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Abstract

Sex hormones such as estrogen fluctuate across the female lifespan, with high levels

during reproductive years and natural decline during the transition to menopause.

Women's exposure to estrogen may influence their heightened risk of Alzheimer's

disease (AD) relative to men, but little is known about how it affects normal brain

aging. Recent findings from the UK Biobank demonstrate less apparent brain aging in

women with a history of multiple childbirths, highlighting a potential link between

sex-hormone exposure and brain aging. We investigated endogenous and exogenous

sex-hormone exposure, genetic risk for AD, and neuroimaging-derived biomarkers

for brain aging in 16,854 middle to older-aged women. The results showed that as

opposed to parity, higher cumulative sex-hormone exposure was associated with

more evident brain aging, indicating that i) high levels of cumulative exposure to

sex-hormones may have adverse effects on the brain, and ii) beneficial effects of

pregnancies on the female brain are not solely attributable to modulations in sex-

hormone exposure. In addition, for women using hormonal replacement therapy

(HRT), starting treatment earlier was associated with less evident brain aging, but

only in women with a genetic risk for AD. Genetic factors may thus contribute to

how timing of HRT initiation influences women's brain aging trajectories.
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1 | INTRODUCTION

Women are at significantly greater risk of developing Alzheimer's dis-

ease (AD) or other types of dementia relative to men (Laws et al.,

2018). The genotype-related risk for developing AD is also modified byAnn-Marie G. de Lange and Claudia Barth contributed equally to this study.
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sex, with higher risk in female carriers of apolipoprotein E type 4 (APOE

e4) compared to male carriers (Altmann et al., 2014). Emerging evi-

dence suggests that APOE genotype may interact with effects of exog-

enous estrogen exposure (Yaffe, 2001; Srivastava et al., 1997; Stone

et al., 1998), influencing dementia and AD risk (Yaffe et al., 2000).

However, little is known about the influence of sex-hormone exposure

on normal brain aging trajectories. Changes in sex hormones such as

estradiol are known to influence brain plasticity (Galea et al., 2014;

Simerly, 2002), and in premenopausal women, magnetic resonance

imaging (MRI) studies have indicated modulating effects of endoge-

nous estrogen fluctuations on brain structure across the menstrual

cycle (Barth et al., 2016) and during pregnancy (Hoekzema et al.,

2017). While higher endogenous estrogen levels have been associated

with larger brain volumes during women's reproductive years (Barth

et al., 2016; Lisofsky et al., 2015), results from the Rotterdam Scan

Study showed that in menopausal women, higher endogenous estro-

gen levels were associated with smaller brain volumes in specific areas

(den Heijer et al., 2003). Negative effects of exogenous estrogen levels

have also been reported, and findings from the Women's Health Initia-

tive Memory Study showed that conjugated estrogen, both alone

and in combination with progestin, was associated with greater atro-

phy among women aged 65 years and older (Resnick et al., 2009). In

addition, conjugated estrogen administration has been linked to higher

rates of ventricular expansion over 4 years in recently menopausal

women (Kantarci et al., 2016). However, other neuroimaging studies

suggest a protective effect of hormone replacement therapy (HRT) on

gray matter (Erickson et al., 2005), as well as white matter and ventri-

cle size (Ha et al., 2007). Furthermore, a recent meta-analysis suggests

protective effects of estrogen replacement therapy on the risk of onset

and/or development of AD and Parkinson Disease in postmenopausal

women (Song et al., 2020). Emerging evidence indicates that oral con-

traceptives (OC), another source of exogenous estrogen, affect aspects

of brain structure and function in young adults (reviewed by [Pletzer &

Kerschbaum, 2014]), but despite their widespread use (Christin-Maitre,

2013), the impact of OCs on brain aging is unknown.

