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Abstract: Crucial in the pathogenesis of neurodegenerative diseases is the process of neuroinflamma-
tion that is often linked to the pro-inflammatory cytokines Tumor necrosis factor alpha (TNFα) and
Interleukin-1beta (IL-1β). Human cortical spheroids (hCSs) constitute a valuable tool to study the molec-
ular mechanisms underlying neurological diseases in a complex three-dimensional context. We recently
designed a protocol to generate hCSs comprising all major brain cell types. Here we stimulate these
hCSs for three time periods with TNFα and with IL-1β. Transcriptomic analysis reveals that the main
process induced in the TNFα- as well as in the IL-1β-stimulated hCSs is neuroinflammation. Central
in the neuroinflammatory response are endothelial cells, microglia and astrocytes, and dysregulated
genes encoding cytokines, chemokines and their receptors, and downstream NFκB- and STAT-pathway
components. Furthermore, we observe sets of neuroinflammation-related genes that are specifically
modulated in the TNFα-stimulated and in the IL-1β-stimulated hCSs. Together, our results help to
molecularly understand human neuroinflammation and thus a key mechanism of neurodegeneration.

Keywords: brain; cortical spheroids; human; IL-1β; neuroinflammation; NFκB; RNA-sequencing;
STAT; TNFα

1. Introduction

The pro-inflammatory cytokines tumor necrosis factor alpha (TNFα) and interleukin-
1beta (IL-1β) play a crucial role in the homeostasis of the central nervous system (CNS),
a number of neurological diseases, and CNS injury and repair [1–7]. For instance, levels
of TNFα are elevated in patients suffering from Alzheimer’s disease (AD) [6], major
depression [8,9], multiple sclerosis (MS) [10] and acute brain trauma and other encephalopathies [6].
Elevated IL-1β-levels have been reported in AD, Parkinson’s disease (PD), MS [11], epilepsy
and stroke [3,7]. Furthermore, TNFα and IL-1β have important functions during human
fetal brain development [12]. To explore how TNFα and IL-1β may contribute to disease
onset, progression and maintenance is challenging, as studying the effects of these cytokines
in an animal model entails translational issues and research with a cell line or co-culture cell
model represents a reductionistic approach. Human brain organoids constitute an attractive
three-dimensional (3D) model to study human brain developmental processes as well as the
pathophysiological mechanisms underlying neurodevelopmental and neurodegenerative
diseases, including neuroinflammatory processes [13–16].

Recently, we designed a protocol to generate human cortical spheroids (hCSs) com-
prising neuroectoderm-derived neural progenitor cells (NPCs), excitatory and inhibitory
neurons, astrocytes and oligodendrocyte lineage cells as well as mesoderm-derived mi-
croglial and endothelial cells. In the current study, we set out to explore the effects of
stimulating our hCSs for three time periods with TNFα and IL-1β. We use transcriptome-
wide RNA-sequencing (RNA-seq) analysis to show that the major process induced by TNFα
as well as by IL-1β is neuroinflammation. Central in this process are endothelial cells,
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microglia and astrocytes, and activation of the NFκB and STAT pathways. In addition to this
equivalent impact of TNFα and IL-1β, we find that each of the two cytokines has specific
and stimulation-time-dependent effects on hCS gene expression, and that IL-1β exhibits
a faster self-inhibitory feedback response to dampen neuroinflammation than TNFα.

2. Materials and Methods
2.1. Culture of H9 Embryonic Stem Cells (ESCs)

H9 ESCs (WA09; WiCell, passage number 24) were grown feeder independently in E8
medium with Revitacell (diluted 1:100; Thermo Fisher, Waltham, MA, USA, A26445-01)
supplemented with Penicillin-Streptomycin (Pen-Strep, 1:100, Thermo Fisher, 15140-122) on
Corning Matrigel-coated surfaces (1:60; Corning, Wiesbaden, Germany, CLS354277) at 37 ◦C
and 5% CO2. H9 ESCs were passaged twice per week at 1:20–25 splitting ratio. Cells were
dissociated by a 5-min 37 ◦C incubation with Accutase (Invitrogen, Carlsbad, CA, USA,
00-4555-56), centrifuged at 1000 rpm for 5-min in Dulbecco’s phosphate-buffered saline
(DPBS) and resuspended in E8 medium. Daily visual inspections were performed to ensure
the undifferentiated state of the ESC cultures, and differentiated colonies were marked
with a cell-culture marker and removed by micropipette suction. MycoAlert Mycoplasma
tests (Lonza, Basel, Switzerland, LT07-118) were performed four times per year to ensure
the mycoplasma-free status of the H9 ESC cultures.

2.2. Generation of hCSs

To generate hCSs, intact H9 ESC-colonies were detached with ReLESR (STEMcell tech-
nologies, Vancouver, BC, Canada, 05872) and low-adherence V-bottom 96-wells
(S-Bio, #MS-9096VZ) were seeded with ~1.25 × 104 cells per well. For the first seven
days, spheroids were incubated with Spheroid Starter Medium (SSM: DMEM-F12 (Gibco,
Madrid, Spain, 31331-028) with 20% knock-out serum (Gibco, 10828-028), 1% non-essential
amino acids (Gibco, 11140050), 1% Pen-Strep and 0.1% 2-mercaptoethanol (Thermo Fisher,
31350-010) supplemented with 10 µM of the TGF-β signaling inhibitor SB-431542 (Sigma-
Aldrich, Merck Life Science NV, Amsterdam, The Netherlands, S4317) and 1 µM of the
BMP4 signaling inhibitor dorsomorphin (Sigma-Aldrich, P5499). Only during cell seeding
was 2 µM ROCK inhibitor thiazovivin (Sigma-Aldrich, SML1045) added. The medium
was then switched to Neurobasal-A spheroid medium (Thermo Fisher, 10888-022) with 2%
B27 supplement minus vitamin A (Gibco; 12587-010), 1% GlutaMAX (Gibco, 35050-061)
and 1% Pen-Strep (NSMnogel) (day 7 (d7) until day 25) and subsequently to NSMno-
gel medium with 15 µg/mL Geltrex (Thermo Fisher, A1413302) (NSM medium) until
day 150 (d150). Between d14 and d25 half of the medium was refreshed daily. At
d25, hCSs were transferred to 6-well low-attachment plates with a P1000 cut-open tip
(~24 spheroids in 6 mL per dish). Between d25 and d150 half of the medium was refreshed
every other day. Between d27 and d43 the NSM medium was supplemented with 20 ng/mL
NT-3 (Sigma-Aldrich, SRP3128) and 20 ng/mL BDNF (Sigma-Aldrich, SRP3014). Between
d43 and d51 the NSM medium was not supplemented with NT-3 and BDNF. Between
d51 and d61 the NSM medium was supplemented with 10 ng/mL PDGF-AA (Sigma-
Aldrich; H8291) and 10 ng/mL IGF1 (R&D systems, Minneapolis, MN, USA, 291-G1-200).
From d61 until d73, half of the medium was refreshed with NSM medium containing 4 µM
ketoconazole (Sigma-Aldrich, K1003). From d73 onwards, the medium consisted of NSM
only. The sizes of our d150 hCSs were between 0.5 and 1.5 mm. During the entire growth
period and all experiments, hCSs were kept at 37 ◦C and 5% CO2. Mycoplasma testing of
the hCSs was performed four times per year.

2.3. Culture of Human Microglia (HMC3) and Human Oligodendrocyte (HOG) Cell Lines

HMC3 cells were purchased from ATCC (American Type Culture Collection, Manassas,
VA, USA, CRL-3304). The HOG cell line was a kind gift of Dr. José Antonio López Guerrero
(University of Madrid, Spain). The HMC3 and HOG cells were grown in EMEM (Lonza,
BE12-662F) with 10% heat-treated FBS (Gibco, 10270106), 1% glutamax and 1% Pen-Strep, and
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passaged twice per week at a 1:20 splitting ratio (maximum passage number 35). The medium
was refreshed every other day. Mycoplasma testing of the cell lines was performed tri-annually.

