorithm [14]. OOSM algorithms based on the particle
filter were developed following the Kalman filter-based methods. Mallick proposed suboptimal B-PF2
based on the heuristics that the target states at different time instants are independent given the past
measurements in [15]. B-PF1 was depicted in [16] by Matthew, and also, A-PF is proposed in [17,18].
Gustafsson presented a storage-efficient particle filter algorithm (SEPF) in [19,20]. Anders promoted
an RBPF (Rao–Blackwellized particle filter) method in [21]. Decentralized methods for OOSM are
presented in [22,23]. Handel [24] exploited the Bayesian framework to minimize the error estimation of
the disordered data. Zhang proposed a complete in-sequence information (CISI) method in [25]. In the
applications, Besada-Portas studied the out-of-sequence problem in mobile robot localization [26].
Klaus [6] applied OOSM for multi-sensor fusion in vehicles and proposed joint integrated probabilistic
data association (JIPDA) fusion. Schueller [27] provided a temporal solution to calibrate the data
sequence in an advanced driver assistance system. Liu [28] combined the OOSM algorithm with
compressive sensing for harmonic measurement and identification.
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Figure 1. An illustration of the out-of-sequence measurement problem. (a) Normal sequence
measurement; (b) multi-lag out-of-sequence measurement (three-lag delayed in this case); (c) one-lag
out-of-sequence measurement.
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Harmonic analysis requires harmonic data in the same temporal section. Out-of-sequence data
will reduce the accuracy of harmonic monitoring and power quality assessment. Existing OOSM
methods based on the Kalman filter or the particle filter are computationally complicated and rely on
dynamic models of the tracking sources. For electrical harmonics, the dynamic model is irregular, and
it is difficult to depict the precise relations of the harmonics. In addition, network-based monitoring
indicates relative correlations between the signals in multiple channels. The Kalman filter- and the
particle filter-based OOSM methods do not consider the network data as a whole, which is incomplete
utilization of the harmonic information. The artificial neural network gains the capability to imitate a
complex nonlinear system without a priori modeling, which is suitable for implementing measuring
data reordering in a large-scale distributed network [29,30]. The nonlinear autoregressive model
with exogenous inputs (NARX) model [31–35] has long been adopted in the prediction and filtering
of temporal data sequences. In this paper, NARX-based OOSM methods are adopted to perform
data-aware retrodiction for distributed harmonic analysis.

The main contribution of this paper lies in introducing the artificial neural network into
out-of-sequence measurement in harmonic analysis. The NARX neural network is employed to
predict and retrodict the disordered data without the kinematic model of the harmonic behavior.
The data-aware NARX network maintains the model in the hidden layers and provides a precise
approximation of the real electrical harmonic changes. The theoretical analysis on the NARX-based
OOSM method’s computational complexity and memory consumption is presented. Experiments on a
practical distributed electrical sensing network evaluate the performance of the proposed method.

The rest of this paper is organized as follows. Section 2 contains the OOSM problem statement and
basic notations. Section 3 depicts the OOSM method and proposes the NARX-based OOSM algorithm.
This section also analyzes the NARX-based algorithm’s computational complexity and compares it to
the former OOSM methods. Section 4 shows the experiment results on the harmonic identification
accuracy of disordered measuring data, demonstrating the validation of the measurement method
proposed. Finally, Section 5 is the conclusion and the overview of future work.

2. Preliminaries

2.1. Distributed Metering Framework in a Cyber-Physical Energy System

A large-scale sensing network for electrical information monitoring in the residential and
industrial grid has attracted sufficient researchers’ focus, and the electric metering system has been
evolving ever since. The conventional metering structure is the automated meter reading (AMR)
system, which behaves only as one-way manual centralized detection. The advanced metering
infrastructure (AMI) utilizes a distributed architecture and integrated electrical information analysis
service and is gaining in popularity. In the prospect of the electrical metering system, the cyber-physical
energy system is a promising solution for a less centralized and more consumer-interactive network.
With the growth of the grid scale, a distributed, dynamic-configuration, demand-required response
solution is offered. In the dynamic sensing network [36], the cyber system will be able to collect
real-time electrical power quality parameters and to deploy distributed data analysis and computation
for energy savings. In a home area network, electrical data are measured and preprocessed at the
ubiquitous intelligent sensing nodes, propagating through a self-organized, multi-hop sensing network
based on the IEEE 802.15.4 protocol [37] and analyzed at the data management center to assess the
power quality of the local demand-side grids. The electrical information is analyzed and offered
to customers. The customers can control and configure the loads and power supplies through the
two-way network. A general measurement procedure in CPES is depicted in Figure 2.
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Figure 2. Distributed measuring schedule for harmonic analysis in the cyber-physical energy system,
including sensing, communication, computation and control. The out-of-sequence measurement
(OOSM) occurs in the asynchronous communication network and is rectified before the analysis process.

However, as the network scale grows, the complexity of sensing network communication increases.
The bandwidth of the network limits the data transition capability. The relay mechanism inhibits the
packet loss rate and improves the communication reliability; however, communication delays of data
packages are getting larger. This leads to the late catch up of the electrical information of the grid at
the data management center. Thus, the data management center has to carry on electrical information
analysis with incomplete data. This will bring error to the estimation of the state of the grid. When
the delayed data package arrives, these out-of-sequence data should be able to compensate the form
estimation and help improve the measurement accuracy. In a large-scale electrical monitoring network,
out-of-sequence measurement is a common phenomenon and hinders electrical information analysis,
which relies on the correct time series data. Figure 1 indicates that at each data fusion point, the
collected data will not follow the time sequence order. This brings temporal error in harmonic analysis
for the fusion data not in the same temporal section. Power quality assessment requires high confidence,
real-time response and secure data transmission. However, out-of-sequence measurement is a vital
challenge to this under the distributed measuring architecture. The harmonics is significant for power
quality monitoring on the demand side, since it is the key characteristic in analyzing the application
sources, fault localization, smart power management and other applications. Harmonic measurement
methods have long been studied. The harmonic measurement deployed at each single metering unit
can utilize ESPRIT (Estimation of Signal Parameters via Rotational Invariance Technique) , ADALINE
(Adaptive Linear Neuron network) , the Kalman filter, etc. [38–40]. At the data management center,
harmonic measurement results from numerous end devices needing to update, and the transmission
delay affects the fusion and analysis accuracy. Harmonic measurement in a distributed network
requires precise temporal section error and phase metering among various harmonics. The 1-µs
temporal error between sensing nodes leads to the 1.08′ bias of the baseband phase, which does not
fulfill the standard harmonic measuring requirement in IEC 61000-3-2-2002.

Beyond harmonic measurement, the analysis process at the data management system is also
affected. Harmonic identification is important in harmonic analysis and widely applied in safety
monitoring and assessment of the smart grid. Harmonic identification relies on the analysis of a
time sequence of multi-channel electrical data and is affected by out-of-sequence measured data.
In this paper, harmonic source identification is settled to evaluate the influence of the OOSM problem.
The harmonic sources S and measurement data X follow:

X = AS + N (1)
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X ∈ RM×T , containing M channels and T time points. S ∈ RN×T , and N is the number of sources.
A ∈ RM×N is the measuring matrix, and N is the distorted signal. The identification of the harmonic
sources from the measurement data is a optimization problem of the following kind:

Ŝ = WX = A−1X (2)

The W is the transfer matrix. Ŝ is the estimate sources using independent component analysis.
A widely-applied method for harmonic identification is independent component analysis (ICA);
its principle and realization have been explained in [41]. In this paper, this method is utilized to testify
to the effects of disordered sequences on harmonic source identification accuracy.