We recently showed lower brain age in parous compared to nullipa-

rous women in the UK Biobank cohort (de Lange et al., 2019). In

the present paper, we investigate the association between estimates

of sex-hormone exposure and brain aging beyond the effects of parity

in 16,854 UK Biobank women (mean age 54.70 ± 7.29 years). Brain-

age prediction using machine learning and imaging-derived measures

of cortical thickness, cortical volume, and subcortical volume (Fischl

et al., 2002; Glasser et al., 2016; Kaufmann et al., 2019; de Lange et al.,

2019) was performed to estimate “brain age” (Franke & Gaser, 2019) for

each participant. Brain age gap, calculated by subtracting chronological

age from estimated brain age, was used as a measure of apparent brain

aging (Cole et al., 2017; Franke & Gaser, 2019; Franke et al., 2019;

Smith et al., 2019). Cumulative sex-hormone exposure was estimated

by an index of cumulative estrogen exposure (ICEE) (Smith et al., 1999),

including age at menarche and menopause, time since menopause, body

mass index (BMI), and duration of HRT use. Exogenous exposure was

estimated by HRT and OC use. To examine the effect of APOE e4

genotype on HRT usage and brain aging, we performed follow-up ana-

lyses including APOE e4 genotype interactions. As the “critical period

hypothesis” states that HRT may be neuroprotective if it is initiated

close to menopause (MacLennan et al., 2006; Gibbs & Gabor, 2003;

Hodis et al., 2016), we further tested whether age at HRT initiation,

both alone and in relation to age at menopause, was associated with

apparent brain aging. In order to investigate the link between sex-

hormone exposure and brain aging beyond the effects of parity

(de Lange et al., 2019), all analyses were corrected for number of

childbirths.

2 | MATERIALS AND METHODS

2.1 | Sample

The sample was drawn from the UK Biobank (www.ukbiobank.ac.uk),

and included 16,854 women. Sample demographics are provided in

Tables 1–3. The data that support the findings of this study are available

through the UK Biobank application procedure (https://www.ukbiobank.

ac.uk/register-apply/), scripts are available from the authors upon

request.

2.2 | Sex-hormone exposure

Women who had missing data, or had responded “do not know” or

“prefer not to answer” for any of the relevant variables, were excluded

for each analysis. For relevant analyses, women with a reported age at

menarche (n = 1) or age at OC start (n = 1) at 5 years were excluded.

TABLE 1 Sample demographics

N 16,854

Age range [years] 40.2–70.3

Age (mean ± SD) 54.70 ± 7.29

Ethnic background W 97.39 – B 0.61 – M 0.52 – A 0.67 –
C 0.33 – O 0.45

Education U 43.27 – A 13.97 – O 21.28 – C 4.14 –
N 3.32 – P 5.75 – Noa 6.42

Menopausal status Yes 50.97% – No 30.29% – Not sure 21% –
Prefer not to answer 0.08%

Note: Ethnic background: W, white; B, black; M, mixed; A, Asian; C, Chinese;

O, other. Educational qualification: U, university/college degree; A, A levels

or equivalent; O, O levels/General Certificate of Secondary Education

(GCSE) or equivalent; C, Certificate of Secondary Education (CSE) or equiva-

lent; N, National Vocational Qualification (NVQ) or equivalent; P, profes-

sional qualification, for example, nursing/teaching; Noa, none of the above.

For the categories, see http://biobank.ctsu.ox.ac.uk/crystal/coding.cgi?id=

100305 and http://biobank.ctsu.ox.ac.uk/crystal/coding.cgi?id=1001. Men-

opausal status was based on responses to the question “Have you had your

menopause?”. 10.50% answered “Not sure—had a hysterectomy,” 10.50%

answered “Not sure—other reason”. N, sample size. http://biobank.ndph.ox.

ac.uk/showcase/field.cgi?id=2724.
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ICEE was approximated by including age at menarche and menopause,

duration of HRT in years, BMI, and time since menopause in years.