2.4. Pro-Inflammatory Cytokine Stimulation

For cytokine-stimulation experiments, d150 hCSs were transferred to low-attachment
6-well plates (Corning) that were placed on a gentle cell-culture incubator rocker in order to
achieve an optimal flow of cytokines during the stimulation period. hCSs were incubated
with 5 ng/mL TNFα (Sigma-Aldrich T0157-10UG; in PBS) or 5 ng/mL IL-1β (Sigma-
Aldrich SRP3083-10UG; in PBS) for 4 h, 12 h or 36 h. The cytokine concentrations and
stimulation time points were chosen based on our previous studies, studies utilizing
2D cell models [17–21], and the only study published thus far that dealt with cytokine
(TNFα) stimulation of a 3D human brain organoid [22]. Following stimulation, spheroids
were harvested for RNA isolation and the RNA was subjected to RNA-seq analysis as
described below. Unstimulated hCSs from the same batch were used as controls. For
pro-inflammatory stimulation experiments with HMC3 and HOG cells, the cells were
incubated with 100 ng/mL LPS (Sigma-Aldrich, L4391-1MG) (dissolved in PBS) for 24 h
(24 h) with subsequent incubation with 5 ng/mL TNFα (in PBS) and 5 ng/mL IL-1β (in
PBS). Following stimulation, HMC3 and HOG cells were harvested for RNA isolation and
the RNA was subjected to RNA-seq analysis, as described below.

2.5. RNA Isolation

Each hCS was transferred with a cut-open P1000 tip to 300 µL TRIzol reagent (Thermo
Fisher; 15596026), snap frozen in liquid nitrogen and stored at −20 ◦C. For RNA isolation,
hCSs were thawed and lysed in 400 µL TRIzol at room temperature for 5 min, then broken
into smaller pieces with a P200 tip and incubated for an additional 30 min on ice. HMC3 and
HOG cell pellets were snap frozen upon collection, thawed in 400 µL TriZOL and incubated
for 30 min on ice. Chloroform was added to the lysed hCSs, HMC3 and HOG cells, and
total RNA was extracted, precipitated with 100% 2-propanol and glycogen, washed twice
with ice-cold 75% ethanol and dissolved in nuclease-free water. RNA was stored at −20 ◦C
until further processing.

2.6. RNA-Seq Analysis

For RNA-seq analysis (BGI Genomics, Shenzhen, China), equal amounts of total RNA
samples from 4–5 hCSs were pooled to a total of 700 ng RNA or 1.5 µg total RNA per
HMC3 and HOG sample was used. For the determination of total RNA sample quality
(RNA concentration, RNA integrity number (RIN) value, 28S/18S and the fragment length
distribution), an Agilent 2100 Bioanalyzer (Agilent RNA 6000 Nano Kit, Agilent Technolo-
gies, Waldbronn, Germany) was used. Bulk RNA-seq analysis of total RNA samples (RIN
value over 7.0, except for the hCSs LPS + TNFα + IL-1β sample: RIN 6.1) was performed
on a DNBseq platform with a read depth of 30,000 reads; clean reads were mapped to
reference genome h38 using HISAT2 (v2.0.4) and between 17,000 and 18,000 genes were
identified. For the identification of differentially expressed genes (DEGs), clean reads were
mapped to reference by Bowtie2 (v2.2.5), RNA expression levels were calculated with RSEM
(v1.2.12) [23], and DEGs were detected with PoissonDis, as previously described [24] (fold
change, FC, equal to or over 2.00 and false discovery rate, FDR, equal to or below 0.001).
For the basal expression levels of all genes (fragments per kilobase of exon per million
mapped fragments, FPKM), see Supplementary Information S1. For gene nomenclature,
Log2 FC-values relative to 0 h stimulation and FDR-corrected p-values of the DEGs, see
Supplementary Information S2. The RNA-seq data for the hCSs has been deposited under
GEO accession number GSE200779, and for HMC3 and HOG under GEO accession number
GSE200354. The RNA-seq data was validated by qPCR analysis and we calculated per time
point the one-tailed Pearson correlation coefficient between the Log2 FC-values as obtained
by RNA-seq and the mean Log2 FC-values as obtained by qPCR.
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2.7. Bioinformatics Analysis

For an overview of the bioinformatics analysis of DEGs in the stimulated hCSs, see
Supplementary Figure S1. The KEGG-pathway tool was used for pathway classification and
functional enrichment (via the Phyper R-function) of DEGs in hCSs stimulated by TNFα or
IL-1β for 4 h, 12 h or 36 h. The p-value per pathway was calculated via the hypergeometric
distribution method, and the FDR was calculated per p-value (FDR < 0.01 are significantly
enriched). The most biologically relevant pathways (core KEGG pathways) were identified
based on a p-value below 10−11 and comprised “Cytokine-Cytokine receptor interaction”,
“TNF signaling” and “NFκB signaling”.

Per stimulation time point, and for both TNFα or IL-1β, we constructed molecular
landscapes reflecting the functional interactions between the proteins encoded by the DEGs
in the three core KEGG pathways. We next constructed a molecular landscape based on
the 95 DEGs that were present in the hCS DEG-lists of at least one TNFα and one IL-1β
stimulation time point (a total of 1076 common genes) and that were annotated to one of
the three core KEGG pathways.

The functions of the proteins encoded by the 95 DEGs were deduced on the basis of
information obtained from GeneCards (Human Genome Database) and UniprotKB (Swiss
Institute of Bioinformatics), and used to build the molecular landscape that was depicted
in Biorender (www.Biorender.com; accessed on 22 March 2022).

To analyze the time courses of mRNA expression (hCS stimulation periods of 4 h, 12 h
and 36 h relative to no stimulation), the expression profiles of the 1076 common DEGs were
subjected to cluster analysis. Based on the Log2 transformed FC at the stimulation time
points (4 h, 12 h or 36 h) relative to no stimulation and using a threshold of Log2 FC of
2.5 for the Boolean clustering strategy, this analysis revealed 22 clusters (Supplementary
Table S1). As such, virtually all of the 1076 genes were allocated to a cluster (99.07% and
99.54% of the TNFα- and IL-1β-induced DEGs were clustered, respectively; Supplementary
Table S2). A relatively low percentage of the DEGs overlapped between the TNFα- and IL-
1β-clusters, except for clusters 8 and 22 (Supplementary Table S3); note that the two latter
clusters contain a high number of DEGs (Supplementary Table S3) and that these DEGs
display a relatively low Log2 FC at all three time points (between −2.5 and 0, or between
0 and 2.5) (Supplementary Table S1). The biological functions of the genes allocated to
a TNFα-specific or IL-1β-specific cluster were deduced on the basis of information obtained
from GeneCards and UniprotKB.

From a human fetal brain single-cell RNA-seq dataset (gestational weeks 22–23; [25]),
we identified gene markers in five different brain regions (frontal cortex, parietal cor-
tex, temporal cortex, occipital cortex and non-cortical regions) for neural progenitors
(39–91 markers per brain region), excitatory neurons (691–1444 markers), inhibitory
neurons (152–381 markers), astrocytes (92–262 markers), oligodendrocyte precursors
(50–71 markers), microglia (491–708 markers) and endothelial cells (316–473 markers)
on the basis of their mRNA expression levels in the other cell types being at least ten-fold
lower (Supplementary Information S3). In order to estimate to which extent each brain cell
type was affected by the cytokine treatment, for each cell type its number of marker genes
present in the list of DEGs from our TNFα- or IL-1β-stimulated hCSs was determined, and
this number was divided by the total number of marker genes for this cell type.

