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Cisplatin-induced expression of Gb3 enables verotoxin- |
treatment of cisplatin resistance in malignant pleural mesothelioma
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BACKGROUND: A major problem with cisplatin treatment is the development of acquired-drug resistance of the tumour cells.
Verotoxin-1 (VT-1) exerts its cytotoxicity by targeting the membrane glycolipid globotriasosylceramide (Gb3), a molecule associated
with drug resistance. Cisplatin- and VT-I-induced apoptosis involves mitogen-activated protein kinase (MAPK) activation, and
deactivation of MAPKs is associated with cisplatin resistance. This study aimed to investigate whether a sub-toxic concentration of
VT-1 could enhance cisplatin-induced apoptosis and overcome acquired-cisplatin resistance in cultured cancer cell lines.

METHOD: P31 and HI1299 cells with corresponding cisplatin-resistant sub-lines (P31 res/H|1299res) were incubated with VT-1 and/or
cisplatin followed by determination of Gb3 expression, cell viability, apoptosis, and signalling pathways.

RESULTS: Cells from the resistant sub-lines had elevated Gb3 expression compared with the parental cell lines, and cisplatin further
increased Gb3 expression, whereas VT-1 reduced the percentage of Gb3-expressing cells. Combination of cisplatin and sub-toxic
concentrations of VT-1 led to a super-additive increase of cytotoxicity and TUNEL staining, especially in the cisplatin-resistant sub-
lines. Blockade of Gb3 synthesis by a Gb3 synthesis inhibitor not only led to eradicated TUNEL staining of P31 cells, but also
sensitised P3lres cells to the induction of apoptosis by cisplatin alone. Cisplatin- and VT-1-induced apoptosis involved the MAPK
pathways with increased C-Jun N-terminal kinase and MAPK kinase-3 and -6 phosphorylation.

CONCLUSIONS: We show the presence of Gb3 in acquired-cisplatin resistance in P31res and HI1299res cells. Cisplatin up-regulated
Gb3 expression in all cells and thus sensitised the cells to VT-1-induced cytotoxicity. A strong super-additive effect of combined
cisplatin and a sub-toxic concentration of VT-1 in cisplatin-resistant malignant pleural mesothelioma cells were observed, indicating a

new potential clinical-treatment approach.
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Lung cancer is the first and second leading cause of cancer-related
death in men and women, respectively (Parkin, 2001; Jemal et al,
2003). The most common type is non-small cell lung cancer
(NSCLC), which accounts for over 75% of all cases (Brognard et al,
2001). Asbestos can cause a variety of lung diseases including lung
cancer and pleural mesothelioma. Malignant pleural mesothelioma
(MPM) is a highly mortal malignancy with poor prognosis partially
because of treatment resistance (Leard and Broaddus, 2004).
Treatment options are surgery, radiotherapy, and chemotherapy
often including platinum-based drugs such as cisplatin (cis-
diamminedichloroplatinum (II),), which is an extensively used
anticancer drug. Cisplatin acts at least in part, by formation of
platinum-DNA adducts, which hinders rapidly dividing cells from
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duplicating their DNA for mitosis and activation of apoptosis
(Zwelling et al, 1979; Siddik, 2003). However, a major problem
with cisplatin treatment is the development of acquired-drug
resistance of the cancer cells (Andrews and Howell, 1990;
Kasibhatla and Tseng, 2003) involving increased MDRI/PgP
activity (Zhou, 2008). Some mechanisms of cisplatin resistance
include reduction of platinum accumulation by alteration of
transmembrane pumps, enhancement of DNA damage repair, and
reduced apoptosis induction (Krishan et al, 1997; Cvijic et al, 1998;
Ohmichi et al, 2005; Liu et al, 2007). Mitogen-activated protein
kinases (MAPKs) are activated in cisplatin-induced apoptosis in
most investigated cell systems and induced cisplatin resistance is
also associated with reduced activation of MAPKs (Brozovic and
Osmak, 2007).