The variables were first standardized and then either added (duration

HRT, age at menopause, BMI) to or subtracted (age at menarche, time

since menopause) from the index depending on their impact on

endogenous estrogen (Smith et al., 1999). After removing women with

missing data, 8,878 women were included in the ICEE analyses involv-

ing the brain-age model. For HRT, 11,139 never-users and 5,546

users were included in the analyses. For OC, 2,213 never-users and

14,615 users were included in the analyses. Women who had never

used HRT/OC were coded 0, while current and former users were

coded 1. Multiple regression analyses were run to investigate the

association between each estimate of sex-hormone exposure and

brain age gap. All analyses were corrected for number of childbirths

and age. In addition, hysterectomy and/or oophorectomy were

included as covariates in the HRT models, and current HRT use, ever

used HRT, and length since menopause in years were included a

covariates in the APOE e4 status × circulating estradiol level models.

To test whether other known confounders including education, BMI,

hypertensive status, and age at first birth could influence the results,

additional models including these variables were run. Hypertensive

status (yes/no) was defined as systolic blood pressure ≥140 mmHg

and diastolic blood pressure ≥90 mmHg, otherwise individuals

were classified as non-hypertensive (Warren et al., 2017). The statisti-

cal analyses were conducted using R, version 3.5.2, and Python 3,

version 3.7.6.

2.3 | Genotyping

For genotyping, we used the UK Biobank version 3 imputed data, which

has undergone extensive quality control procedures as described by

the UK Biobank genetics team (Bycroft et al., 2018). The APOE e geno-

type was approximated based on the two APOE e single-nucleotide

polymorphisms—rs7412 and rs429358 (Lyall et al., 2016). Further infor-

mation on the genotyping process is available in the UK Biobank docu-

mentation (www.ukbiobank.ac.uk/scientists-3/genetic-data), including

detailed technical documentation (genotyping_workflow.pdf). APOE e4

status was labeled carrier for e3/e4 and e4/e4 combinations, and non-

carrier for e2/e2, e2/e3, and e3/e3 combinations (Lyall et al., 2019).

The homozygous e2/e4 allele combination was removed due to its

ambiguity with e1/e3 (Wisdom et al., 2011).

TABLE 2 Sample demographics for
hormone replacement therapy (HRT)
users (n = 5,651) and non-users
(n = 11,172)

HRT users Non-users t χ2 p N

Age range (years) 40.4–70.3 40.2–70.2 16,823

Age (mean ± SD) 59.3 ± 5.4 52.4 ± 7.00 965.4 <.001 16,823

Number of births (years) 1.8 ± 1.1 1.7 ± 1.2 144.1 <.001 16,817

Age at first birth 25.7 ± 4.8 27.5 ± 5.1 600.8 <.001 13,270

BMI (kg/m2) 27.5 ± 4.8 27.4 ± 4.8 730.5 <.001 16,724

Age at menopause (years) 48.5 ± 5.8 50.6 ± 3.9 951.17 <.001 9,369

Menopause (yes) 96.1% 50.4% 2,695.4 <.001 14,179

Hysterectomy (yes) 31.5% 6.5% 1,841.7 <.001 16,797

Oophorectomy (yes) 17.6% 1.5% 1,486.5 <.001 16,712

Hypertension (yes) 21.6% 16.2% 51.0 <.001 12,029

Note: Mean ± SD/% for each variable in each of the groups; N, sample size; BMI, body mass index. χ2

refers to the Pearson's chi-square test.

TABLE 3 Sample demographics for
apolipoprotein E type 4 (APOE e4)
genotype carriers (n = 4,277) and non-
carriers (n = 11,655)

Carriers Non-carriers t χ2 p N

Age range (years) 40.3–70.2 40.23–70.27 15,932

Age (mean ± SD) 54.4 ± 7.2 54.9 ± 7.3 942.4 <.001 15,932

Number of births 1.7 ± 1.2 1.7 ± 1.2 148.8 <.001 15,924

Age at first birth (years) 26.9 ± 5.1 26.9 ± 5.1 587.45 <.001 12,583

BMI (kg/m2) 27.5 ± 4.7 27.4 ± 4.8 712.18 <.001 15,837

Age at menopause (years) 49.7 ± 4.9 49.7 ± 5.0 937.8 <.001 8,873

Estradiol (pmol/L) 541.8 ± 439.1 551.5 ± 580.5 66.4 <.001 4,346

Ever used HRT (yes) 31.5% 34.2% 10.2 <.001 15,904

Current HRT use (yes) 24.7% 21.5% 5.5 .02 4,977

Hypertension (yes) 17.1% 18.1% 1.4 .20 11,447

Note: Mean ± SD/% for each variable in each of the groups; N, sample size; BMI, body mass index; HRT,

hormone replacement therapy. χ2 refers to the Pearson's chi-square test.
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2.4 | Hormone assay

