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A commentary on

Synaptic Excitation in SpinalMotoneuronsAlternates with Synaptic Inhibition and Is Balanced

by Outward Rectification during Rhythmic Motor Network Activity

by Guzulaitis, R., and Hounsgaard, J. (2017). J. Neurosci. 37, 9239–9248.
doi: 10.1523/JNEUROSCI.0800-17.2017

In a recent study, Guzulaitis and Hounsgaard (2017) (GH2017) used whole cell voltage clamp (VC)
on the reversal potential for inhibition or excitation to assess their synaptic currents (Johnston and
Wu, 1995; Brette and Destexhe, 2012). GH2017 concluded that inhibition and excitation alternated
during rhythmic scratching, and a voltage-dependent intrinsic conductance was masking this input
such that it appeared as balanced excitation and inhibition in previous published work (Berg et al.,
2007; Petersen et al., 2014). Nevertheless, this reasoning relies entirely on the validity of the clamp
and, as we will see below, there is a clamp error, which complicates the interpretation of their data.
Errors associated with voltage-clamp is a common problem as noted in previous reports (Spruston
et al., 1993; Williams and Mitchell, 2008; Petersen, 2017).

The membrane current (I) is composed of intrinsic, leak, excitatory and inhibitory currents with
individual conductances and reversal potentials, which collectively form a membrane resistance
(Rm) and an equilibrium potential (Em). When recording these using a pipette electrode, its
resistance (Rs), sometimes called access or series resistance, is in series with Rm (Figure 1A). When
there is no electrode current the membrane potential Vm = Em. However, during VC, a non-zero
current introduces a drop in potential over Rs, which can only be partially compensated with the
amplifier electronics (Brette and Destexhe, 2012). Rs therefore has an uncompensated part (blue,
Rus, Figures 1A,B), which generates an unaccounted drop in potential from the clamp potential
(Vc) proportional to the pipette current:

Vm = Vc − I · Rus (1)

GH2017 report: “Voltage clamp (VC) experiments were performed on motoneurons when access
resistance was low (Ra <20 M�) and possible to compensate by 60-80%.” This means that Rus =
20−40% · 20 M� = 4–8 M�. When clamping at 0 mV the applied current is likely large. The
authors do not report I for their clamp experiments (Figures 8–9), but their IV-plots suggest up to
10 nA (Figures 5E, 6). Hence, when trying to clamp at 0 mV, Vm is really−10nA · 4M� = −40mV
with 80% Rs-compensation.
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Berg Caveats Using Voltage Clamp

FIGURE 1 | Caveats using voltage clamp to resolve excitation and inhibition. (A) Whole-cell VC can be decomposed into electrical components including the pipette

series resistance (Rs). (B) Partial compensation for Rs introduces a disparity between clamped potential (Vc ) and Vm due to uncompensated resistance (red).

(C) Reciprocal model for rhythmic Vm has alternating E/I. (Rm = 20M�, Eleak = −70mV ). (D) Balanced model has concurrent E/I and also rhythmic Vm. (E) Outward

currents measured using VC is assumed to be inhibition when clamping 0mV (black). The actual clamp is at −30 mV (red). (F) Balanced E/I spuriously appears as

reciprocal when the actual clamp is below synaptic reversal potential (“same phase” cf. red in F and black in E). (G) VC-recording of a putative motoneuron with

blocked spikes (with intracellular QX314) at different holding potentials (gray: current, red: mean, blue: nerve). Reversal of phase (arrow) is consistent with the balanced

scheme (F) although with a smaller out-of-phase inhibition (indicated). (H) Blocking inhibition (strychnine) increases firing rate also consistent with the balanced

scheme. (G) provided by A. Alaburda (current levels indicated, right) and (H) adapted with permission (Vestergaard and Berg, 2015).