We further calculated the percentages of overlap between the DEGs in our TNFα- or
IL-1β-stimulated hCSs and marker genes for neurodegenerative disease brain cell types as
determined in [26] and derived from datasets of the superior frontal gyrus from AD (GEO
accession number GSE48350; GSE26927), PD (GSE8397) and MS (GSE26927). In addition, we
utilized the nCounter Analysis System from the Nanostring project (www.nanostring.com,
accessed on 22 March 2022) to obtain genes genetically associated with AD, PD and MS, as
well as genes annotated to the molecular signaling pathways “NFκB”, “neuroinflammation”
and “inflammation” to determine their extent of overlap with the DEGs in our TNFα- or
IL-1β-stimulated hCSs as well as their extent of overlap with the brain cell-type markers
(derived from [25]) that were modulated by TNFα- or IL-1β.

www.Biorender.com
www.nanostring.com
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2.8. Quantitative PCR (qPCR) Analysis

Following DNAse treatment of the RNA, cDNA synthesis was performed with the
Revert Aid H-minus first-strand cDNA synthesis kit (Thermo Scientific). qPCR reactions
were performed with SensiFAST™ Probe No-ROX (Meridian Bioscience-Bioline, Memphis,
TN, USA, BIO-86005) on 1:10 diluted cDNA (for primer sequences, see Supplementary
Table S4) in a Corbett Life Sciences Rotor-Gene 6000. We amplified cDNA for 50 cycles of
95 ◦C (5 s), 60 ◦C (10 s) and 72 ◦C (15 s), and melt-curve analysis was performed to confirm
the correct amplicon size. Relative mRNA expression levels were calculated as described in
Vandesompele et al. (2002) [27], on take-off (ct) values normalized to GAPDH/YWHAZ
expression, with the following formula:

Qx = µe f f
(ctmin−ctx) (1)

In which µe f f is the average amplification efficiency of all samples amplified with
a certain primer pair, ctmin is the minimum ct value of these samples and ctx is the ct value
of the sample for which the Qx-value is calculated. This formula takes into account the
mean amplification efficiency for one primer pair and scales all values between 0 and 1 for
relative comparisons.

2.9. Immunocytochemistry

hCSs were fixed in 4% paraformaldehyde (PFA, prepared in phosphate buffer) for
45 min at room temperature, washed twice with PBS, incubated for 2 h in 15% sucrose
in PBS (4 ◦C) and then incubated overnight in 30% sucrose in PBS (4 ◦C). Next, hCSs
were embedded in O.C.T. Compound (VWR, Amsterdam, The Netherlands, 361603E) and
cut into 5 µm sections on SuperFrost PLUS slides (VWR; J1800AMNZ) at −20 ◦C. For
immunocytochemistry, sections were rehydrated for 5 min in PBS, blocked in home-made
blocking buffer (5% goat/donkey/horse serum, 1% BSA, 1% Glycine, 0.1% D-lysine, in PBS)
with or without 0.4% Triton-X100 for 30 min at room temperature. Antibodies were diluted
in either PBS or PBS-Tween 20 0.1%. We used the antibodies MAP2 (Aves labs, Davis, CA,
USA, AB_2313549; 1:200), TAU (Aves labs, AB_2313563; 1:200), GFAP (UC Davis/NIH
NeuroMab facility, Davis, CA, USA, N206B/9; 1:500), O1 (Invitrogen, 14-6506-82; 1:200),
P2RY12 (Biolegend, San Diego, CA, USA, 848002; 1:250), TMEM119 (Sigma, HPA051870;
1:500) and PECAM1/CD31 (NovusBio, Centennial, CO, USA, JC/70A; 1:100). All primary
antibodies were incubated overnight at 4 ◦C and all secondary antibodies (1:500) for 2 h at
room temperature. Washes were performed with PBS or PBS-Tween 20 0.1% (depending on
the antibody protocol). DAPI was incubated in PBS (1:5000) for 30 min at room temperature.
To test for any background staining, primary antibodies first validated in hCSs at a culture
time point at which, based on mRNA expression data, no antigen expression was expected.
Sections were imaged with the EVOS FL Auto 2 microscope (Thermo Fisher) with a 60×
Olympus oil objective (Thermo Fisher).

2.10. Statistical Analysis

The difference between the mRNA expression levels of cell-type-specific markers in H9
hESCs and H9-derived d150 hCSs (Supplementary Figure S2A) was statistically tested with
independent sample t-tests. When the p-value of the Levene’s test for equality of variances
was below 0.05, we report the p-value without assumed equality of variances. To analyse
the mRNA expression levels of a number of neuroinflammation-related genes modulated
in stimulated hCSs (Supplementary Figure S3), One-way ANOVA with Dunnett’s post hoc
test (one-sided) relative to the unstimulated (0 h) hCSs was used, which involved multiple
testing correction. p-values below 0.05 were considered statistically significant. Errors bars
in mRNA expression graphs represent the standard error of the mean.
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3. Results
3.1. Neuroinflammation Is the Main Process Elicited in hCSs Stimulated with the
Pro-inflammatory Cytokines TNFα and IL-1β

To investigate the effects of cytokine stimulation on our 3D hCSs comprising multiple
brain cell types derived from both the neuroectoderm (neural progenitor cells, excitatory
neurons, inhibitory neurons, astrocytes and oligodendrocytes) and the mesoderm (mi-
croglia and endothelial cells) (Supplementary Figure S2A,B), spheroids were incubated
for either 4 h, 12 h or 36 h in the presence of 5 ng/mL TNFα or 5 ng/mL IL-1β. RNA-seq
analysis of total RNA extracted from hCSs stimulated with TNFα and from control, un-
stimulated hCSs revealed 1119 DEGs (4 h TNFα; 646 upregulated, 473 downregulated),
1255 DEGs (12 h TNFα; 627 upregulated, 628 downregulated) and 1083 DEGs (36 h TNFα;
534 upregulated, 549 downregulated). In IL-1β-stimulated hCSs, we found 962 DEGs
(4 h IL-1β; 420 upregulated, 542 downregulated), 588 DEGs (12 h IL-1β; 436 upregulated,
152 downregulated) and 602 DEGs (36 h IL-1β; 350 upregulated, 252 downregulated). The
RNA-seq data was validated by qPCR analysis of a number of neuroinflammation-related
genes modulated in the stimulated hCSs (Supplementary Figure S3), showing at all time
points a highly significant correlation between the RNA-seq and qPCR data from the TNFα-
stimulated hCSs (Supplementary Table S5) as well as between the RNA-seq and qPCR data
from the IL-1β-stimulated hCSs (Supplementary Table S6).

KEGG-pathway analysis of the DEGs revealed that among the top-4 pathways at the
three time points examined and in both TNFα- and IL-1β-stimulated hCSs, the three most fre-
quently annotated (core) pathways were “Cytokine-cytokine receptor interaction” (ko04060),
“TNF signaling pathway” (ko04668) and “NF-kappa B (NFκB) signaling pathway” (ko04065)
(Figure 1A). The genes comprising the TNF signaling and NFκB signaling pathways showed
the highest overlap (27.7% of the TNF signaling genes are also NFκB signaling genes),
while the genes in the Cytokine-cytokine receptor interaction pathway displayed an over-
lap of only 7.8% and 9.5% with TNF signaling and NFκB signaling genes, respectively
(Figure 1B). Gene ontology (GO) analysis of the DEGs also yielded mainly inflammation-
related pathways, including “cytokine activity”, “cytokine receptor binding”, and “receptor
ligand activity” (Supplementary Figure S4A). About half of the genes in the three core-KEGG-
pathways were also present in the three core-GO-pathways (Supplementary Figure S4B). GO-
analysis of the upregulated DEGs revealed mostly (neuro) inflammation-related pathways,
while the downregulated DEGs were mostly related to “Extracellular matrix remodeling”
(Supplementary Figure S4C).