In addition, for online harmonic analysis and identification, electrical data of the grid are
transmitted, which increase the communication load. This leads to a multi-step lag in multi-channels
and results in larger temporal errors. In this paper, compressive sensing is brought in to decrease the
possible lags. The harmonic analysis schedule is shown in Figure 2. Through the distribute sensing
network, the asynchronous measurement data are regulated by an OOSM filter. The measurement
data in order are then used for harmonic analysis.

2.2. Out-of-Sequence Measurement Problem Formulation

The harmonic measurement is under a distributed multi-channel network fulfilling the
following assumptions:

Assumption 1. All of the electrical measure nodes in the network are identical and perform
asynchronous measurement.

Without loss of generality, an electrical measuring device is mentioned in the following section as
sensing node in a distributed sensor network. This assumption guarantees a homogeneous sensing
environment. The hybrid sensor network leads to disorders among heterogeneous sensing data, which
is not considered in this paper.

Assumption 2. Temporal deviations among the multiple channels of sensing nodes are introduced in the
asynchronous measurement of each node and transmission latencies.

Assumption 3. The measurement process is in distributed sensing nodes, and data fusion is deployed in an
integrated cluster head.

Considering multiple channel data measurement and transition under large-scale sensor network.
In the i-th channel, if electrical data at tκ take a longer time to reach the fusion node, these out of
sequence data are represented as x(κ). In the measuring sequence, k− l < κ < k− l + 1, and x(κ)
arrives at the fusion node only for the estimation of x(k); the fusion process is in sequence before
x(k− 1), and at the x(k), there exists an l-step lag OOSM to be corrected. If l = 1, x(κ) is only one step
behind x(k). lmax is the largest disorder of the sequence. In a network of N sensor nodes, the nonlinear
dynamic function possesses the following form:

x (k) = F (x (k− 1)) + w (k, k− 1) (3)

where x(k) = [x1, x2, ..., xN ] is the measured data from N sensor nodes at time tk while k = 1, 2, ...; F(·)
is the nonlinear state transition matrix. w(k, k− 1) is a zero mean Gaussian white noise at the i-th
channel. The measurement equation of the electrical sensing network is:

z (k) = H (x (k)) + v (k) (4)



Sensors 2016, 16, 1316 6 of 27

For electrical harmonics, a linear approximation of the kinematic function of the voltage waveform
is proposed in [42]:

z(k) = ∑ Ai sin(ωitk + φi) + v

= ∑ Ai(sin ωitk cos φi + cos ωitk sin φi) + v (5)

Define xi as:

x2p−1(k) = Ap sin ωptk (6)

x2p(k) = Ap cos ωptk (7)

Adopt Equation (6) in Equation (5); the measurement equation can be depicted as:

x(k + 1) =


T1 · · · 0
...

. . .
...

0 · · · Tp

 x(k) + w(k) (8)

where Ti represents the rotation matrix decided by the i-th harmonic phase φi. The measurement
matrix is [43]:

ẑ(k) = [1, 1, ..., 1] · x̂(k) + v (9)

For electrical parameter measurement, the measuring transition matrix H is usually regarded as
an identity matrix, which cannot be guaranteed in the practical environment. The out-of-sequence
measurement problem occurs in the multi-channel sensing process as shown in Figure 1. All of the
sensing channels send their measurement results to the fusion center with their own disorders (Sensor 1
has a four-lag disorder at t2, and Sensor 2 has a one-lag disorder at t6). For an l-lag disorder at tκ

for the i-th sensor node where k− l ≤ κ ≤ k, before the xκ arrives at the fusion center, to get the real
measurement result xk, it is necessary to retrodict the x̂κ . From Equation (3), it can be derived that:

x̂(κ) = F(κ, k− 1)x(k− 1) + W(κ, k− 1) (10)

Filtering algorithms, such as the Kalman filter, particle filters and artificial intelligent models,
have been presented to get the actual measure result x(k) form the past measure result z. Covariance
of the retrodict result P(k|κ) = cov[x(k)|Zκ ] to evaluate the performance. Calculate the filter gain
for updating the state x(k) with the earlier measurement z(κ). Update the state estimate x(k|k) to
x̂(k|κ), and calculate the corresponding covariance. However, the dynamics of time-varying harmonic
does not follow a certain distribution. Changes of the harmonic are driven by customer behaviors.
Customers change the states of loads in the grid according to demand. In industry, for instance, the
harmonics of numerical control machines change according to the manufacturing schedule. Thus,
the harmonics is more like a hidden Markov process. The Monte Carlo process does not describe the
process well. Thus, the model in the OOSM algorithm is the key feature.

The basic steps of OOSM are presented in [31]:

Prediction: combine the evolution model p(xk|xk−1):

p(xk|Zk−1) =
∫

p(xk|xk−1)p(xk−1|Zk−1)dxk−1 (11)

where
Zk = {z (i)}k

i=1 (12)
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Filtering: the filtering density p(xK|Zk) is obtained by combining the sensor model and the
prediction density:

p(xk|Zk) =
p(Zk, mk|Xk)p(xk|Zk−1)∫

p(Zk, mk|Xk)p(xk|Zk−1)dxk
(13)

Retrodiction: the retrodiction density p(xl |Zk) is obtained by combing the object evolution model
with the previous prediction and filter densities:

p(xl |Zk) =
∫ p(xl+1|xl)p(xl |Zl)

p(xl+1|Zk)
dxl+1 (14)

Traditional OOSM algorithms are based on the Kalman filter or the particle filter with statistic
theory [7]. In the random-lag, multi-channel situation, a priori dynamic function F is necessary, and
statistics analysis is comprehensive and difficult to implement. For target tracking, the dynamics can
be regulated as certain patterns, like uniform rectilinear motion or constant acceleration. However,
in the residential and industrial power utilization network, the customer devices are becoming the
main part of the harmonic sources. The harmonics injected into the grid depends on the user behavior,
which is difficult to predict. The harmonics does not change in a definite pattern. Online identification
of the non-stationary harmonic sources requires a real-time and precise measurement. Thus, the
out-of-sequence problem is not ignorable in the problem, and an optimized estimation method
is required.