Serum blood samples were taken at the initial assessment visit

(2006–2010; for details on estradiol availability see http://biobank.

ctsu.ox.ac.uk/crystal/field.cgi?id=30800). Estradiol was analyzed at

the UK Biobank's purpose-build laboratory in Stockport, and mea-

sured by two step competitive analysis on a Unicel DXI 800 Access

Immunoassay System (Beckman Coulter, UK, Ltd; analytical range:

73–17,621 pmol/L). Further information on the immunoassay and

quality control steps is available in the UK Biobank documentation

(serum_biochemistry.pdf). To investigate whether APOE e4 status

interacted with circulating estradiol levels in menopausal women,

a multiple linear regression was run including an APOE e4 status ×

circulating estradiol level interaction term. The model was corrected for

current HRT use, ever used HRT, length since menopause, and num-

ber of births.

2.5 | MRI Processing

A detailed overview of the data acquisition, protocol parameters, and

image validation can be found in (Alfaro-Almagro et al., 2018) and

(Miller et al., 2016). Raw T1-weighted MRI data for all participants

were processed using a harmonized analysis pipeline, including auto-

mated surface-based morphometry and subcortical segmentation as

implemented in FreeSurfer 5.3 (Fischl et al., 2002). In line with recent

large-scale implementations (Kaufmann et al., 2019; de Lange et al.,

2019), we utilized a fine-grained cortical parcellation scheme (Glasser

et al., 2016) to extract cortical thickness, area, and volume for

180 regions of interest per hemisphere, in addition to the classic set

of subcortical and cortical summary statistics from FreeSurfer (Fischl

et al., 2002). This yielded a total set of 1,118 structural brain imaging

features (360/360/360/38 for cortical thickness/area/volume, as

well as cerebellar/subcortical and cortical summary statistics, respec-

tively). The MRI variables were residualized with respect to scanning

site, ethnic background, intracranial volume, and Freesurfer-derived

Euler numbers (Rosen et al., 2018) using linear models. To remove

outliers, participants with Euler numbers of SD ±4 were identified and

excluded (n = 159). In addition, participants with SD ±4 on the global

MRI measures mean cortical or subcortical gray matter volume were

excluded (n = 79 and n = 13, respectively), yielding a total of 16,854

participants with T1-weighted MRI data.

2.6 | Principal component analysis (PCA)

A PCA was run with z-transformed MRI variables z = (x − μ)/σ, where

x is an MRI variable of mean μ and SD σ). The top 100 components

were used in the subsequent analyses, explaining 56.48% of the total

variance. As a cross check, the relationship between ICEE and brain

age gap was re-analyzed with 200 components, explaining 70.61% of

the total variance. With 200 components included, the association

between ICEE and brain age gap was β = 0.03, SE = 0.01, t = 2.42,

p = .02. As the results were consistent, 100 components were chosen

to reduce computational time.

2.7 | Brain age prediction

The XGBRegressor model from XGBoost (https://xgboost.readthedocs.

io/en/latest/python/index.html) was used to run the brain age predic-

tion analysis with an algorithm that has been used in recent large-scale

brain age studies (de Lange et al., 2019; Kaufmann et al., 2019; Smith

et al., 2019). Parameters were set to max depth = 3, number of estima-

tors = 100, and learning rate = 0.1 (defaults). The predicted age based

on the PCA components was estimated in a 10-fold cross validation,

assigning an estimated brain age value to each individual. Brain age gap

was calculated using (estimated brain age—chronological age). Average

RMSE and R2 were calculated from a 10-fold cross validation with

10 repetitions per fold, and compared to null distributions calculated

from 10,000 permutations. The results are shown in Figure 1.