3.2. Genes Dysregulated in TNFα- and IL-1β-Stimulated hCSs Are Involved in Positive and
Negative Feedback Loops of Neuroinflammatory Signaling Pathways

To identify shared components of the neuroinflammatory response induced in the TNFα-
as well as in the IL-1β-stimulated hCSs, we constructed a molecular landscape that showed
the functional interactions between the proteins encoded by the common DEGs present in
the three core KEGG pathways (Supplementary Figure S5A; Supplementary Information S4).
The main biological processes apparent from the molecular landscape were NFκB- and
STAT-dependent transcriptional activation. Crucially, the activation of transcriptional pro-
grams by NFκB (via IKK, NFKBIA, NFKB1/2 and RELB) and STAT (via JAK1/2, TYK2 and
STAT1/3/5/6) (Supplementary Figure S5B,C) induces the expression of pro-inflammatory
factors that on their turn trigger these programs to produce cytokines, chemokines and inter-
leukins (such as CXCL1/2/8, CCL9/20 and IL1A/1B/5/6), resulting in a positive feedback loop.
Concomitantly, inhibitory NFκB-signaling genes (such as TNFAIP3, BCL3 and NFKBIA) and
inhibitory STAT-signaling genes (SOCS3) were rapidly induced following the cytokine stim-
ulation (Supplementary Figure S5B,C), leading to a negative feedback loop. The presence of
concurrent positive and negative NFκB- and STAT-feedback loops illustrates the complexity
of the cytokine-induced neuroinflammatory response. These data show that at the three
time points both TNFα and IL-1β elicit in hCSs an NFκB- and STAT-dependent regulation
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of various pro-inflammatory cytokines and chemokines, anti-inflammatory modulators,
plasma membrane receptors as well as downstream transcription factors.
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Figure 1. KEGG-pathway analysis of differentially expressed genes (DEGs) in human cortical
spheroids stimulated with the pro-inflammatory cytokines TNFα or IL-1β for 4 h, 12 h, or 36 h.
(A) In each case, the top-4 KEGG pathways (based on false discovery rate (FDR)–corrected p-value)
are shown. On the basis of this pathway analysis and an FDR p-value cut-off of 10−11, we selected the
three most frequent (core) KEGG pathways for further analysis, namely “Cytokine-cytokine receptor
interaction” (Cyto; ko04060), “TNF signaling pathway” (TNF; ko04668) and “NF-kappa B signaling
pathway” (NFκB; ko04065). (B) Degrees of overlap between the DEGs from the three selected core
KEGG pathways.

3.3. Stimulation-Time-Dependent Sets of DEGs in TNFα- and IL-1β-Stimulated hCSs

In the TNFα- and IL-1β-stimulated hCSs, we thus identified neuroinflammation-related
pathways at all three time points. Yet, at the three time points the TNFα-modulated sets
of DEGs showed an overlap of only ~50% (Supplementary Figure S6A), and the overlap
between the three IL-1β-modulated DEG sets was only ~40% (Supplementary Figure S6B).
Furthermore, the top-upregulated as well as the top-downregulated DEGs (based on Log2
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FC) in the TNFα- and IL-1β-stimulated hCSs clearly showed different time-course expression
profiles (Supplementary Figure S6C,D), indicating that for each of the two cytokines the
compositions of the DEG sets were different at the three time points. On the basis of the TNFα-
modulated DEGs annotated to the three core KEGG pathways, we constructed time-point-
specific molecular landscapes that showed the marked differences in the various pathway
compositions at the three time points (Figure 2A–C; Supplementary Information S5). Similarly,
marked pathway composition differences were found by constructing time-point-specific
molecular IL-1β landscapes (Figure 3A–C; Supplementary Information S6).
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Figure 2. Molecular landscapes of the proteins encoded by the differentially expressed genes (DEGs)
from the three core KEGG pathways (“Cytokine-cytokine receptor signaling”, “TNF signaling” and
“NFκB signaling”) following TNFα stimulation of human cortical spheroids for (A) 4 h, (B) 12 h
and (C) 36 h. Protein functions and interactions were deduced based on information obtained
from UniprotKB (https://www.uniprot.org/; accessed on 1 January 2022) and Genecards (https:
//www.genecards.org; accessed on 15 January 2022). A detailed description of the protein-protein
interactions occurring in these molecular landscapes can be found in Supplementary Information
S5. Rectangularly framed protein: membrane-bound receptor; protein in green or red (rounded)
rectangle frame: encoded by an up- or downregulated DEG, respectively; protein in dark-gray-filled
(rounded) rectangle: encoded by a core KEGG pathway DEG; protein in light-gray-filled (rounded)
rectangle: encoded by a DEG not in the core KEGG pathways; protein in white-filled (rounded)
rectangle: not encoded by a DEG. Black arrows: stimulation or induction; inhibition arcs: inhibition;
dotted arrows: translocation; fading arrow: enzymatic conversion; cl: cleavage.

In the hCSs stimulated with TNFα for 4 h, we found the upregulated expression of TNF
receptors (TNFRs)4/5/8/9/12A/18, IL receptors (ILRs) 4/6/7/15/18/31 and chemokine receptor
CCR10, and their ligands, such as TNFSF7/9/10/13B/15/18, IL6/7/12A/15, CCL2/4/7/8/11/19/20,
and CXCL1/2/3/8/9/10/11, acting upstream of NFκB- and STAT-signaling (Figure 2A). The
majority of these receptors and ligands remained upregulated following 12 h and 36 h
of TNFα stimulation, except for IL12A at 12 h and CCL4/7/11 and TNFSF9/18 at 36 h
(Figure 2B,C). In addition, the expression of the early response genes FOS and JUN was
upregulated at 4 h TNFα (Figure 2A), and normalized at 12 h and 36 h (Figure 2B,C).
Interestingly, already at the 4 h time point, the expression of NFκB-activating (RIPK2,
NFKB1, NFKB2, RELB) as well as NFκB-inhibiting (TNFAIP3, BCL3) genes was upregulated
(Figure 2A). A similar situation holds for 12 h and 36 h of TNFα stimulation (Figure 2B,C),
except for NFKB1 which was no longer a DEG at 36 h TNFα (Figure 2C). The expression
of TNF itself was only induced following 4 h and 12 h of TNFα stimulation (Figure 2A,B),
in line with a time-dependent normalization of the NFκB response. At all three TNFα-
stimulation time points we observed a downregulation of the vascular endothelial receptor
KDR (Figure 2A–C). Surprisingly, only at 12 h, but not at 4 h and 36 h, the upstream
NFκB-inhibiting receptor LTBR and NFκB-stimulating receptor TLR4 were downregulated
(Figure 2B), indicating a simultaneous reduction in the activation and inhibition of the

https://www.uniprot.org/
https://www.genecards.org
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NFκB-pathway. In addition, only at 12 h were the SMAD-activating receptors TGFBR2
and TGFBR3L, and the STAT-activating receptors PDGFRB/L downregulated (Figure 2B).
Interestingly, at the 36 h time point we observed the downregulation of two genes related
to cilia motility (RSPH10B and RSPH10B2) (Figure 2C).
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Similar to the 4 h-TNFα-landscape, the molecular landscape of the 4 h IL-1β time
point displayed upregulated expression of the NFκB-activating TNF-receptor superfam-
ily members TNFRSF4/9/12A/18, but not TNFRSF1A and TNFSFR1B (Figure 3A), which
showed upregulation only at 12 h IL-1β (Figure 3B). Remarkably, only 2, 3 and 4 out of
the 7 TNFα-upregulated TNFSFs were induced at 4 h, 12 h and 36 h IL-1β, respectively
(Figure 3A–C). In addition, at the 4 h time point the expression of various other receptors
upstream of NFκB-signaling (LTBR) and STAT-signaling (PDGFRB/L, IL11RA) was already
downregulated by IL-1β but not TNFα (Figures 2A and 3A). A number of additional
4 h-TNFα-upregulated genes were already downregulated or not a DEG in the 4 h-IL-1β
landscape, suggesting that the IL-1β-elicited neuroinflammatory response may have damp-
ened faster than the TNFα-induced response. Indeed, at 12 h and 36 h following IL-1β
stimulation PDGFRB, CCR1 and LTBR expression was normalized to baseline levels and
the 36 h IL-1β incubation resulted in further normalization to baseline levels of NFκB-
activating genes such as IL11RA, IL31RA, NFKB1, NFKBIA and CRLF1 (not DEGs anymore).
Also in line with an early dampening of the NFκB-response and in contrast to the findings
following 4 h, 12 h and 36 h TNFα stimulation (Figure 2A–C), the expression of the specific
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NFκB-inhibiting gene PRKQC was only downregulated at the 4 h IL-1β-stimulation time
point and normalized to baseline levels at 12 h and 36 h IL-1β (Figure 3A–C). Interestingly,
in contrast to the downregulation by 36 h TNFα we observed a downregulation of the
cilium motility-related gene RSPH10B (but not RSPH10B2) only following 4 h of IL-1β-
stimulation (Figure 3A). These results indicate that despite of the fact that the three core
KEGG pathways modulated by TNFα and IL-1β at the three time points were the same,
pronounced differences were found in the time-point-dependent and up- or downregulated
sets of DEGs contained within these core pathways, whereby the IL-1β stimulation resulted
in a faster activation and subsequent normalization of the NFκB- and STAT-pathways.