3. Data-Aware Retrodiction for Out-of-Sequence Measurement

3.1. Harmonic Modeling Based on a Nonlinear Autoregressive Exogenous Model Neural Network

Specific nonlinear models for electrical parameters are difficult to describe. The artificial neural
network has gained the reputation of approximating nonlinear systems and does not depend on
prior models. There has been research on harmonic estimation and prediction based on artificial
neural networks [29,30]. The nonlinear autoregressive model with exogenous inputs (NARX) has been
exploited for dynamic system prediction in financial, engineering, medical areas, etc. For OOSM in
harmonic measurement among sensor networks, the disordered dynamic system can be predicted and
rectified through the NARX neural network. In [28], the NARX neural network is utilized to solve the
OOSM problem. Since the disorder measurement sequence is the result of the high communication
delay, Liu used a compressive sensing method to reduce the communication requirements. Thus, the
multi-lag disorder phenomenon will decease to one-lag disorder. Then, the NARX neural network
adjusts the one-lag OOSM. However, the multi-lag disorder is non-neglectable as the network scale
grows. Thus, an NARX-based method for multi-lag OOSM is proposed in the following. The NARX
model is described in Figure 3.

v(1)(k) = f (Wi · u) (15)

v(j)(k) = f [W(j)v(j−1)(k)], 2 ≤ j ≤ h (16)

x̂(k) = f [Wov(h)(k)] (17)

where u represents the input vector [x̂(k− 1), x̂(k− 2), ..., x̂(k−m), z(k− 1), z(k− 2), ..., z(k− l)]. h is
the number of hidden layers, and v(i) denotes the parameters of the i-th hidden layer. Wi is the weight
of input layer and Wo the output layer. Equation (15) is the relationship between the input layer u
and the first hidden layer v(1)(k) at tk. Equation (16) is the relationship between the hidden layers.
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Equation (17) describes the relationship between the last hidden layer v(h)(k) and the output layer x̂(k)
at tk. As for the whole network, the relationship between the input and output can be described as:

x̂(k) = G[x̂(k− 1), x̂(k− 2), ..., x̂(k−m),

z(k− 1), z(k− 2), ..., z(k− l)]
(18)

where z is the original measurement harmonic data and x̂ is the prediction of the electrical parameters
at the next time point, to occupy the vacancy of datasets to be analyzed. l > 0 and m > 0 are the
input and output scales, respectively. Function G(·) is the retrodiction transfer function, which is to be
approximated by the h layer feedforward network of function f (x).
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Figure 3. Parallel nonlinear autoregressive model with exogenous inputs (NARX) structure with h
hidden layers and recursive feedback. The nodes of each hidden layer are n. d is the output estimated
data in the time sequence, and m is the output depth. u is the measured input data in the time sequence,
and l is the input depth. The maximum delay of the out-of-sequence lmax should be no more than l.

The NARX network has two model types: the serial and parallel mode [44]. The serial mode
calculates the x̂(k) according to the definite measured data, namely as the Equation (18) shows. The
output can be written in the following form:

ẑ(k) = G[x̂(k− 1), x̂(k− 2), ..., x̂(k−m)

d(k− 1), d(k− 2), ..., d(k− l)]
(19)

where d(k) represents the actual output data, while x̂(k) is the estimated result at the k-th time point.
In the neural network, the outputs of the hidden layers are:

υp(k) = G[
l+m+1

∑
q=1

W(1)
pq xq(k)] (20)



Sensors 2016, 16, 1316 9 of 27

where υp(k) is the neuron in the p-th hidden layer. W(i)
pq is the weight connecting the q-th input and

p-th neuron in the i-th hidden layer. Thus, the network output is:

ẑ(k) =
n

∑
p=1

W(0)
p υp(k) (21)

The parallel model utilizes recent estimation results for estimation at the k-th time point:

ẑ(k) = G[x̂(k− 1), x̂(k− 2), ..., x̂(k−m)

z(k− 1), z(k− 2), ..., z(k− l)]
(22)

In this paper, the parallel NARX structure is adopted for prompt feedback, as shown in Figure 3.
Each layer uses the sigmoid function as f (x), for the sake of its low computational complexity on
derivation. f ′(x) = f (x) f (1− f (x)), which is useful in the following analysis.

The training method uses the Levenberg–Marquardt back propagation algorithm, which is a
modification of the Gauss–Newton method; the updating equation has the following form:

wn+1 = wn −
(

Jw(n)TJw(n) + µI
)−1

Jw(n)Te(n) (23)

where wn denotes the weights of each layer in the n-th iteration. Jw(n) is the Jacobi matrix of this
layer, which can be defined as Jw(n) = {∂e/∂w}ij. e(n) is the error in each layer. At the output
layer, eo(n) = (x̂(n)− z(n))2/2. At the hidden layer, the error is defined as the difference of each
layer output.

The NARX neural network is an instance of a recurrent neural network. The multi-hidden layers
can describe the dynamic feature of signals in various scales and the hidden Markov process of the
customer event. Although the NARX neural network is dynamic over time, by introducing the time
point as input, the temporal feature can be detected in the NARX model.

3.2. Data-Aware Retrodiction Based on the NARX Neural Network

From the description of the OOSM method in Section 2, when the out-of-sequence data arrive,
the prediction and filtering process can rely on the model in the neural network. The retrodiction
process is the main task in updating the latest harmonic estimation. When the measured data at
tκ are missing, the input data lack the zκ . This can be replaced with the estimation x̂κ in the last
iteration. According to the back propagation method in Equation (23), the updating of the matrix has
the following form. Define S(n) =

(
Jw(n)TJw(n) + µI

)−1; thus:

∆wo = So(κ)Jo
w(n)

Te(κ) (24)

∆wh = Sh(κ)Jh
w(n)

Te(κ) (25)

∆wi = Si(κ)Ji
w(n)

Te(κ) (26)

wo, wh, wi are the weights in the output layer, hidden layer and input layer, respectively. ∆w is the
weight updating. When the out-of-sequence data zκ arrive at tk, it shall update the input layer uk.
Thus, the out-of-sequence lag l = k− κ. Define ∆x = zκ − x̂k, and the change is trivial compared to zκ ;
thus, if operating an identical neural network offline with the in-sequence data, the updating weights
should change in Equation (26), updating the input elements u with zκ . Thus, at tk, the distortion in
weights by ∆x should be verified. Considering that it is clear that the estimation x̂κ will bring in errors,
the training algorithm can change from the Levenberg-Marquardt method to the gradient method,
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which has a lower convergence rate. This reduces the impact of the estimation error to the network.
The gradient algorithm has the following form:

∆w = η
∂e
∂w

(27)

The input error ∆x expands to the feedforward network. For the neural network described in
Figure 3, the first hidden layer output has the following form:

v = f (W(i)u) (28)

The error introduced by ∆x can be derived as:

∆v(1) = f (W(i)(u + ∆u))− f (W(i)u) = J(1)x ∆u (29)

where the Jacobi matrix is:

J(1)x = {∂ f (W(i)x)/∂xi} = diag( f ′(W(i)x))W(i) (30)

In other layers, the input errors have a recursive form:

∆v(i) = (
i

∏
j=1

J(j)
x )∆u (31)

∆o = J(o)x (
h

∏
j=1

J(j)
x )∆u (32)

Thus, the output error magnifies the input error through each layer. The backward feedback on
the weights modification depends on the output error and goes back though the network. For gradient
backpropagation algorithm, the updating functions of weights in each layer are:

∆wo
m,n = η

∂e(κ)
∂wo

m,n
= η(z− x̂) f ′(wov(h))v(h)n = ηδo

mv(h)n (33)

∆w(i)
m,n = η

∂e(κ)

∂w(i)
m,n

= η

[
∑
k=1

wkmδm

]
f ′(w(i)v(i))v(i)m,n = ηδ

(i)
m v(i−1)

n (34)

∆wi
m,n = η

∂e(κ)
∂wi

m,n
= η

[
∑
k=1

wkmδm

]
f ′(wiu)un = ηδi

mun (35)

where δ represents the error in each layer. For the output layer, the change of the input brings the
weight updating error:

δwo
m,n = η(z− x̂− ∆om) f ′(wo(v(h) + ∆v(h)))(v(h)n + ∆v(h)n )− ∆wo

m,n (36)

Neglecting the higher order of ∆, the formulation can be derived as:

δwo
m,n = η(z− x̂) f ′(wov(h))∆v(h)n + η f ′(wo(v(h)))v(h)n ∆om (37)

It can be figured out that the change of the weights is composed of the errors of both the output
layer and the input layer. In the back propagation method, the weights update in a recursive manner;
thus, the estimation error can be traced down by updating the updating character δ in each layer. In
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Equation (33), the changes of elements in each layer are verified in Equations (29) and (31). For δ, the
changes are:

∆δ
(i)
m =

[
∑
k=1

wkm∆δ
(i+1)
m

]
f ′(w(i)v(i)) (38)

∆δi
m =

[
∑
k=1

wkm∆δ
(1)
m

]
f ′(wiu) (39)

Thus, the weight updating errors for hidden layers and the input layer are:

δw(i)
m,n = ηδ

(i)
m ∆v(h)n + η∆δ

(i)
m v(h)n (40)

δwi
m,n = ηδ

(1)
m ∆uk + η∆δ

(1)
m uk (41)

From the above, the estimation error ∆x propagates forward from the input layer to the output
layer, changing the elements in each layer. Then, the back propagation method propagates the error
backward to the layer weights. When the measured data z(κ) arrive, the estimation error ∆x can be
calculated. The bias of weights introduced by the estimation error can be rectified by retrodiction. The
retrodiction method is described below.

3.2.1. Single-Lag Out-of-Sequence Measurement Solution

In the single-lag situation, the estimation error ∆x = z(κ)− x̂(κ) at the input layer has propagation
only once in the network. ∆u(k − l) = [∆x, 0, 0, ...]T . The estimation error on the weights can be
rectified backward. The single-lag OOSM algorithm is listed as follows.

Step 1: With ∆u, calculate the errors of the elements in each layer through Equations (29)–(32).
Step 2: Calculate δ and ∆δ in each layer by Equations (33)–(39).
Step 3: Calculate the error of weights with Equations (40) and (41).
Step 4: Update the weights with:

w̄o
m,n = wo

m,n − δwo
m,n (42)

w̄(i)
m,n = w(i)

m,n − δw(i)
m,n (43)

w̄i
m,n = wi

m,n − δwi
m,n (44)

Step 5: Update the estimation of x̂(k).

3.2.2. Multi-Lag Out-of-Sequence Measurement Solution

In an l-lag out-of-sequence measurement circumstance (l > 1), the estimation x̂κ stays in
the input layer until l > lmax. As long as x̂κ is in the input layer, it recursively introduces the
deviations in each iteration. In the first iteration, the input deviation is ∆u(k − l) = [∆x, 0, 0, ...]T .
In the second iteration, when the input deviation has already propagated to the output layer, the
deviation of the new estimation of x̂(k − l + 1) is ∆o(k − l) as in Equation (32). Thus, the input
deviation is ∆u(k− l) = [o(k− l), ∆x, 0, ...]T. Since this NARX neural network has only one output
element, ∆o(k− l) can be expressed more concisely. Define Sx(k) = J(o)x (k)∏h

j=1 J(j)(k)x, and construct
the matrix:

Sx(k) =



Sx(k) 1
. . . . . .

. . . 1

Sx(k)


(45)
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Thus, in the p-th iteration, when zκ arrives, the input layer deviation is:

∆u(k− l + p) =

(
p

∏
i=1

Sx(k− l + i)

)
∆u(k− l) (46)

If the NARX neural network already convergences to a certain model, the deviation is trivial
compared to the input data. For a suboptimal approximation, the retrodiction will not change the
latest weights and only adjust the output. The weights will be updated in the following measurement
process when new data enter. To reduce the error, the rectify process for single-lag out-of-sequence
measurement is repeated l times recursively. The multi-lag out-of-sequence measurement method is
listed as follows:

Step 1: Calculate ∆x = z(κ)− x̂(κ), and initialize ∆u(k− l) = [∆x, 0, 0, ...]T ,p = 0;
Step 2: Perform the single-lag OOSM algorithm with ∆u(k− l + p), and set p = p + 1;
Step 3: Update ∆u(k− l + p) = Sx∆u(k− l + p− 1);
Step 4: Go back to Step 2 until p = l − 1.
Step 5: Update the latest estimation x̂(k).

Thus, the retrodiction of the time sequence of electrical harmonics is reached following the
recursive process of the feedback neural networks. The weights are self-regulated as the temporal data
sequence going through the network. The OOSM process is data-aware and should uniformly converge
to the practical model of electrical harmonics. Deploying the retrodiction method in a cyber-physical
energy system described in Section 2, the distributed harmonic measurement is scheduled as follows:

Step 1: Sensor nodes of the electric monitoring network measure the harmonics in each branch.
The harmonic measurement algorithm is ADALINE [45]. The distributed nodes calculate the
amplitudes and phases of each order of harmonics in their branches and send the harmonic
data up to the data management system through the two-way sensing network.

Step 2: Upon the arrival of the harmonic information of the network, the data management system
updates the cached electrical state. If harmonic data of certain branches are late, update the
harmonic parameter with the former estimate value and go on measuring.

Step 3: When the out-of-sequence measurement arrives, the OOSM algorithm retrodicts the
transmission error of the end notes using the multi-lag out-of-sequence measurement method
and updates the latest estimation of the harmonic information of the grid.

Step 4: The harmonic analysis applications, such as harmonic sources identification, are processed
with the updated harmonic estimation result.

In this case, the retrodiction algorithm is embedded in the harmonic measurement process without
interfering with the normal detection of the monitoring process. Different from [28], the compressive
sensing process is abandoned, since the reconstruction algorithm is of high computational complexity.
The multi-lag OOSM method should be able to offer sufficient precision. The influence of the algorithm
on the monitoring network is evaluated in the following.

3.3. Evaluation of Data-Aware Retrodiction for Harmonics Measurement

The retrodiction algorithm can be implemented in the centralized computing unit or distributed
data fusion units as long as the out-of-sequence data occur. Other than the measurement accuracy,
computational complexity and memory consumption are important indexes indicating the algorithm
performance. This is important for online harmonic analysis applications. This section compares to the
computational complexity and memory consumption of the NARX-based method with the Kalman
filter- and the particle filter-based methods.
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3.3.1. Computational Complexity Evaluation

Computational complexity guarantees the implementation of real-time data analysis over the
network. The computational complexity of the Kalman filter-based OOSM is presented in [46].
In general, the computation complexity of the neural networks is exponential and is decided by
the layers, input numbers and neural network type. Define nx as the number of inputs, h as the
numbers of hidden layers, pi as the number of elements in the i-th hidden layer, m as the number of
measurements and Nw as the number of total weights. As long as the number of elements in the hidden
layers is no less than the input layer, which is normal, then Nw = nx p1 + p1 p2 + p2 ≈ hn2

x. When an
l-lag out-of-sequence measurement occurs, the retrodiction algorithm contains l cycles of forward and
backward propagation. According to [47], the gradient backpropagation algorithm’s computational
complexity is O(Nw). Forward propagation is also a O(Nw) computation. For the NARX neural
network-based retrodiction method, the computational complexity is O(lNw) ≈ O(lhn2

x).
The computational complexity of the Kalman filter- and the particle filter-based methods are

investigated, as well. Kalman filter-based methods include Bl [9], Lanzkron [12], ALG-S [13] and
ALG-I [14]. Particle filter-based methods include A-PF [17] and SERBPF [21]. The computational
complexity information of the Kalman filter-based methods is from [48], and that of particle filter-based
methods is from [17,21]. The results are simplified to express the level of the computational complexity,
rather than the exact computational consumption. The comparison of the computational complexity of
various OOSM methods is displayed in Table 1.