Globotriasosylceramide (Gb3) consist of a trisaccharide linked
to a lipid based in the plasma membrane and is expressed by
several tumour cell lines originating from breast cancer, ovarian
cancer, colon carcinoma, haematological malignancies, and astro-
cytoma tumours as well as normal endothelial and epithelial cells
(LaCasse et al, 1999; Gariepy, 2001; Kovbasnjuk et al, 2005;
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Johansson et al, 2006). MDR1/PgP acts as a glycolipid translocase
involved in the biosynthesis of glycolipids such as Gb3, and
elevated levels of Gb3 have also been seen in drug-resistant
cancers, and functional interplay between membrane Gb3 and
MDRI1/PgP has been suggested (Lingwood et al, 1998; De Rosa
et al, 2008). Gb3 functions as cell surface receptor for verotoxin-1
(VT-1, Shiga-like toxin-1) produced by pathogenic strains of
Escherichia coli (Lingwood et al, 1987; Jacewicz et al, 1989; Rose
and Clark, 1989).

VT-1 has one enzymatically active part (A), and one part that
binds to the cell surface (B). The B part consists of five identical
sub-units, which can all bind to the Gb3 receptor in which the A
sub-unit is internalised and cytotoxic through ribosome inactiva-
tion (Endo et al, 1988; Olsnes and Sandvig, 1988; Saxena et al,
1989; O’Brien et al, 1992; Gariepy, 2001; Sandvig et al, 2002). VT-1
has shown efficacy against meningioma, astrocytoma, as well as
renal tumour xenografts in mice (Arab et al, 1999; Salhia et al,
2002; Ishitoya et al, 2004). The B part of VT-1 has also been
suggested as a novel approach to deliver other anti-tumour agents
(Vingert et al, 2006).

A sub-toxic concentration of VT-1 could possibly enhance
cisplatin-induced apoptosis and overcome acquired-cisplatin
resistance in cultured cancer cell lines, as MAPKs are involved in
apoptosis induction of both agents and in cisplatin resistance. The
aim of the study was to quantify Gb3 expression in cisplatin-
sensitive and -resistant MPM and NSCLC cell lines, and to
investigate the potential of using VT-1 or agent adhered to its B
sub-unit as highly potent and specific agents to overcome
acquired-cisplatin resistance.

MATERIALS AND METHODS

Cell lines and cell culture

Two human cancer cell lines were used: P31 (Marklund et al,
1982), an MPM and H1299 (American Type Culture Collection,
CRL-5803), an NSCLC cell line as well as corresponding sub-lines
with acquired-cisplatin resistance (P31res and H1299res). The cells
were maintained under standard cell culture conditions, grown as
monolayer culture in Eagle’s MEM in Earl’s salt (Gibco Ltd,
Paisley, Scotland, UK) supplemented by 10% foetal bovine serum
(Biochrom KG, Berlin, Germany) and 200 pmoll™! L-glutamine.
They were incubated at 37°C in a humidified atmosphere
containing 5% CO,. Medium of the resistant sub-lines was
between experiments supplemented by either 1.2mgl™" (P31res)
or 2mgl™~! (H1299res) cisplatin.

Determination and inhibition of Gb3 and MDR1/PgP
expression of cultured cells

The cellular expression of Gb3 of the cell lines was identified by a
monoclonal rat IgM antibody (Immunotech, Marseille, France)
and MDRI1/PgP by a monoclonal antibody from Chemicon
Internat. Inc. (Temecula, CA, USA) on an FACS Calibur flow
cytometer (Becton Dickinson Immunocytometry Systems, San
Jose, CA). DL-threo-1-phenyl-2-palmitoylamino-3-morpholino-1-
propanol, PPMP (Sigma-Aldrich, St Louis, MO, USA), a chemical
inhibitor of glucosylceramide synthesis, was used to deplete Gb3
expression by culturing cells with 2umoll™' PPMP for 72h.
Verapamil was from Abbott Laboratories, Abbott Part, IL USA,
and cyclosporin A from Sigma-Aldrich.