Next, the 1076 DEGs overlapping between the two cytokine-modulated gene sets at
the three stimulation time points were partitioned into 22 clusters, based on the time-course
DEG expression profiles following TNFα-stimulation (Figure 4A) and IL-1β-stimulation
(Figure 4B); Supplementary Tables S1 and S2 present the clustering strategy and the percent-
ages of DEGs per cluster, respectively. For 12 out of the 22 clusters, we observed less than
25% overlap between the TNFα- and IL-1β-modulated DEGs (Supplementary Table S3;
Supplementary Figure S7A), indicating that in the 12 clusters a significant number of genes
showed a different time course of expression following either TNFα- or IL-1β-stimulation
of the hCSs. To functionally characterize the DEGs with distinct TNFα- or IL-1β- induced
time-course expression profiles within the 12 clusters, we performed a literature-based
search for the biological roles of these genes. In seven out of the 12 clusters, a number
of nonoverlapping genes displayed a notable functional similarity and a role related to
neuroinflammation, such as antigen-presentation (4 out of 18 genes in cluster 5; 4/30 in
cluster 3), TNF signaling (5/30 in cluster 3; 3/18 in cluster 5), interferon-signaling/NFκB-
signaling/STAT-signaling (13/40 in cluster 4; 7/40 in cluster 7), chemoattraction and cell
migration (6/42 in cluster 4), extracellular matrix (ECM; 8/49 in cluster 21), cytoskeleton-
related (3/5 in cluster 17), proteasome (3/30 in cluster 3), Wnt signaling (3/30 in cluster 3)
and fibrin/collagen-associated (9/54 in cluster 21) genes (Supplementary Figure S7B). This
shows that beyond genes annotated to the three core KEGG pathways, other genes induced
in the TNFα- and IL-1β-stimulated hCSs display distinct time-course expression profiles
and are also related to neuroinflammation.

3.4. TNFα- and IL-1β-Specific Effects on Neuroinflammatory Signaling Pathways

In addition to the time-point-dependent differences between the expression profiles
of the 1076 overlapping TNFα- and IL-1β-modulated DEGs (Supplementary Figure S8A),
we also found unique expression profiles of DEGs induced by either TNFα- or IL-1β.
Furthermore, the rather low number of genes that were present in the DEG lists of hCSs
stimulated with TNFα- as well as in the IL-1β DEG lists of either of the three time points
(e.g., 4 h: TNFα, 48% and IL-1β, 62%; 12 h: TNFα, 34% and IL-1β, 72%; 36 h: TNFα,
34% and IL-1β, 62%) (Supplementary Figure S8B,C) was also indicative of the existence of
unique sets of TNFα-modulated DEGs and unique IL-1β-modulated DEG sets (from here
on referred to as “category A” and “category B”, respectively; Supplementary Figure S8A).
GO analysis revealed no significant pathways for the IL-1β-specific DEGs in category B
(119 genes; Log2 FC >1.5 or <−1.5), while the GO molecular pathways “NAD+ nucleosidase
activity” (7 DEGs) and “cytokine activity” (16 DEGs) were found for the TNFα-specific
DEGs in category A (356 genes; Log2 FC >1.5 or <−1.5). Remarkably, 4 out of the 7 TNFα-
specific DEGs from the “NAD+ nucleosidase activity” pathway were TLR subfamily members
(TLR1/3/5/7) (Figure 5A), and 11 out of the 16 “cytokine activity” TNFα-specific DEGs rep-
resented chemokines, cytokines and other signaling molecules (CXCL9, CCL5/25, IL15, LTA,
IFNB1, CSF2, TNFSF12/14/18 and VEGFA) (Figure 5B). On the other hand, IL-1β but not TNFα
induced the expression of three hemoglobin-related genes (HBA1, HBA2, HBB) (Figure 5C).
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Figure 5. Gene expression profiles of (A) Toll-like receptor (TLR) subtypes, (B) Chemokines, cytokines
and interleukins, and (C) Hemoglobins that are uniquely differentially expressed in human cortical
spheroids following stimulation with either TNFα or IL-1β for 4 h, 12 h and 36 h.

3.5. TNFα- and IL-1β-Induced Neuroinflammation Primarily Occurs in Endothelial, Microglia and
Astrocyte Cell Populations, and Is More Related to MS Than to AD and PD

To gain insight into which of the cell types in our hCSs (neuroectoderm-derived neural
progenitors, excitatory and inhibitory neurons, astrocytes and oligodendrocyte precursors, and
mesoderm-derived microglia and endothelial cells) were primarily affected by the TNFα- and
IL-1β-stimulations, we first defined cell-type-specific markers (Supplementary Information S3)
based on a single-cell RNA-seq dataset of human fetal brain regions [25]. Using these brain
cell-type-specific markers, we found that following the 4 h, 12 h and 36 h TNFα-stimulations
in particular, the markers for endothelial cells and to a lesser extent microglia- and astrocyte-
markers were the most prevalent in the lists of TNFα-modulated DEGs (Figure 6A).
Endothelial-, microglia- and astrocyte-markers were also most prominent at all three time
points in the IL-1β-modulated DEG lists, with, in addition, the clear presence of oligoden-
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drocyte precursor cell (OPC) markers in the 4 h IL-1β-DEG list (Figure 6B). It is of further
interest to note that the three sets of endothelial cell markers that were DEGs following 4 h,
12 h and 36 h of TNFα-stimulation overlapped for only ~50% (Supplementary Figure S9A).
A similar situation holds for the degree of overlap among the microglia- and astrocyte-
marker sets following the 4 h, 12 h and 36 h TNFα-stimulations, and the endothelial cell-,
microglia- and astrocyte-marker sets following stimulation by 4 h, 12 h and 36 h of IL-1β
(Supplementary Figure S9A,B). These results suggest that TNFα- and IL-1β-stimulation of
hCSs affects glial and endothelial cell populations to a higher degree than the neuronal (pro-
genitor) populations, and that the sets of cell-type-specific markers that are dysregulated
by these cytokines vary among the three stimulation time points.

 

Figure 6. Cont.
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Figure 6. Differentially expressed genes (DEGs) in human cortical spheroids (hCSs) stimu-
lated with TNFα or IL-1β are mainly expressed in endothelial cells, microglia and astrocytes.
(A,B) Percentage of overlap between DEGs in hCSs stimulated for 4 h, 12 h and 36 h with
(A) TNFα or (B) IL-1β and cell-type marker genes derived from [25], based on a cut-off of >10-fold
expression difference with the other cell types; percentage of overlap was averaged over marker genes
from five human brain regions. (C–F) Percentage of overlap between DEGs in hCSs stimulated for
4 h, 12 h and 36 h with TNFα or IL-1β and (C) DEGs in a human fetal microglia cell line (HMC3) or
a human adult oligodendroglioma cell line (HOG) stimulated with pro-inflammatory factors (LPS
for 24 h and subsequently TNFα and IL-1β for 24 h (LPS + T + I)), (D) cell-type marker genes for
Alzheimer’s disease (AD), Parkinson’s disease (PD) and multiple sclerosis (MS) (cell-type marker
genes derived from [26]), (E) genes associated with AD, PD and MS as derived from the Nanos-
tring project, (F) NFκB-, neuroinflammation- and inflammation-associated genes as derived from
the Nanostring project. (G) Percentage of overlap between DEGs in TNFα- or IL-1β-stimulated
hCSs that are cell-type marker genes (derived from [25]), and neuroinflammation-associated genes,
(H) inflammation-associated genes, or (I) NFκB-associated genes derived from the Nanostring project.
MG: microglia; AST: astrocyte; ENDO: endothelial cell; OPC: oligodendrocyte precursor cell; NPC:
neural progenitor cell; IN: inhibitory neuron; EXC: excitatory neuron; UNL: other, unlabeled cell types.