Table 1. Computation complexity levels of OOSM algorithms: nx is the element number; l is the delay
number; the maximum permitted delay is L; m is the number of measurements; Nw is the number of
total weights in the nonlinear autoregressive model with exogenous inputs (NARX) neural network; pi

is the number of elements in each layer.

Algorithm Computation Complexity Level

Bl ln2
x + m(n3

x + n3
z)

Lanzkron ln2
x + m(n3

x + n3
z)

ALG-S L3n3
x + L2mn2

xnz + Lm2nxn2
z + m3n2

z

ALG-I L2(n3
x + n2

x) + L(n3
x + n2

x) + mn3
x + n3

x

A-PF ln3
x + n2

x

SERBPF lm + mnx

NARX lNw ≈ lhn2
x

Apparently, delay order, input element number and maximum permitted delay are the main
factors for the computational complexity of the results. Kalman filter-based methods (Bl, Lanzkron,
ALG-S and ALG-I) offer a calculation consumption of O(ln3

x), while particle filter-based methods (A-PF
and SERBPF) provide a complexity of O(n2

x) or less. SERBPF optimizes the calculation and deceases
the calculation consumption. Computational complexity of the NARX-based method relies more on
the neural network structure. If the number of hidden layers pi ≥ nx, thus the NARX-based method
offers O(n2

x) at best, which is at the same level as A-PF. To reduce the computational complexity, the
network should be a tradeoff between the precision and computing requirements.

3.3.2. Memory Consumption

The storage and computational load of the OOSM methods are compared under the same
maximum delay l. Analyses of the memory consumption of Kalman filter- and particle filter-based
methods are in [48]. Define the neural network hidden layer number h and number of nodes n in each
hidden layer. Each prediction assimilates m measurements and the input number m + k. Discarding
the training consumption, the retrodiction process relies on the network. The memory consumption
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of NARX is the weights and nodes of the neural networks. Input weight W(i) is (m + l)n, and in
each layer, the hidden layer represents n2 weight variables. With the hn + (m + l) nodes, the memory
consumption is (m+ l)(n+ 1) + hn2 + hn. Assuming that n and nx are in the same order of magnitude,
the memory consumption can be estimated with nx. The memory consumptions of various algorithms
are shown in Table 2. OOSM algorithms based on the Kalman filter (Bl, Lanzkron, ALG-S, ALG-I) and
the particle filter (A-PF, SERBPF) are compared. The data source is the same as the articles mentioned
above. It can be seen that the memory consumption of the NARX-based method is remarkable among
these OOSM methods. This is because the proposed method builds the harmonic model through
an artificial neural network, which inherently occupies a large amount memory. Furthermore, the
NARX network aims at approximating the harmonic dynamic model more precisely than the kinematic
models in the Kalman filter. Other than the neural network, the OOSM process hardly adds further
memory requests.

Table 2. Memory consumption of OOSM algorithms: W is the recursive time number, and nx is the
element number.

Algorithm Memory Consumption

Bl W(n2
x + nx) + Wnx

Lanzkron W(n2
x + nx) + Wnx

ALG-S Wnx + W2nx

ALG-I W(3n2
x + 2nx) + Wnx

A-PF W(n3
x + n2

x)

SERBPF W(m + mnx)

NARX W(m + l)(nx + 1) + Whn2
x + Whnx

With the analysis and comparison above, it can be concluded that the NARX-based OOSM method
costs O(n2

x) in memory consumption and O(n2
x) in the computation cost, which is not outstanding

among the algorithm, but provides a reasonable hardware consumption. The NARX algorithm does
not need to store the measured history data, and instead, keeps the past information in the network.
This provides a reduction of the computational complexity.

Above all, the proposed algorithm offers a reasonable memory and temporal consumption.
This is favorable in a distributed sensing network, sparing more information for other applications in
cyber-physical systems.

4. Experiments and Analysis

4.1. Experiment Setup

To evaluate the performance of the OOSM method on the harmonic analysis, a testbed to
approximate the cyber-physical energy system in the residential power consumption network is
built in this section. A two-way distributed metering framework for electrical information monitoring
is deployed. The distributed network sensing architecture is depicted in Figure 2. This network
measures and transmits the electrical parameters by multichannels asynchronously. The reconstruction
of the signal and harmonic analysis algorithm is realized on the data management center. The power
supply is 220 V/50 Hz. The appliances contain linear loads, such as lamp humidities that do not
produce harmonics, and nonlinear loads, like rotor rigs, microwaves, air-conditioners, etc., which are
demand-side harmonic sources. Nonlinear loads are controlled during the experiment. Switch actions
will be detected in harmonic sensing. The Intelligent sensing nodes use ADE7754 to measure electrical
parameters with a sampling frequency up to 14 kHz. Signal processing methods are realized on ARM.
The electrical characteristics, including voltages, currents, frequency, power, harmonic amplitudes,
etc., are reported to the data center. The chip CC2430 realizes data transmission through IEEE 802.15.4
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protocols. The data packages follow the protocol standard DL/T 645-2007. The sensing network
contains 100 sensing nodes, including 84 end devices, 13 routers and 3 coordinators. An end device
calculates and uploads the electrical parameters every second. Then, the router fuses and relays the
electrical data measured by end devices to the coordinators. All end devices and routers have the same
hardware structure. The coordinators receive the data from the router and send them to the meter data
management system. The data management center executes the retrodiction algorithm to correct the
electrical data and analyzes the electric information with Intel i5 CPU and 4 G memory. The main
structure of the testbed is shown in Figure 4. The harmonic measurement results are compared to
the standard Fluke 435. Within the distributed sensing network, the out-of-sequence problem can
be observed.

Metering Device 
Management System

Coordinators: data fusion and 
analysis

Routers: relay and data preprocessing

End Devices: electrical information 
measurement units

Physical System

Manufacturing Unit

NC Machine

PLC

Laboratory Unit

Instruments

UPS

Office Unit

Printer

Air 
conditioner 

Power line

*NC Machine: Numerical Control Machine
*PLC：Programmable Logic Controller
*UPS: Uninterruptable Power Supply

Cyber System

Peer-to-Peer Network
Communication protocol:

IEEE 802.15.4

Figure 4. The distributed electrical information monitoring network structure of the cyber-physical
energy system testbed in the residential power consumption network.