3 | RESULTS

The accuracy of the brain-age prediction model is shown in Table 4.

The associations between estimates of sex-hormone exposure and

apparent brain aging are summarized in Table 5 and Figure 2; p values

are reported before and after false discover rate correction (pcorr)

(Benjamini & Hochberg, 1995).

3.1 | Index of cumulative estrogen exposure (ICEE)

A multiple linear regression showed a positive association between ICEE

and apparent brain aging as shown in Table 5 and Figure 2, indicating

that when correcting for number of previous childbirths and age, higher

ICEE was linked to more apparent brain aging (n = 8,878). The inclusion

of education, hypertensive status, and age at first birth as covariates

yielded similar results (β = 0.045, SE = 0.019, t = 2.380, p = .017,

pcorr = .030, n = 4,791). The associations between apparent brain aging

and reproductive span, calculated as (age at menopause – age at menar-

che), as well as age at menarche and menopause separately, are pro-

vided in Data S1. Differential effects of surgical vs. natural menopause

on brain aging were also examined (see Data S1).

3.2 | Exogenous sex-hormone exposure

A positive association was found between hormone replacement ther-

apy (HRT) status and apparent brain aging in pre-menopausal and

menopausal women, with less evident brain aging in never-users

(n = 11,139) compared to users (n = 5,546 with 1,182 still using;

covariates: number of births, had hysterectomy and/or oophorec-

tomy, and age). When including age at first birth, education, BMI, and

hypertensive status in the model, the results were similar (β = 0.168,

5144 DE LANGE ET AL.

http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=30800
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=30800
https://xgboost.readthedocs.io/en/latest/python/index.html
https://xgboost.readthedocs.io/en/latest/python/index.html


SE = 0.074, t = 2.262, p = .024, pcorr = .033, never-users = 6,236,

n users = 2,971). No significant associations were found between

Oral contraceptive (OC) status and apparent brain aging, as shown in

Figure 2 and Table 5 (covariates: number of births and age; number of

never-users vs users was 2,213 vs 14,615. Three hundred and ninty

eight women were still using OC).

Within the group of HRT users (n = 5,164), a positive relationship

was found between age at HRT initiation and apparent brain aging as

shown in Table 5, indicating less evident brain aging in women who

started HRT treatment earlier (covariates: number of births, had hys-

terectomy and/or oophorectomy, and age). No significant association

was found between duration of HRT use (age last used HRT − age

started HRT) and apparent brain aging (covariates: number of births,

age, had hysterectomy and/or oophorectomy, n = 5,164).

F IGURE 1 Average root mean square error (RMSE) and R2 compared to null distributions. Left: The mean ± SD RMSE was 6.06 ± 0.09, based
on a 10-fold cross validation with 10 repetitions per fold (red vertical line). The null distribution calculated from 10,000 permutations is shown in
gray, with a mean ± SD of 7.32 ± 0.006. The number of permuted results from the null distribution that exceeded the mean from the cross
validation was 0 (p = 1.00 × 10−4). Right: The mean ± SD R2 for the brain age model was 0.31 ± 0.09 (red vertical line). The null distribution
calculated from 10,000 permutations is shown in gray, with a mean ± SD of −0.007 ± 0.002 (p = 1.00 × 10−4)

TABLE 4 Number of magnetic resonance imaging (MRI) variables,
root mean square error (RMSE), R2, mean absolute error (MAE), and

the correlation between predicted and chronological age

MRI
variables RMSE R2 MAE

Predicted age versus
chronological age

1,118 6.06 0.32 4.97 r = 0.56, p = < .001,

[0.55,0.57]

Note: RMSE and MAE are reported in years. 95% confidence intervals are

indicated in square brackets.