Interestingly, we found a considerable overlap between the DEG list from a microglial
cell line (HMC3) that we stimulated with pro-inflammatory stimuli and the DEG lists from
the 4 h-, 12 h- and 36 h TNFα-stimulated hCSs (35–37%) as well as between the HMC3 DEG
list and the three IL-1β-stimulated hCS DEG lists (32–50%). In contrast, we only found
an overlap of 6–12% between the DEG list from a pro-inflammatory stimuli-treated glial
progenitor cell line (HOG) and the various DEG lists from the TNFα- and IL-1β-stimulated
hCSs (Figure 6C). These findings are in line with the relatively high sensitivity of microglial
populations to cytokines [28,29].

We next compared the lists of DEGs from the 4 h, 12 h and 36 h TNFα-stimulated
hCSs as well as the 4 h, 12 h, 36 h IL-1β-stimulated hCS DEG lists with cell-type-specific
marker genes identified on the basis of the suprafrontal gyrus microarray datasets derived
from post-mortem brain tissues of AD-, PD- and MS-patients [26]. This analysis showed
that at all three hCS stimulation time points the highest percentages of overlap were also
found for microglia, endothelial cells and astrocytes; these percentages of overlap were
roughly the same for the AD-, PD- and MS-datasets (Figure 6D). We then determined the
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percentages of overlap between the TNFα- and IL-1β-stimulated hCS DEG lists and genes
genetically linked to AD, PD and MS (deduced from the Nanostring project). Intriguingly,
our cytokine-modulated hCS DEGs are clearly more related to the genes associated with
the neuroinflammatory disease MS (33% and 28% overlap with TNFα-stimulated and
IL-1β-stimulated hCS DEGs, respectively) than with AD (8% and 9%, respectively) or with
PD (6% and 4%, respectively) (Figure 6E). In addition, the TNFα- and IL-1β-modulated
hCS DEGs showed a considerable degree of overlap with Nanostring-derived gene sets
related to NFκB (~40%), inflammation (~35%) and neuroinflammation (~20%) (Figure 6F).
Furthermore, a substantial percentage of the microglia-cell-type marker genes modulated
in our hCSs by TNFα and IL-1β overlapped with genes from the Nanostring-derived
neuroinflammation gene list (24.3% and 25.6%, respectively), much more than with the
modulated cell-type marker genes of endothelial cells (5.4% and 4.6%), astrocytes (6.2%
and 8.5%), NPCs (0% and 0%), excitatory neurons (6.1% and 8.6%), inhibitory neurons
(4.2% and 5.1%), OPCs (4.7% and 0%) and other unlabeled cell populations (6.4% and 7.1%)
(Figure 6G). Also, the overlap between the TNFα- and IL-1β-modulated microglia marker
genes and the Nanostring-derived inflammation genes (14% and 15.8%, respectively) was
higher than the overlap with other modulated cell-type marker genes (0–10.3% and 0–10.5%)
(Figure 6H). Similarly, the overlap between the TNFα- and IL-1β-modulated microglia-cell-
type marker genes and the Nanostring-derived NFκB gene list (3.0% and 6.2%, respectively)
was clearly higher than the overlap with the other modulated cell-type markers (0–1.4%
and 0–2.1%, respectively) (Figure 6I). These observations indicate that in the cytokine-
stimulated hCSs most of the dysregulated (neuro)inflammation- and NFκB-associated
genes are preferentially expressed in microglia.

4. Discussion

In this study, we performed unbiased RNA-seq and DEG analysis of TNFα- and IL-1β-
stimulated hCSs containing multiple brain cell types (neuronal, astrocyte, oligodendrocyte,
microglial and endothelial cell populations). The analysis revealed the induction of a neu-
roinflammatory response, with the NFκB- and STAT-pathways being the major pathways
affected. This finding was found in both the TNFα- and IL-1β-stimulated hCSs, and at all
three time points at which the spheroids were stimulated. However, the DEG compositions
of these shared pathways were markedly different between the two cytokine-stimulated
hCSs and among the three stimulation time points. In addition, a number of the com-
mon DEGs showed distinct time courses of expression. Furthermore, we identified TNFα-
and IL-1β-specific DEGs at each of the three stimulation time points. The hCS cell types
most responsive to TNFα- and IL-1β-stimulation, and thus driving the neuroinflammatory
response, appeared to be endothelial cells, microglia and astrocytes.

As already at 4 h following TNFα- and IL-1β-stimulation the NFκB- and STAT-
pathways were modulated, the induction of neuroinflammation represents an early event
in the response of the hCSs. This is in agreement with the previously reported role of TNFα
and IL-1β as early drivers of (neuro)inflammation [3,7,30,31], making these cytokines
interesting targets for therapeutic interventions. Under pathophysiological conditions,
the neuroinflammation-linked NFκB- and STAT-pathways are activated through the bind-
ing of extracellular ligands, including cytokines and chemokines, to plasma-membrane-
bound receptors, such as the TNFR and ILR families, but also TLRs, various chemokine-
and other cytokine receptors, pattern-recognition receptors and a number of G-protein-
coupled receptors [32,33]. Expression of a variety of these ligands and receptors, such
as CXCL1/2/3/8/10/11/12, CCL2/4/7/8/19/20, TNFSF7/8/10/13B/15 and TNFRSF4/9/14/18/25
as well as of the crucial transcriptional activation components of the downstream NFκB
pathway (NFKBIA, NFKB1, NFKB2) was indeed affected in our cytokine-stimulated hCSs.
In the canonical NFκB pathway, ligand-receptor binding activates multi-subunit IκB kinase
(IKK) complexes that trigger the degradation of IκBa by phosphorylation [34,35], resulting
in a rapid nuclear translocation of a number of NFκB family members, RelA and c-Rel. We
indeed found upregulation of genes triggering this IKK-dependent IκBa-phosphorylation,
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such as TRAF1, BIRC3, BLNK and LYN. We further noticed that the receptors PDGFR,
ILR, CCR and CXCR, and their ligands PDGF, LYN, LIF, CCL2/4/4L1/7/8/11/19/20/25 and
CXCL1/2/3/8/9/10/11/12 that signal through STATs displayed affected expression in the
cytokine-stimulated hCSs. In inflammatory and autoimmune diseases, the transcriptional
activation of the STAT pathway is regulated via the transcription factors STAT1/3/5/6 [36–38].
STAT1 was upregulated at all TNFα time points and the 12 h- and 36 h-IL-1β time points.
On the other hand, STAT3/5 were only upregulated following 4 h of TNFα-stimulation, but
not at later stimulation time points, while STAT5 and STAT3 were upregulated at 4 h and
12 h IL-1β-stimulation, respectively. These different time courses of STAT1 versus STAT3/5
expression are in line with reports of antagonistic roles of STAT1 (enhances inflammation)
and STAT3/5 (diminishes inflammation) in response to neuroinflammatory stimuli [39–41]
and during ischemia [42].

Most (~80%) of the components of the NFκB- and STAT-pathways in the TNFα- and
IL-1β-stimulated hCSs represented genes that were upregulated. In the downregulated gene
set, we found a number of genes related to ECM remodeling, such as COL4A4, COL6A and
EMILIN3 following all three TNFα time points and COL15A1, COL21A1, MFAP4 and OGN fol-
lowing all three IL-1β time points. Interestingly, a direct link between neuroinflammation and
ECM remodeling/damage has been described during spinal cord injury [43], angiogenesis [44],
and immune cell differentiation and migration [45], as well as microglial activation [46] and
the pathogenesis of various neurological diseases [47–49], further indicating that our TNFα-
and IL-1β- stimulated hCSs may well represent a valuable model of neuroinflammation.