To better understand the issue, we consider steady-state where
all current passes through the resistors. From Ohm’s law the
voltage drop over Rus is Vm − Vc = I · Rus. Similarly, the voltage
drop over the membrane is Em − Vm = I · Rm. Combining these
we can eliminate I and isolate Vm:

Vm =
VcRm + EmRus

Rm + Rus
(2)

Hence, for a good clamp (Vm ≈ Vc) it is required that Rm ≫ Rus.
GH2017 report a membrane conductance of 49.2 nS (Figure 5B),
which gives Rm = 20M�. With these values (Em = −70mV)
clamping at 0 mV gives

Vm =
0− 70mV · 8M�

28M�
= −20mV (3)

Whereas Rus is assumed constant, Rm may change dramatically
due to synaptic and intrinsic conductance. GH2017 nicely
document a nonlinearity starting at −30 mV (Figures 5, 6), and
a conductance of 314 nS (Rm = 3.2M�). Here, the low Rm even

becomes smaller than Rus and therefore the clamp deteriorates
further:

Vm =
0− 70mV · 8M�

11.2M�
= −50mV (4)

The clamp is unlikely to be this bad, since the reduction in Rm
occurs above−50mV. Also, Em, which we assume constant, may
depolarize due to change in the weighted average (Figure 1B),
which mitigates the effect. The exact level of clamping of Vm with
(Vc = 0mV) is difficult to estimate and may change in time. A
reasonable guess is around Vm = −30mV .

What is the consequence of this clamping error? To address
this question, we use a one-compartment model receiving either
reciprocal (Figure 1C) or concurrent (balanced) excitation and
inhibition (E/I) (Figure 1D), which are the schemes that GH2017
intended to distinguish between. Both result in rhythmic Vm,
although the effect of balanced E/I may seem counter-intuitive
(Kolind et al., 2012; Petersen et al., 2014). The problem appears
when presuming the outward current is inhibition, when setting
Vc = 0mV (assumed clamp, black line Figures 1E,F). From
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the above, we know that the actual clamp is likely at −30 mV
(red traces). Here, the phase of the outward current reverses
making the actual clamp in the balanced scheme (red, F) appear
qualitatively similar to the assumed clamp in the reciprocal
(black, E). Therefore, the VC experiments by GH2017 are
difficult to interpret and ill-suited to discriminate between these
schemes.

Although reciprocal E/I is a widely held belief in the literature,
there is remarkably little experimental support in tetrapod
vertebrates. The Ia-inhibitory interneuron has reciprocal activity
(Geertsen et al., 2011), whereas the Renshaw interneuron
has recurrent inhibition, both connected to motoneurons.
Nevertheless the action of the remaining inhibitory population
is largely unexplored. The scarcity in experimental reports that
resolve E/I input is likely due to nonlinear properties and
difficulties in separating synaptic current, although methods
have been proposed (Berg and Ditlevsen, 2013; Vich et al.,
2017). Space clamp issues also confounds the separation of
E/I (Chadderton et al., 2014). Previous observations in turtles
based on current-clamp indicated concurrent E/I. Here, voltage-
activated conductances were circumvented by injecting negative
current to hyperpolarize Vm below the onset of the IV-
nonlinearity. Therefore the disparity between reports cannot
be attributed to outward rectification, as otherwise suggested
by GH2017, see e.g., Figure 3A in Berg et al. (2007) and
Figures 2–4 in Berg et al. (2008). Further, VC experiments
were performed using sharp electrodes where spikes were
blocked by pharmacology (QX314). QX314 likely also has
the advantage of increasing Rm, thus improving the Rm ≫

Rus requirement (Monier et al., 2008). A current-reversal was
observed in accordance with the balanced scheme (Figure 1G).
Other experiments confirm that when blocking excitation and
inhibition pharmacologically, the high conductance vanish even

at the same Vm, suggesting that conductance increase is caused
by synaptic input rather than voltage-activated conductances
(Figure 8 in Berg and Ditlevsen, 2013). Application of strychnine
had a strong depolarizing effect (Figure 1H) especially in the on-
phase, which is also difficult to reconcile with the reciprocal E/I
scheme (Berg et al., 2007; Vestergaard and Berg, 2015).

Contrary to the conclusions of GH2017, these observations
suggest that a substantial fraction of the spinal neurons receive
concurrent E/I, which may not exclude that others receive
reciprocal. In fact, the neuronal population is divided between
irregular and regular spiking, suggesting some receive reciprocal
and others receive balanced input most likely on a spectrum
between the two (Petersen and Berg, 2016; Berg, 2017). Notice
in addition to the in-phase E/I there is also a weaker out-of-
phase inhibition (Figure 1G). Spinal motor pattern generation
may therefore be more complex and not exclusively conform to
either of the schemes (Kishore et al., 2014).
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