TABLE 5 The associations between each estimate of sex-
hormone exposure and apparent brain aging

variable β SE t p pcorr

ICEE 0.040 0.014 2.809 .005 .018*

HRT status 0.169 0.055 3.073 .002 .015*

Age at HRT initiation 0.022 0.009 2.509 .012 .028*

Duration of HRT usage 0.004 0.005 0.787 .432 .503

OC status 0.017 0.066 0.250 .802 .802

Note: β, slope; ICEE, Index of cumulative estrogen exposure. Hormone

replacement therapy (HRT) and oral contraceptive (OC) status = 0 for never-

users and 1 for current and former users. Each analysis included age and

number of births as a covariates, in addition to specific covariates for each

measure as detailed in Section 3. p values are reported before and after false

discovery rate (FDR)-correction (pcorr) (Benjamini & Hochberg, 1995).

Corrected p values below 0.05 are marked with an asterisk.

F IGURE 2 Associations between estimates of sex-hormone
exposure and apparent brain aging. ICEE, index of cumulative
estrogen exposure. The points show the β values (slope) from
separate multiple regression analyses with brain age gap (see
Section 2.7) as dependent variable, and number of births (covariates:
age and ICEE), ICEE (covariates: age and number of births), hormone
replacement therapy (HRT) status (covariates: age, number of births,
had hysterectomy and/or oophorectomy), and oral contraceptive
(OC) status (covariates: age, number of births) as independent
variables. To obtain a direct comparison of β values in the plot, all
variables were standardized prior to performing the multiple
regressions (subtracting the mean and dividing by the SD). HRT and
OC status = 0 for never-users and 1 for current and former users. The
error bars represent the SE on the β
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3.3 | APOE e4 genotype and HRT initiation

In HRT users, there was an effect of APOE e4 status × age started HRT

on apparent brain aging, as shown in Table 6, with a trend-level asso-

ciation after applying FDR correction (pcorr = .063). Follow-up analyses

showed that (a) the relationship between age at HRT initiation and

apparent brain aging was confined to the carrier group (n = 1,227), as

shown in Figure 3, and that (b) in menopausal APOE e4 carriers, age

for HRT onset relative to age at menopause (age at menopause – age

started HRT) was positively associated with apparent brain aging, indi-

cating beneficial effects of HRT initiation before onset of menopause

(β = − 0.078, SE = 0.023, t = − 3.441, p = 6.083 × 10−4, pcorr = .003,

n = 826, covariates: number of births, age, had hysterectomy and/or

oophorectomy). There was no dose-dependent effect of the interac-

tion age started HRT × carrier group (n with 1 e4 allele = 1,126, n with

2 e4 alleles = 101, β = 0.085, SE = 0.064, t = 1.317, p = .188,

pcorr = .188).

3.4 | APOE e4 genotype and circulating estradiol
levels

As shown in Figure 3, significant cross-over interaction effects of

APOE e4 status × circulating estradiol levels on apparent brain aging

were found in menopausal women (β = 0.003, SE = 0.001, t = 2.270,

p = .024, pcorr = .030, n = 539, covariates: current HRT use, ever used

HRT, length since menopause, and number of births). When including

age at first birth, education, hypertensive status, and BMI as

covariates, the results showed a stronger effect of the interaction, as

well as a negative main effect of estradiol levels on apparent brain

aging (β = − 0.003, SE = 0.001, t = − 2.699, p = .007). Based on this

finding, the subsequent follow-up analyses were also corrected for

education, age at birth, hypertensive status, and BMI. A positive main

effect of estradiol levels on apparent brain aging was found in APOE

e4 carriers (n = 101), while a negative main effect was found in non-

carriers (n = 310), as shown in Figure 3. No main association was

F IGURE 3 Apolipoprotein E (APOE) genotype interactions. Left plot: The lines show the association (β) between age started hormone
replacement therapy (HRT) and apparent brain aging for the APOE e4 carriers (red) and non-carriers (blue). The fitted values are corrected for the
covariates in the model (age, number of births, had hysterectomy, and/or oophorectomy). Right plot: The lines show the association between
estradiol levels and apparent brain aging for the APOE e4 carriers (red) and non-carriers (blue). The fitted values are corrected for the covariates
in the model (age, number of births, current HRT use, ever used HRT, length since menopause, age at first birth, and education). The shaded areas
show the 68.3% (1 SD) and 95% (2 SD) confidence intervals for each fit