A characteristic of the NFκB pathway is that the expression of cytokines activating NFκB
is itself induced by this pathway, as such producing a positive feedback loop [34]. Transcription
of the NFκB-activating cytokines CCL9/20, CXCL1/2/8, IL1A/1B5/6/15 and TNF, regulated via
the upregulation of NFκB-activating TNFRs, TRAFs, and RIPK2, was indeed increased in the
stimulated hCSs. Interestingly, during inflammation, NFκB-activation also initiates negative
feedback (self-inhibitory) loops that lead to the relief of inflammation [50,51]. In both the
TNFα- and IL-1β-stimulated hCSs, we in fact found the downregulated expression of
NFκB-activating factors, such as BLNK, and upregulated expression of NFκB-inhibiting
factors, such as BCL3, NFKBIA and TNFAIP3. Most membrane-bound NFκB-activating
receptors and downstream signaling molecules were upregulated following 4 h of TNFα-
stimulation and therefore the hCSs were already in the NFκB-activation phase at this point
in time. In addition, a number of inhibitory signaling genes were upregulated, reflecting
an early self-inhibitory NFκB feedback loop. At the later TNFα-stimulation time points,
the dampening of NFκB-activation was evident from the unaffected or downregulated
expression of a number of NFκB-activating receptors and downstream molecules. Since
in IL-1β-stimulated hCSs the dampening of the NFκB-pathway was already evident at
4 h, we conclude that the IL-1β-elicited neuroinflammatory response faded out earlier than
the TNFα-induced response, which is in line with findings in a non-human, peripheral cell
system (primary murine hepatocytes) [52].

An unbiased clustering strategy revealed differences in the time courses of the ex-
pression of the common TNFα- and IL-1β-dysregulated genes. For example, we identified
clusters of genes displaying different TNFα- and IL-1β-modulated expression patterns and
with roles in neuroinflammatory processes, such as chemoattraction (ICAM4, ADGRG3),
antigen-presentation (HLA-DRB1, HLA-DPA1, HLA-C, B2M, HLA-DQA1, HLA-DMB, HLA-
F, HLA-B) and TNF signaling (XAF1); note that the bioinformatics analysis did not classify
these genes within the three core KEGG pathways “Cytokine-Cytokine receptor signaling”,
“TNF signaling” and “NFκB signaling”. Furthermore, we observed genes with distinct
TNFα- and IL-1β-modulated time-course expression profiles and associated with struc-
tural/cytoskeletal functions, ECM remodeling, Wnt signaling and the proteasome, which
have all been previously linked to neuroinflammation [48,53,54].

A remarkable finding was that the expression of four TLRs (TLR1/3/5/7), three specific
cytokines (CXCL9, CCL5/25) and additional inflammatory molecules (IL15, LTA, IFNB1,
CSF2, VEGFA, TNFSF12/14/18) was upregulated during the TNFα-, but not the IL-1β-



Biomedicines 2022, 10, 1025 19 of 32

induced neuroinflammatory response. At present, we do not know the explanation for this
TNFα-specific effect. It is of further interest to note that 36 h of stimulation by IL-1β, but not
TNFα, induced the expression of three hemoglobin genes (HBA1, HBA2, HBB). We speculate
that IL-1β may activate a molecular cascade in endothelial cells that leads to the production
of these hemoglobins, which are modulators of vascular tone [55,56]. This is in line with
the fact that the IL-1R is highly expressed in endothelial cells and involved in angiogenic
responses [57–59], although TNFα receptors also exhibit endothelial-cell expression and
angiogenic activity [60,61]. Specific TNFα- and IL-1β effects have been previously reported
in peripheral immune cells and brain cells, namely that the two cytokines differentially
affect the expression of certain cytokines (e.g., CXCL8/IL8; [62]), pro-adhesion molecules
(e.g., ICAM1 and VCAM1; [63]), and pentraxin 3 [64]. Thus, despite the fact that both TNFα
and IL-1β have a pro-inflammatory function, the molecular neuroinflammatory signatures
elicited by these cytokines appear to be markedly different.

NFκB orchestrates the neuroinflammatory response to ATP, ion imbalance, excess
glutamate, oxidative stress and cytokines in CNS cells, such as microglia, astrocytes, neu-
rons and oligodendrocytes [35,57,65,66]. We found that the neuroinflammatory response
elicited by TNFα and IL-1β in hCSs is primarily driven by endothelial cells, microglia
and astrocytes, consistent with previous findings showing that under inflammatory condi-
tions the two cytokines affect (micro)glial functions [67,68] and angiogenesis [63,69,70]. In
view of the pivotal support functions of endothelial cells, microglia and astrocytes in the
brain [71–73], activation of these cells in the hCSs may on its turn have affected other brain
cell types such as oligodendrocytes and neuronal (progenitor) populations. Such aberrant
neuroinflammation-provoked crosstalk between glial cells and other brain cell types has
been previously observed in neuroinflammatory diseases [74–76]. We found that the list
of DEGs from our TNFα- and IL-1β-stimulated hCSs showed a higher similarity to that
from pro-inflammatory-stimulated human fetal microglia (HMC3) than human adult glial
progenitor (HOG) cells, indicating that these cell lines do recapitulate the known difference
in sensitivity of the various brain cell types to cytokines [28,29,77]. Nevertheless, one has to
realize that, in vitro, in the absence of other cell types and in a 2D environment, TNFα- or
IL-1β-stimulated brain cell lines may well respond markedly different from our 3D TNFα-
and IL-1β-stimulated hCSs.

A prolonged activation of NFκB in brain cell types appears to contribute to pathogenic
neurological processes, [78] and NFκB-associated neuroinflammation is a hallmark of
various neurological diseases, including AD, PD and MS [35,79]. Our comparison of the lists
of TNFα- and IL-1β-modulated hCS DEGs with genes genetically associated with AD, PD
or MS revealed that the highest percentage of DEGs was related to MS, in line with the clear
neuroinflammatory contribution to the pathogenesis of this disease [80,81]. Interestingly,
when comparing the cytokine-modulated hCS DEG lists with the transcriptomes of various
AD-, PD- and MS-cell types, we did not find a preference for MS-related genes. We presume
that this apparent discrepancy is explained by the fact that the genetically linked genes
contribute to the development of the disease, while the transcriptomes reflect endpoints of
disease pathogenesis.

Besides its relevance for the pathogenesis of a number of neurological diseases, more
knowledge about NFκB-mediated neuroinflammation is crucial, since this complex process
is associated with a variety of opposing responses, from cell survival to cell death [79].
Our molecular dissection of the TNFα- and IL-1β-induced neuroinflammatory responses
was performed in ESC-derived self-assembling 3D-hCSs containing all major brain cell
types. Therefore, the processes elicited in our cytokine-stimulated hCSs may well mimic
the neuroinflammatory response in the brains of neurological disease patients, in particular
during MS pathogenesis, and the identification of their molecular signatures contributes to
the development of TNFα-, IL-1β- and NFκB-directed therapies.
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5. Patents