Considering the measurement requirement of different electrical characteristics, harmonic
measurement is selected to verify the proposed retrodiction method. In the following, the computation
complexity, memory consumption and influence on harmonic measurement applications of the
NARX-based OOSM algorithm is compared to other OOSM methods. Time-varying harmonic and
transient harmonic measurements are tested. During the measurement process, the Kalman filter and
the particle filter need kinematic equations to calculate the estimation of the harmonic. The training
method of the NARX-based OOSM method is the same as in Section 3.2, and the training dataset is
explained in each case. In these experiments, the Kalman filter and the particle filter use the dynamics
described in Equations (8) and (9) [49,50]. Apparently, the kinematic model is linear; the Monte Carlo
method in the particle filter can approximate the nonlinear feature of the harmonics.
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4.2. Measurement Precision Comparison

The out-of-sequence measurement is implemented on the centralized data management center.
To examine the OOSM algorithm’s effectiveness, a simulation experiment is designed with data under
various lag levels. Training datasets for the NARX neural network contain 70% of 4-h electrical data
of 100 channels, and testing datasets contain another 30% of the electrical data. Based on electrical
parameters measured through CPES, multi-lag data sequences can be inserted into the time sequence
under a certain frequency through sorting data time sequences. The inserted lags follow a Poisson
distribution e−λ

k! λk. Inserted lags grow from one lag to a maximum of nine lags. The NARX network is
trained and tested under various multi-lag levels, which are supposed to turn the disordered data into
correct time series. Training and testing datasets from different channels and lag-levels are coupled to
examine if the NARX filter trained in a specific dataset is suitable for other lag level data. Average
mean square errors (MSE) of the modified data from the original data are recorded to depict the
performance of the NARX filter. The results are depicted in Figure 5.
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Figure 5. MSE of the out-of-sequence measurement (OOSM) algorithm under various training and test
sample sets. Each line represents the results under specific disorder level training data.

MSEs for the disordered data in the training datasets are between 0.49 and 2.31 under various lag
levels. From Figure 5, it can be seen that the MSE reduces between 0.184 and 0.345 after the NARX filter,
and the least MSE is reached with 1-lag train datasets and 1-lag disordered data. With the disorder
growing, disorder errors display an ascending trend. When the network is trained with multi-lag data,
MSE rises, indicating that multi-lag disordered data vary from lag numbers, which is not compatible
with the lower lag number situation. The optimal circumstance is the low lag number electrical data
series, and the NARX neural network is also trained with the same lag data type. However, in the
practical situation, the distortion occurs following an exponential behavior as the scale of the network
grows [27]. The main lag number remains 2–3 lags. Thus, the training dataset for the NARX-based
OOSM method should be the same practical electrical environment. The flexibility of this method
among various electrical situations should be examined in future work.

Following the harmonic measurement requirements in IEC 61000-4-7, the precision of the base
voltage and current is ≤5% of the true values, and the harmonic measurement error limits are: 0.9% for
the 3rd harmonic, 0.4% for the 5th harmonic, 0.3% for the 7th harmonic and 0.2% for the 9th harmonic
and even harmonics. The NARX-based OOSM method is implemented for harmonic measurements
and comparing the MSE with other OOSM methods, including Bl, ALG-I and SEPF. The measurement
network scale is 100 nodes, and the average MSE of the harmonic measurement for each OOSM
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algorithm is shown in Figure 6. The errors of the base current and odd harmonics from the 3rd–9th
are tested. The dotted line indicates the requirements for each harmonic order in IEC 61000-4-7-2002.
Apparently, without retrodiction, harmonic measurement does not fulfill the standard in a disorder
manner. Bl and ALG-I, as suboptimal methods, do not offer a sufficient improvement in precision.
SEPF and NARX-based OOSM reach the standard, and the data-aware method maintains a better
performance in all orders. The computational complexity of these algorithms is tested in the following.
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Figure 6. MSE of various harmonic measurements with 4 OOSM algorithms. The dotted line is the
upper bound of the harmonic measurement error in the IEC standard 61000-4-7.

4.3. Computational Complexity Comparison

The computational complexity and memory cost of NARX-based OOSM methods are compared to
other algorithms. To evaluate the memory and computational performance of the NARX-based method,
Kalman filter-based methods, Bl and ALG-I, and the particle filter-based method, SEPF, are selected to
compare. The 4 algorithms are tested under the datasets of electrical harmonics. The out-of-sequence
harmonic data are measured on the electrical network. The measuring length N is 256; the frequency
resolution ∆ f = fs/NP = 4.88 Hz < 5 Hz, which meets the requirements in IEC 61000-4-7-2002.
The largest disorder of the harmonic sequence is 7. The calculation is implemented on MATLAB 2013b.
The harmonic is sorted with the time stamps to be the correct target. The OOSM method is regarded
as valid with respect to the MSE of the reordered data. The results of the computational complexity
according to the delay length are shown in Figure 7, and those according to the number of states are
shown in Figure 8.
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Figure 7. The computational complexity of OOSM methods: Bl, ALG-I, SEPF and NARX
based algorithms. The delay of inputs is 5, the computational complexity is represented by the
float calculations.
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Figure 8. The computational complexity of OOSM methods: Bl, ALG-I, SEPF and NARX-based
algorithms. The number of disorders is 9; the computational complexity is represented by the
float calculations.

From the results, it can be figured out that ALG-I performs the largest number of float calculations.
As a suboptimal method, although Bl fails to offer a sufficient harmonic measuring precision, it
provides the least computational consumption among the algorithms. NARX-based OOSM behaves
more stably than the particle filter-based method SEPF. The NARX-OOSM does not increase the
computational capacity on different delays, but increases as the input data grow. However, among the
4 algorithms, NARX managed to maintain a relatively low computation consumption, and the practical
results comply with the theoretical analysis from above. Considering the harmonic measuring
precision, the proposed data-aware methods are promising among the 4 algorithms in the multichannel
harmonic measurement. Harmonic identification analysis depending on time series will be tested in
the following section.

4.4. Case I: Data-Aware Retrodiction for Non-Stationary Harmonic Measurement

Harmonic measurement is examined to test the effects of various OOSM algorithms on harmonic
analysis. Harmonic measurement is important in harmonic analysis and widely applied in safety
monitoring and assessment of the smart grid. Harmonic identification relies on the analysis of a time
sequence of multi-channel electrical data and is affected by out-of-sequence measured data. In this
section, the non-stationary harmonics are injected in the grid to test the OOSM algorithms. The
harmonic sources are inverters in speed-varying rotor machines. The rotation speed ranges of these
rotor machines are 0–3000 rpm. The rotor standard power is 2.8 kW at 3000 rpm, and the output power
changes over time as the speed changes. These machines are controlled independently and inject
unstable harmonics into the grid.

The harmonic series are measured under the distributed power utilization sensing network.
The harmonic measurement algorithm deployed at the end nodes is adaptive linear neuron or, later,
adaptive linear element (ADALINE). Data disorders do not exceed 4 lags. Electrical parameters in
100 channels are collected, and 3 channels of the original electrical harmonic current measurement
and the harmonic sources are shown in Figure 9. The 3 channels link to the same point of common
coupling (PCC), and the harmonic currents of each nonlinear load are tangled with each other in the
measurement data. Harmonic measurement results are compared to the sensing results of Fluke 435.
Different orders of harmonic currents examine the effects of the OOSM algorithm on harmonic
identification. The OOSM improvement in decreasing measurement error is shown in Figure 10, and
the MSEs of 100 channels are listed in Table 3.