Cell viability assay

A fluorometric method using fluorescein diacetate (Amersham
International, Amersham, UK) was used to quantify cell viability
and determine VT-1 (Sigma-Aldrich) sensitivity of P31 and H1299
cells in vitro. Cells (1 x 10*) were plated with 100 mgl'1 medium in
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the wells of 96-well microtiter plates. The plates were first
incubated at 37°C for 24h with culture medium only,
then medium was replaced with fresh medium, containing (1)
0.1-5.0ugl™" (P31) or 0.001-1.0ugl™' (H1299) VT-1 or (2)
0.1-10.0mg1™" cisplatin with or without VT-1 (0.1 ugl™" for P31,
0.001 ugl™" for H1299). The incubation was continued for 72h,
and then the medium was removed by flicking the plate, and
wells were washed once with 200 ul PBS buffer. To each well was
then added 150ul of PBS containing 10mgl™' fluorescein
diacetate, and the plates incubated for 45min at 37°C, followed
by fluorescence determination in a fluorometer (LS 55, Perkin
Elmer, MA, USA) using 485 and 538nm for excitation and
emission, respectively.

Flow cytometry analysis

P31res and H1299res cells were trypsinised and suspended in PBS
and double stained with Gb3 goat anti-rat IgM (Immunotech) and
MDRI1/PgP 1gG,, anti-mouse primary antibodies (Chemicon
Millipore, MA USA). Controls were derived by incubating the
cells with corresponding rat IgM and mouse IgG,, isotype
antibodies (Invitrogen, Carlsbad, CA, USA) for 1h at 4°C,
followed by washing and centrifuging for 10 min with PBS-BSA.
Subsequently, cell pellets were re-suspended and incubated
with secondary antibody goat anti-rat IgM and goat anti-mouse
IgG,, (Invitrogen) for 1h at 4°C. After washing the cells and
centrifuging for 10 min, cells were analysed with an FACScan flow
cytometer (Becton Dickinson, San Jose, CA, USA) on channels FL4
or FL1 and data processed using BD Cell Quest software. After
gating out debris and cell clumps, the data were plotted as area
histograms.

Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP
nick end labelling (TUNEL) staining detecting apoptosis-specific
nuclear DNA fragmentation was used as a marker for late stage
apoptosis. Free 3-OH terminal was labelled with modified
fluorescence-labelled nucleotides (dUTP) by catalysis of TdT.
Roche’s in situ cell death detection kit, TMR red (Roche,
Mannheim, Germany), was used. P31 and H1299 cells were
cultured to about 80% confluence and the medium was thereafter
changed to fresh medium containing 0 or 5mgl~" cisplatin and/or
0.1pugl™" VT-1, and incubation continued for 72h. Cells were
thereafter harvested with trypsin and any floating cells were
collected by centrifugation. Cells were then TUNEL stained
according to the manufactures instructions and TUNEL staining
was determined by flow cytometry.

Caspase activity determination

Fluorometric activity assays measuring caspase-3, -8, and -9
enzyme activities were used (R&D Systems Inc. MN, USA). P31
and H1299 cells were treated with 0 or 5mgl™" cisplatin and/or
0.1ugl™' VT-1 for 24h and thereafter lysed in lysis buffer for
10 min. Cell lysates (total protein concentration 100-200 ug) were
incubated with caspase-3, -8, or -9 fluorogenic caspase-specific
substrate at 37°C for 2h. The fluorescence signal was determined
with an LS55, Luminescence spectrometer (Perkin Elmer) using
400 and 505 nm excitation and emission wavelengths, respectively.
Total protein content was determined with bicinchoninic acid
Protein Assay kit (Pierce Biotechnology Inc., IL, USA).