TABLE 6 The associations between
apolipoprotein E type 4 (APOE e4) × age
at hormone replacement therapy (HRT)
initiation and APOE e4 × circulating
estradiol, and main effects within carrier
and non-carriers

β SE t p pcorr

APOE e4 status and age at HRT initiation

Interaction term 0.038 0.018 2.076 .038 .063

Main effect carriers 0.042 0.018 2.349 .019 .047*

Main effect non-carriers 0.016 0.011 1.506 .132 .165

APOE e4 status and circulating estradiol in menopausal women

Interaction term 0.008 0.002 3.711 2.47 × 10−4 .001*

Main effect carriers 0.006 0.002 3.194 .002 .005*

Main effect non-carriers −0.003 0.001 −2.67 .008 .014*

Note: β, slope. p values are reported before and after false discovery rate correction (pcorr) (Benjamini &

Hochberg, 1995). Corrected p values below .05 are marked with an asterisk.
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found between APOE e4 status and apparent brain aging (β = 0.049,

SE = 0.051, t = 0.954, p = .340, pcorr = .340, covariates: number of

births and age; number of carriers vs non-carriers = 4,276 vs 11,649).

The analyses were re-run with corrections for (a) neurological and

mental conditions, and (b) polygenic risk for Alzheimer's disease. The

results are provided in Data S1. In brief, these corrections did not

influence the results.

4 | DISCUSSION

The results showed that as opposed to parity, higher cumulative

and exogenous sex-hormone exposure was associated with more evi-

dent brain aging. in vitro studies have shown that exposure to low

concentrations of 17β-estradiol promoted neuronal survival, whereas

exposure to high concentrations was ineffective and led to increased

cellular susceptibility to neurodegenerative insults (Chen et al., 2006).

It has also been demonstrated that low-dose estrogen replacements

have anti-inflammatory properties, whereas higher dosages show

increases in inflammatory markers such as C-reactive protein

(Prestwood et al., 2004). In line with this, the current findings indicate

that high levels of exposure to sex-hormones may have adverse

effects on women's brain aging.

While estrogen levels rise up to 300-fold during pregnancy

(Schock et al., 2016), they fall 100–1,000 fold postnatally (Nott

et al., 1976), and parous women have shorter menstrual cycles and

lower levels of estradiol than nulliparous women (Bernstein et al.,

1985; Dorgan et al., 1995). Hormonal modulations contribute to

maternal brain adaptations in pregnancy and postpartum (Galea

et al., 2014; Kinsley & Lambert, 2008), but their long-term effects

on brain aging are not fully understood. The present results indicate

that beneficial effects of pregnancies on brain aging may relate to

factors beyond sex-hormone fluctuations. Other pregnancy-related

mechanisms including immune regulations (Mor et al., 2011; Hillerer

et al., 2014; Luppi, 2003) may have implications for inflammatory sus-

ceptibility later in life (Fox et al., 2018; Natri et al., 2019), subsequently

impacting women's brain aging trajectories. For instance, one study

found that higher cumulative time spent pregnant in first trimesters,

but not third trimesters, conferred a protective effect against AD (Fox

et al., 2018), indicating that immune processes such as the the prolifer-

ation of regulatory T cells (Kieffer et al., 2017), which is highest in the

first trimester, could be more relevant for AD risk relative to estrogen

exposure. In line with this, the “pregnancy compensation hypothesis”

suggests that pregnancies involves long-lasting, favorable regulations

of the female immune system (Natri et al., 2019), which could underlie

observed differences in apparent brain aging between parous and nul-

liparous women (de Lange et al., 2019).