Sensors 2016, 16, 1316 19 of 27

0 10 20 30 40 50 60
1.15

1.20

1.25 10-4

0 10 20 30 40 50 60
1.10

1.15

1.20 10
-3

0 10 20 30 40 50 60

Time/s

1.10

1.15

1.20 10-3

C
h

an
n

el
 1

C
h

an
n

el
 2

C
h

an
n

el
 3

3
rd

 H
a
rm

o
n
ic

s/
p
.u

.

Figure 9. Third current harmonics of 3 typical channels at the same point of common coupling (PCC).
The harmonics are independent and non-stationary in all 3 channels.
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Figure 10. Relative errors of the 3rd harmonic identification with different OOSM methods of
different channels.

Table 3. Mean square errors of the non-stationary harmonic measurement accuracy (%).

Harmonics Order
Base 3rd 5th 7th 9th

Mean Std Mean Std Mean Std Mean Std Mean Std

without OOSM 2.57 1.66 2.40 2.43 2.12 1.02 3.40 2.08 1.45 1.63
Bl 1.50 1.74 2.76 1.88 1.21 1.22 1.02 1.66 1.00 1.42

ALG-I 1.35 1.42 1.60 1.34 1.02 1.34 0.92 1.33 0.92 1.21
SEPF 1.25 1.32 1.50 1.24 0.90 1.08 0.90 1.12 0.87 0.97

NARX 1.02 1.21 1.33 0.95 0.92 1.23 0.90 1.01 0.88 0.95

The 3rd–9th odd harmonics are used for harmonic measurement verification, which are capable
of representing the harmonic measurement precision of the OOSM process. The results indicate that
the NARX neural network can reduce the error introduced by the out-of-sequence measurement.
It can also be figured that the OOSM algorithm alone does not convey a productive decrease on the
out-of-sequence measurement error. The MSE of the measurements are reduced by more than 33%.
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The retrodiction accuracy of 4 algorithms shown in Table 3 indicates that the NARX-based OOSM
method gains a better harmonic measurement result than the other 3 methods, although the deviations
are minor. For the 7th and 9th harmonic, the OOSM methods do not make a great difference in accuracy
among each other. This indicates that as the magnitudes of the harmonics become small, the effects of
the modification are not manifest. The data-aware method’s improvement on non-stationary harmonic
measurement is verified.

4.5. Case II: Data-Aware Retrodiction for Transient Harmonic Measurement

Transient harmonic measurement is examined in this section to test the effects of various OOSM
algorithms on harmonic analysis. The transient harmonics are mainly introduced by switching on or
off large nonlinear loads, injecting a large current shock. The transient harmonic source is realized
by switching on and off a light wave oven, which injects a 4 A current pulse and lasts for 136 ms.
The current injection can be detected from the 3rd harmonic to the 9th harmonic in the channel.
Out-of-sequence performance occurs at the time point of the current pulse, and the retrodiction
performance is examined by the measurement accuracy of the transient harmonic.

The harmonics are measured under the same residential sensing network as in Case I, while
the transient harmonic source is deployed. There are 100 sampling channels and 3 channels of
the original electrical harmonic current measurement, and the harmonic sources are shown in
Figure 11. The lines of the 3 channels are linked to the same point of common coupling (PCC).
The out-of-sequence phenomena occur during the measurement process, and at the transient harmonic
injection, the measurement data are late for 2 periods, namely a 2-lag disorder. Figure 12 shows the
harmonic measurement error with and without OOSM methods. SEPF and NARX-based OOSM are
compared. The 3rd–9th odd harmonics are used to compare the measurement precision.
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Figure 11. Third current harmonics of 3 typical channels at the same PCC with transient harmonic
injection in Channel 1.
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Figure 12. Relative errors of the 3rd harmonic identification with different OOSM methods of
different channels.

When the transient harmonic pulse does not occur in Channel 1, Figure 11 shows that the
NARX-based OOSM method leads to a less standard relative error of harmonic measurement than
SEPF, as has been discussed in Case I. When the transient harmonic pulse occurs with the 2-lag
disorder, the estimation error is remarkable without retrodiction. SEPF and NARX-based OOSM
methods both reduce the estimation error, and the NARX-based method offers a better performance.
Yet, the estimation error at the transient harmonic event is still larger than other time points. It also
shows that the OOSM method performs a larger reduction with frequently changing harmonic waves
in Channels 2 and 3. The harmonics in Channel 1 change thoroughly, but smoothly; the OOSM makes
a minor fluctuation. This indicates that OOSM modifies greatly instantaneous and fierce harmonic
fluctuations, such as voltage sags and instant impacts.

Table 4 lists the MSEs of 100 channels. The results show that among the 4 algorithms, the
NARX-based OOSM method gains a better harmonic measurement result than the other 3 methods
with frequent transient harmonic injections. The MSEs of the measurements are reduced by more than
24% with frequent transient harmonic events. Yet, OOSM methods do not make a great difference
in measurement accuracy for high order harmonics, since their magnitudes are small. Thus, the
data-aware method’s improvement on transient harmonic measurement is verified.

Table 4. Mean square errors of the transient harmonic measurement accuracy (%).

Harmonics Order
Base 3rd 5th 7th 9th

Mean Std Mean Std Mean Std Mean Std Mean Std

Bl 0.82 0.93 1.54 1.09 0.76 0.74 0.60 0.99 0.61 0.95
ALG-I 0.73 0.79 1.00 0.82 0.58 0.78 0.57 0.68 0.54 0.72
SEPF 0.65 0.71 0.91 0.63 0.59 0.59 0.55 0.61 0.47 0.55

NARX 0.55 0.62 0.87 0.60 0.61 0.65 0.57 0.62 0.55 0.59

4.6. Case III: Data-Aware Retrodiction-Based Harmonic Identification

To examine the harmonic measurement in a practical environment, the situation of a power outage
is simulated in the experiment. An uninterruptible power supply (UPS) maintains the power supply
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to loads when public power is off. The UPS offers power with a base frequency of (50%± 0.5%) Hz
and voltage in (220%± 3%) V. When switching the power from public power to UPS, a frequency
variance occurs. The frequency fluctuation is shown in Figure 13, and the base frequency is calculated
by Fourier transfer. From 0–30 s, the base frequency fluctuates around 49.99–50.02 Hz. At time
point = 30 s, the power supply swiftly changes to UPS, and base frequency is steady at 49.99 Hz, which
fulfills the requirement of power supply. The power supply switch leads to frequency fluctuations
of 0.01 Hz. Harmonic identification is examined in this section to test the effects of various OOSM
algorithms on harmonic analysis. Harmonic source identification is one of the key issues in harmonic
analysis and a necessity of smart grid safety. Harmonic identification analyzes multi-channel electrical
data in a period and is affected by out-of-sequence measured data. A widely-applied method for
harmonic identification is independent component analysis (ICA); its principle and realization have
been explained in [41]. In this paper, this method is utilized to testify to the effects of disordered
sequences on harmonic source identification accuracy.
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Figure 13. Base frequency changes during the measuring process. During 0–30 s, the network is
connected to the public power; during 30–60 s, it is connected to the uninterruptible power supply.