SDS-PAGE gel electrophoresis and immunoblotting

VT-1 influence on specific proteins involved in apoptosis signal
transduction was investigated through western blotting. Cells were
exposed to 0 or 5mgl™" cisplatin and/or 0.1 ugl™' VT-1 for 24h
and then lysed in lysis buffer (R&D Systems Inc.). Cell extract was
incubated with NuPAGE 4 x LDS sample buffer and NuPAGE
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reducing agent for 10 min at 100°C. Samples (19.5 ugl™" protein)
were run on a 12.5% Tris—-HCl SDS-PAGE criterion precast gel
(Bio-Rad, Hercules, CA, USA) using 1 x MOPS buffer and NuPage
antioxidant. The buffers, reducing agent, and antioxidant were
from Invitrogen. Blotting was performed onto Immune-Blot PVDF
membranes (Bio-Rad). Membrane was then blocked in TBS buffer
containing 0.2% Tween 20, 20 mmoll™! Tris pH 7.4, and
150mmoll~" NaCl milk RT for 1h. Thereafter, the membrane
was incubated overnight with primary antibody against Akt, p-Akt
(ser473 and tyr308), Bad, p-Bad (ser 136 and 112) Bid, Bim, C-Jun
N-terminal kinase (JNK) (1 and 2), p-JNK (1 and 2), MCL-1, MAPK
kinase-3 (MKK-3), p-MAPK kinase-3 and -6 (MKK3/6), P44/42,
p-P44/42, or PUMA and after repeated washing with TBS buffer,
the secondary antibodies both diluted in 5% milk in TBS buffer
and 0.25% Tween 20 were incubated for 1h. Membrane was then
washed again with TBS buffer, and antibody detection was
performed by enhanced chemiluminescence staining (ECL
Advance western blotting detection system, Amersham Bios-
ciences, Buckinghamshire, UK). Monoclonal f-actin antibody
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was used for detection of actin as loading control. All antibodies
were from Cell Signalling Technology Inc. (Danvers, MA, USA).

Statistics

Statistical significance was tested with one-way ANOVA. The level
of significance for rejecting the null hypothesis of zero-treatment
effect was taken to be P=10.05.

RESULTS

Basal expression of Gb3 and the effect of cisplatin on MPM
and NSCLC cells

Cell surface expression of Gb3 was evaluated by FACS analysis
using monoclonal anti-Gb3 antibodies. Low levels of Gb3-
expressing cells was found in P31 (1%) and H1299 (12%) cells,
but expression was elevated in the cisplatin-resistant sub-lines to
27% and 29%, respectively (Figure 1). Incubation of cells with
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Figure |

Flow cytometry analysis of Gb3 expression in P3| and H1299 cells. Gb3 expression in cells not incubated with and cells incubated for 72 h with

Smgl~" cisplatin or 0.1 ugl™" VT-1, respectively. The percentage of Gb3-expressing cells is noted in the right quadrant in each dot plot. Blank shows
unspecific secondary anti-body binding, whereas control shows cell not incubated with either cisplatin or VT-1. Representative results out of at least three

independent experiments are shown.
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5mgl™" cisplatin for 72h increased Gb3 expression to 31% and
54% in P31 and P3lres cells, and to 15% and 40% in H1299 and
H1299res, respectively. Incubation with 0.1 ugl™' VT-1 reduced
the percentage of Gb3-expressing P31 and P31res cells to 1% and
4%, respectively, and incubation with 0.001 ugl™" VT-1 markedly
reduced the percentage of Gb3-expressing H1299 and H1299res
cells to 3% and 20%, respectively (Figure 1).

VT-1 and cisplatin cytotoxicity on MPM and NSCLC cells

Exposure of the MPM cells to 0.1-5 ugl™" VT-1 for 72 h showed no
cytotoxicity of the toxin to P31 cells and a modest cytotoxicity on
P31res cells, whereas both NSCLC cell sub-types were sensitive to
VT-1 in concentrations as low as 1x10 >ugl™' (Figure 2).
Incubation with 0.1-10mgl™" cisplatin for 72h reduced cell
viability in P31 and H1299 cells concentration dependently and as
expected less so in the cisplatin-resistant sub-lines (Figure 3).
Combination of cisplatin and VT-1 (0.1 or 0.001 ugl™") led to a
significant increase in cytotoxicity, especially in the cisplatin-
resistant sub-lines (Figure 3).