The protocol to generate human cortical spheroids presented here is part of a pending
patent application.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines10051025/s1 [82–264], Figure S1: Overview of the
analysis of differentially expressed genes (DEGs) in human cortical spheroids (hCSs) stimulated with
the pro-inflammatory cytokines TNFα or IL-1β for 4 h, 12 h and 36 h. Per time point, a molecular
landscape for TNFα-stimulated or IL-1β-stimulated hCSs was built based on functional interactions
between the proteins encoded by the DEGs in the three core annotated KEGG pathways. A further
molecular landscape was constructed based on the DEGs that were common in the three core
annotated KEGG pathways of the hCSs stimulated with TNFα and IL1β for 4 h, 12 h and 36 h.
Clustering analysis of the common 1076 DEGs was performed to reveal 22 clusters of time-course
gene expression profiles. Also, DEGs unique in TNFα- or IL-1β-stimulated hCSs were grouped
into a distinct category (category A for TNFα and category B for IL-1β). Biological functions were
deduced based on information obtained from UniprotKB (https://www.uniprot.org/; accessed
on 1 January 2022) and Genecards (https://www.genecards.org; accessed on 15 January 2022);
Figure S2: Our human cortical spheroids (hCSs) contain neuroectoderm- and mesoderm-derived
cell types. (A) Levels of mRNA expression (measured by qPCR) of neural progenitor marker PAX6,
mature neuron marker NEFL, excitatory neuron marker SLC17A7, inhibitory neuron marker GAD1,
astrocyte marker AQP4, oligodendrocyte marker MBP, microglia marker CX3CR1 and endothelial
cell marker SPARC in embryonic stem cell line H9 (n = 3) and in hCSs (n = 3) at day 150 (d150),
relative to embryonic H9 stem cells. *** p < 0.001, ** p < 0.01, * p < 0.05, # p < 0.1. (B) Representative
immunocytochemistry images of d150 hCS stainings for neuronal dendritic marker MAP2 and
axonal marker TAU, astrocyte marker GFAP, oligodendrocyte marker O1, microglia markers P2RY12
and TMEM119, and endothelial surface marker PECAM1; Figure S3: Pro-inflammatory stimuli
increase mRNA expression of neuroinflammatory-related genes in human cortical spheroids (hCSs).
Normalized mRNA expression levels of IL-6, CXCL8, CCL5, CCL20, NFKB1, STAT1 and STAT3 at
(A) various TNFα (5 ng/ml) incubation time points and (B) various IL-1β (5 ng/ml) incubation time
points and quantified by qPCR. *** p < 0.001, ** p < 0.01, * p < 0.05, # p < 0.1; Figure S4: Gene ontology
(GO) analysis of differentially expressed genes (DEGs) in human cortical spheroids stimulated with
TNFα or IL-1β for 4 h, 12 h and 36 h. (A) GO top-4 pathways (based on false discovery rate (FDR)-
corrected p-value). (B) Number of DEGs in the three core KEGG pathways (left), the three most-often
found GO pathways (right) and overlapping between the three core KEGG and GO pathways (214
out of 436 (49.1%) KEGG genes are also GO genes; 214 out of 604 (35.4%) GO genes are also KEGG
genes). (C) GO top-4 pathways (based on FDR p-value) resulting from the analysis of upregulated
DEGs (UP) or downregulated DEGs (DOWN); Figure S5: (A) Molecular landscape constructed on the
basis of differentially expressed genes (DEGs) in human cortical spheroids following stimulation with
TNFα and with IL-1β for 4 h, 12 h and 36 h (“common” DEGs). Protein functions and interactions
were deduced based on information obtained from UniprotKB (https://www.uniprot.org/; accessed
on 1 January 2022) and Genecards (https://www.genecards.org; accessed on 15 January 2022). A
detailed description of the protein-protein interactions occurring in this molecular landscape can be
found in Supplementary Information S4. Rectangularly framed protein: membrane-bound receptor;
protein in dark-gray-filled (rounded) rectangle: encoded by a core KEGG pathway DEG; protein in
light-gray-filled (rounded) rectangle: encoded by a DEG not in the core KEGG pathways; protein
in white-filled (rounded) rectangle: not encoded by a DEG. Black arrows: stimulation or induction;
inhibition arcs: inhibition; dotted arrows: translocation; fading arrows: enzymatic conversion; cl:
cleavage. Encircled numbers refer to the two main dysregulated molecular pathways; 1: NFκB
signaling, 2: STAT-dependent transcription. (B) Gene expression profiles of NFκB-master regulator
genes NFKBIA, NFKB1, NFKB2, RELB, BCL3 and TNFAIP3. (C) Gene expression profiles of STAT-
master regulator genes STAT1, STAT3 and SOCS3.; Figure S6: Number and time-course expression
profiles of upregulated (left) and downregulated (right) differentially expressed genes (DEGs) in
human cortical spheroids stimulated with TNFα (A and C) or IL-1β (B and D) for 4 h, 12 h and
36 h. For time-course expression profiles, per time point top DEGs are based on Log2 fold change
with a cut-off of 4 (upregulated DEGs; UP) or -4 (downregulated DEGs; DOWN); Figure S7: Cluster
analysis and biological functions of common differentially expressed genes (DEGs) in human cortical

https://www.mdpi.com/article/10.3390/biomedicines10051025/s1
https://www.mdpi.com/article/10.3390/biomedicines10051025/s1
https://www.uniprot.org/
https://www.genecards.org
https://www.uniprot.org/
https://www.genecards.org
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spheroids stimulated with TNFα and IL-1β for 4 h, 12 h or 36 h. (A) Percentages of common DEGs
in TNFα- and IL-1β-clusters resulting from DEG cluster analysis. Dotted red line: cut-off (overlap
score between corresponding TNFα- and IL-1β-clusters <25%), (B) Biological functions of cluster
DEGs with a <25% overlap score between corresponding TNFα- and IL-1β-clusters. Functions were
deduced from literature-based studies; Figure S8: Number of differentially expressed genes (DEGs)
in human cortical spheroids stimulated with TNFα or IL-1β for 4 h, 12 h and 36 h. (A) Number of
common DEGs dysregulated at one of the three time-points of TNFα- and IL-1β-stimulation (overlap),
and number of DEGs uniquely dysregulated following TNFα-stimulation (left) and IL-1β-stimulation
(right). (B) Number of common DEGs overlapping between the TNFα- and IL-1β-DEG lists (overlap),
and number of DEGs unique to the TNFα-DEG list (left) and IL-1β-DEG list (right) per stimulation
time point. (C) Number of common DEGs overlapping between the TNFα- and IL-1β-DEG lists
(overlap), and number of DEGs unique to the TNFα-DEG lists (left) and IL-1β-DEG lists (right)
among the various stimulation time points; Figure S9: Number of endothelial cell-, microglia- and
astrocyte-marker genes that are dysregulated in human cortical spheroids following stimulation with
(A) TNFα or (B) IL-1β for 4 h, 12 h or 36 h. Marker genes (Supplementary Information S3) were based
on a single-cell RNA-seq dataset of human fetal brain regions [25]; Table S1: Boolean clustering of
the time-course expression profiles of common differentially expressed genes (DEGs) selected on the
basis of their presence in the DEG-lists of human cortical spheroids (hCSs) stimulated with TNFα
for 4 h, 12 h or 36 h as well as in the DEG-lists of hCSs stimulated with IL-1β for 4 h, 12 h or 36 h.
In the column “Pattern”, “high” refers to a Log2 fold change (FC) >2.5 or <−2.5 and “low” refers
to a Log2 FC between 0 and 2.5 or between −2.5 and 0. In the column “Direction”, “pos” indicates
that the FC-value is above 0 and “neg” indicates that the FC-value is below 0. The boundary at the
DEG threshold of Log2 FC = 1 could not be set as some genes were only a DEG at one time point
and thus values with a Log2 FC between 1 and −1 were also present in the dataset; Table S2: Listed
are per cluster (see Figure 4) the percentages of TNFα-modulated differentially expressed genes
(DEGs) and the percentages of IL-1β-modulated DEGs. Percentages are relative to the total number
of common TNFα- and IL-1β-modulated DEGs (1076 DEGs); Table S3. Listed are per cluster (see
Figure 4) the number of genes in the time-course expression cluster of TNFα- and IL-1β-modulated
differentially expressed genes (DEGs), the number of genes common in the time-course expression
clusters of TNFα- and IL-1β-modulated DEGs and the percentage of genes common in the time-
course expression clusters of TNFα- and IL-1β-modulated DEGs; Table S4: Primer sequences used
for qPCR validation of RNA-seq data in day-150 human cortical spheroids; Table S5: Validation of
RNA-sequencing (RNA-seq) data by quantitative PCR (qPCR) analysis of the expression of genes
modulated in human cortical spheroids (hCSs) stimulated with TNFα for 4 h, 12 h or 36 h. Listed are
Log2 fold-change (FC) values in the stimulated hCSs over the unstimulated (0 h) hCSs. Correlation
RNAseq-qPCR 4 h: 0.685, p-value: 0.001; correlation RNAseq-qPCR 12 h: 0.862, p-value: <0.001;
correlation RNAseq-qPCR 36 h: 0.819, p-value: <0.001; Table S6: Validation of RNA-sequencing
(RNA-seq) data by quantitative PCR (qPCR) analysis of the expression of genes modulated in human
cortical spheroids (hCSs) stimulated with IL-1β for 4 h, 12 h or 36 h. Listed are Log2 fold-change (FC)
values in the stimulated hCSs over the unstimulated (0 h) hCSs. Correlation RNAseq-qPCR 4 h: 0.758,
p-value: <0.001; correlation RNAseq-qPCR 12 h: 0.702, p-value: 0.001; correlation RNAseq-qPCR 36 h:
0.857, p-value: <0.001.
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