The harmonic series are measured under the distributed power sensing network the same as in
Cases I and II. The limits of data disorders do not exceed 4 lags. Electrical parameters in 100 channels
are collected. The harmonic sources are detected by Fluke 435 and compared to the measurement
results of the sensing network. Three channels of the original electrical harmonic current measurement
and the harmonic sources are shown in Figure 14. The 3 channels are linked to the same point of
common coupling (PCC), and their harmonics affect each other. Harmonic source identification will
separate the sources according to the independent component analysis method introduced in [41].
The 3rd–9th odd harmonics are measured to examine the effects of the OOSM algorithm on harmonic
identification. The sampled electrical data and the correspondent identified harmonic sources’ profile
are shown in Figure 14. The identification errors with 4 different OOSM methods are listed in Table 5.

Table 5. Mean square errors of the harmonic identification accuracy (%) with frequency variance.

Harmonics Order
Base 3rd 5th 7th 9th

Mean Std Mean Std Mean Std Mean Std Mean Std

Bl 10.75 11.38 15.92 12.57 7.33 10.39 6.20 11.17 5.33 8.55
ALG-I 8.27 10.64 9.36 7.85 7.41 8.51 7.33 9.36 5.55 8.77
SEPF 7.27 7.54 9.82 8.76 7.28 6.70 5.99 9.13 5.96 7.24

NARX 5.57 8.70 7.45 6.83 7.37 8.59 6.09 7.49 5.59 6.88
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Figure 14. Third current harmonics of 3 typical channels at the same PCC with base frequency changes.

The results indicate that the out-of-sequence phenomenon does have an influence on the precision
of harmonic identification, and OOSM methods can help to decrease the error. The harmonic
identification error may vary according to the identification method. However, with ICA, the
NARX-based method gives the largest reduction in identification error among the 4 retrodiction
methods. For the 7th and 9th harmonic, since the harmonic magnitudes are small, the harmonic
identification error is unstable, the OOSM methods do not make much contribution to improving the
precision. The data-aware method’s improvement on harmonic identification is verified.

4.7. Discussion

The experiment results prove the effectiveness of the retrodiction method on improving
harmonic measurement accuracy in the cyber-physical energy system testbed. Considering that
the out-of-sequence phenomenon is more general in a bandwidth-limited measurement network
environment, the retrodiction method is more important. In the case of harmonic sensing, following
the requirements in IEC 61000-4-7-2002, only SEPF and NARX-based methods fulfill the standard.
This is mainly because the Kalman filter-based methods depend on a linear transmission matrix.
The changes of the time-varying harmonics are not linear dynamics, but rather a non-Gaussian
statistical model. The particle filter and neural network approximate the model with a Monte Carlo
method, offering a better estimation accuracy. With a more complex structure, a neural network
can approximate a more sophisticated model. Nevertheless, the improvement of the harmonic
measurement precision over SEPF is not very manifest. This indicates that harmonic events can
be depicted with a probabilistic model.

The computation cost of the NARX-based method stays stable within the maximum delay of
harmonic measurements. This is because of the static structure of neural networks. Although it
maintains a better real-time performance over other methods, it limits the application areas. In the
harmonic measurement problem, the communication intervals are usually among several seconds,
and transmission delay can be limited in a reasonable interval. When designing the NARX-based
algorithm, the interval of the practical measurement network should be considered to define the
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maximum limit of the out-of-sequence delay. In other applications of the cyber-physical energy system,
where a high real-time interaction and response with frequent communication among the network are
required, the delay limit of out-of-sequence phenomenon can be large. If the size of the NARX-based
method increases, the computation and memory cost might grow to a considerable scale. There should
be further consideration when dealing with a larger network scale or complicated power quality
analysis tasks.

In the harmonic measurement experiment, the results have demonstrated that the out-of-sequence
measurement problem does exist, and the OOSM algorithm is capable of improving the harmonic
analysis accuracy. In contrast, the measurement of the transient harmonic injection is more vulnerable
to the OOSM problem than non-stationary harmonics; the retrodiction method also offers less
reduction on the MSE of the transient harmonic measurement. This is because the transient harmonic
injection is an independent event and cannot be well estimated by the kinematical function. For the
non-stationary harmonic, its amplitude can be predicted to a certain extent; thus, the retrodiction
accuracy is guaranteed. Thus, the modeling of the kinematical function is vital to ensure the harmonic
measurement accuracy.

The OOSM algorithms use the Kalman filter, the particle filter and the neural network, which
correspond to the linear kinematical function, Monte Carlo modeling and multi-layer modeling,
respectively. With the complexity of the system arising, the modeling method also needs to be
improved to approximate the physical behavior. In cyber-physical energy systems with a large-scale
monitoring network, the events of harmonic changes are triggered by customer behaviors of a macro
temporal probability distribution. However, in a particular unit, the dynamics of the harmonic cannot
be approximated with the Monte Carol method or the Markov chain. From the experiment results,
it can be figured that the neural network approximates the harmonic changes better than the Monte
Carlo model, rather than the linear model. Thus, the neural network-based retrodiction method offers
a better harmonic measurement and analysis accuracy. With a time-varying character, the NARX-based
model can update the approximation model from the historical data. Thus, the model is updated by
the data through time. Apparently, the harmonic measurement precision can be improved with better
modeling of cyber-physical energy systems.

In a real dynamic power network, the system topology and the load types keep changing.
This means that the dynamic function described in Equation (3) is not stable. If the NARX-based
OOSM method still fulfills the requirements of online harmonic analysis, the time consumption of
the neural network convergence to a new featured model should be limited. However, as the neural
network will not be stable after decades or hundreds of training iterations, the time consumption is
too long for the dynamic task. This problem can be solved by the idea of transfer learning. The NARX
neural network is pre-trained under several load types: linear, stationary, transient, etc. The topology
of the grid and the load type are identified continuously. If the input load type or the topology changes
for the NARX neural network, the pre-trained weights are deployed. This shall reduce the time
consumption to adjust to the new type of load. This is beyond the discussion of the OOSM method
and is part of the future work.

Above all, the results suggest that the out-of-sequence measurement problem exists in large-scale
distributed sensing networks, and the OOSM algorithm proposed can decrease the influence of the
data disorders, which is helpful in online harmonic identification on cyber-physical energy systems.

5. Conclusions

In this paper, the out-of-sequence measurement problem is analyzed for asynchronous harmonic
measurement in cyber-physical energy systems, and a new retrodiction method is proposed to
improve the harmonic measurement accuracy. The proposed out-of-sequence measurement algorithm
exploits the NARX neural network to approximate the dynamics of harmonic in distributed sensing
networks and retrodicts the disordered datasets to improve the harmonic measurement precision.
The performance of the NARX-based OOSM method is theoretically analyzed and compared to other
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retrodiction methods. The experiments examine the validation of the NARX-based OOSM algorithm.
Results demonstrate that the NARX neural network can amend the electrical parameter data disorders
while maintaining a relatively reasonable computation. Then, the harmonic measurement experiments
with non-stationary and transient harmonics prove that the proposed OOSM algorithm can improve
the harmonic measurement precision. Finally, the harmonic identification application is applied and
validates the effectiveness of the retrodiction schedule on harmonic analysis.

In the future, the data-aware OOSM method will be examined under a hybrid and unsynchronized
network and various transient electrical parameters. Theoretical analysis will be carried out
on promoting the harmonic identification accuracy and real-time behavior in cyber-physical
energy systems.
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