MDR1/PgP and Gb3 expression of cells and their resistant
cell sub-lines

Flow cytometry showed a correlation between MDR1/PgP and Gb3
co-expression in P3lres as well as H1299res cell sub-lines
(Figure 4). P31res cells showed co-expression in two sub-fractions
with one expressing ~ 10-fold expression of MDR1/PgP compared
with Gb3. Incubation of the cells with 10 umoll™" verapamil for
72h before expression analysis did, however, not reduce the
expression of MDR1/PgP or Gb3 (results not show).

We, therefore, also tested whether the more effective MDR1/PgP
inhibitor cyclosporin A (10 umoll™! incubated with the cells for
72h) as well as PPMP (2 umoll™") affected the co-expression of
MDRI1/PgP and Gb3. Un-expectantly, cyclosporin A did not
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Figure 3 Cell viability (FMCA assay) after exposure of MPM and NSCLC cells to 0.1—10mg|~" cisplatin alone (filled line) or in combination with
0.1 ugl™" (P31 sub-lines) or 0.001 ugl™ " (H1299 sub-lines) of VT-1 (dotted line) for 72h. (A) P3lcells, (B) P3lres cells, (€) HI1299t cells, and (D)
H1299res cells. Significant differences (P<0.05) between cell lines with cisplatin alone and when combined with VT-1 is indicated (*). Mean £s.d. (n= 3).
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noticeably inhibit MDR1/PgP expression in any of the cell types,
but possibly the expression of Gb3 in the resistant sub-lines,
whereas PPMP, as expected markedly, reduced not only Gb3
expression in the resistant cell sub-lines, but also of MDR1/PgP
expression, especially of the cells of the resistant cell lines with also
high expression of Gb3 (Figure 5).

VT-1 and cisplatin induction of MPM cell DNA
fragmentation

The TUNEL-staining assay showed no increase of DNA fragmenta-
tion in P31 cells after exposure to 0.1 ugl™' VT-1 for 72h. A slight
increase (to 17%) in DNA fragmentation was, however, noted in
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combination. Green dots indicate unstained cells and red TUNEL-stained cells. The percentage mean * s.d. (n=3) of TUNEL-stained cells is noted in the
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the P31res cells (Figure 6A). Cisplatin (5 mgl‘l) was sufficient to
induce massive (to 78%) DNA fragmentation in P31 cells, whereas
there was no or limited effect (19%) in the resistant sub-line
(P31res). The proportion of P31res cells with DNA fragmentation
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was dramatically increased (to 78% of the cells) by combined
exposure to 5mgl~" cisplatin and 0.1 ugl™! VT-1, but no further
effect than that of cisplatin alone was noted in the P31 cells
(Figure 6A).
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Inhibition of Gb3 expression eradicates VT-1
super-additive effect on cisplatin-induced TUNEL
staining of cisplatin-resistant MPM cells

Exposure to 2 umoll~' PPMP for 72h significantly reduced, but
did not completely inhibit Gb3 expression in P3lres cells
(Figure 6B). PPMP treatment for 72h eradicated DNA fragmenta-
tion induced by VT-1 (0.1 ugl™") in combination with cisplatin in
P31 cells (Figure 6C). However, PPMP treatment seemed to
sensitise P31res cells to the induction of apoptosis by 5mgl™!
cisplatin alone and possibly by itself induced low levels of
DNA fragmentation (Figure 6C). Gb3 expression and TUNEL
staining of P31 cells were unaffected by PPMP preincubation
(Figure 6B and C).

VT-1 and cisplatin induction of MPM cell caspase activity

When we studied signal transduction to apoptosis, the enzyme
activity assays for caspase-3, -8, and -9 showed cisplatin-induced
activation of caspase-3 and -9 in P31cells, but not in P31res cells.
VT-1 (0.1 ugl™") activated caspase-3 in P31res, but had no effect
on P3Icells (Figure 7). When cisplatin was combined with VT-1,
no further activation of caspase activity was noted except for slight
increase of caspase-3 activity in P31res cells.