The cessation of ovarian hormone function during menopause

has been linked to altered inflammatory processes involving increases

in cytokine levels, and changes in T cell biology (reviewed by [Mis-

hra & Brinton, 2018]). For some, these processes may constitute a

menopausal immune senescence that may increase the risk for AD

(Fox et al., 2018; Wyss-Coray & Rogers, 2012). The “critical period

hypothesis” states that HRT may be neuroprotective if it is initiated

near the time of cessation of ovarian function—approximately within

5 years of menopause (MacLennan et al., 2006; Gibbs & Gabor,

2003; Hodis et al., 2016). Our results lend further support to this

hypothesis, as earlier age at HRT initiation, particularly before meno-

pause, was associated with less evident brain aging. However, this

relationship was present in APOE e4 carriers only, indicating that

genetic factors may contribute to how timing of HRT initiation influ-

ences women's brain aging trajectories. Higher menopausal levels of

estradiol were linked to more evident brain aging in carriers, while

lower estradiol levels was linked to more evident brain aging in non-

carriers. In line with this, increased estradiol levels induced by estro-

gen therapy have been associated with reduced risk of developing

AD in APOE e4 non-carriers, but not in carriers (Yaffe et al., 2000;

Manly et al., 2000).

To the best of our knowledge, the current work is the first

comprehensive study of the associations between endogenous and

exogenous hormone exposure, APOE genotype, and normal brain

aging in a population-based cohort. Large-scale population-based

studies enable the identification of subtle effects that could go

undetected in smaller samples, and are key to foster understanding

of factors contributing to brain-aging processes and risk for neurode-

generative disease. However, the cross-sectional nature of the pres-

ented data does not enable causal inference, and longitudinal studies

are required to fully understand how sex-hormone exposure influ-

ences women's brain health across the lifespan. Furthermore, the

current study lacks details on HRT and OC formulation, mode of

delivery (e.g., oral or transdermal), and dosage. For instance, while

HRT commonly consists of either combined hormone treatment

(estrogen plus progestin) or unopposed estrogen treatment (estrogen

alone), combined OC mostly contains ethinylestradiol and varying

levels of progestins. These differences in compound compositions

may affect brain aging trajectories differently (Savolainen-Peltonen

et al., 2019; Gleason et al., 2015), and more studies are needed to

disentangle the effects of different HRT and OC treatment regimes

on women's brain health later in life. The lack of information on

breastfeeding, which is known to reduce cumulative exposure to

endogenous estrogen (Bernstein, 2002), may also influence the preci-

sion of our ICEE approximation. Another major caveat is that the

blood samples were taken at the initial visit, years prior to the

imaging assessment. Although estradiol levels are relatively stable in

menopausal women (Brinton et al., 2015), this time lag between

assessments may have impacted our results on estradiol levels and

brain aging, which should thus be interpreted with caution.

An issue with genetic aging studies is the bias towards survivors

(Heffernan et al., 2016), which implies that the number of APOE

e4 carriers could be lower in older-age cohorts. In the present study,

age was negatively associated with number of carriers (r = − 0.03,

p = < .001,95 % CI = [−0.05, −0.02]), indicating potential survival-bias

in the sample. Further, estradiol levels were only available for a subset

of women, and within this subset, a relatively high proportion (80%)

had oestradiol values in the lower range. The UK Biobank notes that

this reflects the menopausal status of the participants at recruitment

DE LANGE ET AL. 5147



(with 25% being premenopausal; see https://biobank.ctsu.ox.ac.uk/

crystal/crystal/docs/biomarker_issues.pdf), which is expected given

the age range of the cohort. Based on these aspects, it should be

noted that the presented results may not apply to populations beyond

those represented in UK Biobank (Haworth et al., 2019).

In conclusion, our study provides evidence of an association

between higher sex-hormone exposure and more apparent brain aging,

indicating that (a) high levels of exposure to sex-hormones may have

adverse effects on the brain, and (b) beneficial effects of pregnancies

relate to factors beyond sex-hormone fluctuations. Further, the influ-

ence of sex-hormone exposure on the brain may be genotype-specific,

with more prominent effects of timing and dosage of hormone replace-

ments in women with a genetic risk for AD. These findings represent

an important contribution to the understudied field of female-specific

factors and women's brain aging (Galea et al., 2018), which may com-

plement prospective longitudinal studies on women's brain health and

epidemiological sex-differences in AD.
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