Phosphorylation of MAPK proteins

Western blotting was used to study expression of proteins
potentially involved in apoptosis signalling of MPM cells after
24h exposure to 5mgl~" cisplatin with or without 0.1 ug1~' VT-1.
An involvement of the stress-activated MAPK signalling pathway
with increased phosphorylation of JNK and MKK3/6 was noted.
JNK and MKK3/6 were phosphorylated after cisplatin exposure in
P3lcells, but not in P3lres cells, whereas VT-1 induced
phosphorylation in P3l1res cells, but not in P31cells. MKK3/6
phosphorylation was further augmented by the combination of
cisplatin and VT-1 compared with VT-1 alone (Figure 8).
Antibodies against AKT, p-Akt (ser473 and tyr308), Bad, p-Bad
(ser 136 and 112), Bid, Bim, MCL-1, MKK-3, p-MKK3/6, P44/42,
p-P44/42, or PUMA were all tested without conclusive
protein expression changes after cisplatin and/or VT-1 exposure
(data not shown).

DISCUSSION

This study shows the presence of the VT-1 cell receptor Gb3 in
acquired-cisplatin resistance in both MPM and NSCLC cells.
Furthermore, we show that cisplatin sensitises the cells to VT-1,
leading to a potential treatment approach. Owing to the frequency
of and the rapid acquirement of cisplatin resistance in the clinical
setting, effective measures to circumvent this major treatment
obstacle are of outmost importance.

We showed that cisplatin can up-regulate Gb3 expression in
MPM and NSCLC cells and thus sensitise the cells to VT-1-induced
cytotoxicity. The increased proportion of Gb3-expressing cells
after cisplatin treatment suggests that cisplatin induces Gb3
expression in cancer cells, that cisplatin preferentially eradicates
cell with low Gb3 expression, and that Gb3 expression is linked to
acquired-cisplatin resistance. We could also correlate increased
expression of Gb3 of cisplatin-resistant MPM and NSCLC cells to
increased expression of MDR1/PgP. Gb3 and MDR1/PgP have
recently been found to be partially co-localised in MDR1/PgP-
expressing cells, and Gb3-containing lipid rafts are important for
intracellular MDR1/PgP surface trafficking (De Rosa et al, 2008).
The increased expression of MDR1/PgP in cisplatin resistance
could, therefore, parallel increased Gb3 expression, as MDR1/PgP
acts as a glycolipid translocase involved in the biosynthesis of
glycolipids such as Gb3 (De Rosa et al, 2008). However, we found
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Figure 7 (A) Caspase-3, (B) -8, and (C) -9 enzyme activity in P31 (black
bars) and P3lres ceHs (grey bars) after 24h incubation with 5mgl™'
cisplatin and 0.1 ugl™' VT-1, alone or in combination. Significant enzyme
activity differences (P<0.05) compared with untreated control is indicated
(*). Mean £ sd. (n=3).
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Figure 8 Western blot analysis of total and phosphorylated JNK1/2 and
MKK3/6 protein expression of P3land P31res cells after 24 h incubation
with 5mgl™' cisplatin and 0.1 ugl~" VT-1, alone or in combination.
Representative blot (n = 3).

no effect of the MDR1/PgP inhibitors verapamil or cyclosporin A

on the expression of MDRI/PgP in either cell line, but PPMP
reduced Gb3 expression in resistant sub-line cells and interestingly
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also particularly of the Gb3-expressing fraction that was induced
when the mother cell line was made cisplatin resistant. Further
studies on the interrelationship between multidrug-resistant cell
expression of drug efflux pumps and Gb3 on cisplatin-resistant
MPM and NSCLC cells are ongoing.

The reduced amount of Gb3-expressing cells after VT-1
treatment confirms that high-Gb3-expressing and cisplatin-resis-
tant cells are sensitive to VT-1. Even though VT-1 alone had
limited effect on the whole-cell population, it is of interest to note
that there was a strong super-additive effect of combined cisplatin
and VT-1 treatment in cisplatin-resistant MPM cells. The high
sensitivity of the NSCLC cells to VT-1 despite a modest Gb3
expression implies that Gb3 expression, though necessary, does
not mediate VT-1 cytotoxicity alone. The increased expression of
Gb3 parallel to MDRI1/PgP expression after induced cisplatin
resistance with ensuing sensitivity to VT-1 cytotoxicity needs
further investigation. It is in this context, however, that intriguing
blockade of Gb3 synthesis eradicated VT-1-induced apoptosis as
well as re-sensitised P31res cells to the induction of apoptosis by
cisplatin alone.

We continued the study by investigating cisplatin- and VT-1-
induced cell death signal pathways in the MPM cells. TUNEL-
labelled DNA-fragmentation analysis showed an induced increase
of apoptosis that correlated well with cell cytotoxicity and
confirmed that the cisplatin-resistant sub-line was significantly
less sensitive to cisplatin-induced apoptosis. Despite that neither
VT-1 nor cisplatin induced more than limited amount of apoptosis
in the cisplatin-resistant sub-line, the combined treatment induced
similar levels of apoptosis as seen with cisplatin treatment alone of
the more cisplatin-sensitive parental cell line. The lack of cisplatin-
induced DNA fragmentation in the resistant sub-line correlated
with the results from the caspase activity assays, as there was no
activation of either caspase-3, -8, or -9 despite significant
activation of caspases-3 and -9 in the parental cell line. VT-1
did, however, slightly activate caspase-3 activity in the resistant
cells, which was further increased by combined VT-1/cisplatin
treatment. This could explain the increased DNA fragmentation,
especially as it has been shown that low levels of caspase-3 activity
is enough to induce apoptosis in these cells (Johansson et al, 2008).
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PPMP inhibition of Gb3 synthesis confirmed that Gb3 is essential
for VT-1-enhanced cisplatin-induced apoptosis.

Western blot was used to elucidate the signal transduction
pathways to apoptosis of VT-1 and cisplatin alone and combined.
By using antibodies specific for phosphorylated proteins of the
MAPK pathway, we found that MKK3/6 and JNK was phosphory-
lated after cisplatin treatment in the cisplatin-sensitive cells, but
not in the corresponding sub-lines with acquired-cisplatin
resistance. VT-1 induced phosphorylation of MKK3/6, which was
enhanced when VT-1 was combined with cisplatin. MKK3/6 is
known to activate P38 (Derijard et al, 1995; Han et al, 1996), and
P38 as well as JNK has been shown to promote apoptosis in
response to cellular stress (Kim et al, 2006). Treatment of cells with
chemical inhibitors or siRNA targeting p38 was recently shown to
specifically inhibit VT-1 transport to the Golgi and reduced VT-1
toxicity (Walchli et al, 2008), and VT-1 prolonged JNK and p38
MAPK activation of macrophage-like cells (Lee et al, 2007). The
MAPK pathway is thus involved in proapoptotic signalling of VT-1
in stressed cell systems and the pathway is also involved in
cisplatin-induced apoptosis and induced cisplatin resistance
(Brozovic and Osmak, 2007). Targeting the MAPK signalling
pathway could, therefore, be an additional way to reduce cisplatin-
induced tumour cells resistance. We have earlier shown JNK
phosphorylation in response to VT-1 treatment also in glioma cell
lines (Johansson et al, 2006).

The treatment obstacle of acquired-cisplatin resistance in
malignant plural mesothelioma and other cancers makes it
necessary to find new strategies to overcome resistance. We have
shown an increased expression of Gb3 in induced cisplatin-resistant
MPM and NSCLC cells and a possible relation to multidrug
resistance. Our results encourage the idea that Gb3-targeted therapy
could be a possible approach and VT-1 either as holotoxin or by use
of toxin sub-units could present a viable tool for this.
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