
R E V I EW AR T I C L E

Towards a brain-based predictome of mental illness

Barnaly Rashid1 | Vince Calhoun2

1Department of Psychiatry, Harvard Medical

School, Boston, Massachusetts

2Tri-Institutional Center for Translational

Research in Neuroimaging and Data Science

(TReNDS), Georgia State University, Georgia

Institute of Technology, and Emory University,

Atlanta, Georgia

Correspondence

Vince Calhoun, TReNDS Center, 55 Park Place

NE, 18th Floor, Atlanta, GA 30300.

Email: vcalhoun@gsu.edu

Funding information

National Institutes of Health, Grant/Award

Numbers: 1R01EB020407, 1R01MH118695

Abstract

Neuroimaging-based approaches have been extensively applied to study mental

illness in recent years and have deepened our understanding of both cognitively

healthy and disordered brain structure and function. Recent advancements in

machine learning techniques have shown promising outcomes for individualized

prediction and characterization of patients with psychiatric disorders. Studies have

utilized features from a variety of neuroimaging modalities, including structural, func-

tional, and diffusion magnetic resonance imaging data, as well as jointly estimated

features from multiple modalities, to assess patients with heterogeneous mental dis-

orders, such as schizophrenia and autism. We use the term “predictome” to describe

the use of multivariate brain network features from one or more neuroimaging

modalities to predict mental illness. In the predictome, multiple brain network-based

features (either from the same modality or multiple modalities) are incorporated into a

predictive model to jointly estimate features that are unique to a disorder and predict

subjects accordingly. To date, more than 650 studies have been published on subject-

level prediction focusing on psychiatric disorders. We have surveyed about 250 studies

including schizophrenia, major depression, bipolar disorder, autism spectrum disorder,

attention-deficit hyperactivity disorder, obsessive–compulsive disorder, social anxiety

disorder, posttraumatic stress disorder, and substance dependence. In this review,

we present a comprehensive review of recent neuroimaging-based predictomic
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approaches, current trends, and common shortcomings and share our vision for future

directions.

K E YWORD S

functional magnetic resonance imaging, machine learning, multimodal studies, neuroimaging,

psychiatric disorder

1 | INTRODUCTION

With the first steps toward establishing modern psychiatry, and the

first attempts to classify different mental phenomena and disorders

into disease-specific categories, the need for diagnostic tools to allow for

an objective evaluation ofmental illness has surfaced. Current clinical diag-

nosis, disease evaluation and treatment plans for severe psychiatric disor-

ders are solely based on cross-sectional self-reported clinical symptoms

supported by information on longitudinal course and outcome.

Researchers have been actively searching for objective, biologically based,

disease indicators, or “biomarkers,” and after several decades of experi-

ments and attempts of classifying psychiatric disorders based on

predefined symptom categories, we are currently at a turning point where

a new paradigm has emerged: The Research Domain Criteria (RDoC;

T. Insel et al., 2010). This approach aims at incorporating the most recent

findings from clinical and genetic neuroscience, thereby opening the field

to a dimensional approach informed by the specific neural pathophysiol-

ogy underlying psychiatric disorders. By utilizing advanced neuroimaging

techniques, it is now possible to study disease-specific structural and

functional brain impairments. Neuroimaging modalities, such as magnetic

resonance imaging (MRI), magnetoencephalography (MEG), and electro-

encephalography (EEG) offer tools to noninvasively study the neural struc-

ture of psychiatric disorders with exceptional accuracy. Using these

powerful techniques, researchers have begun to understand the complex

neural function and structure thatmay lead to specific disorders.

In recent years, there has been a growing trend in designing

neuroimaging-based prognostic/diagnostic tools. As a result, there has

been a lot of effort focused on the use of neuroimaging tools to automat-

ically discriminate patients with brain disorders from healthy control

(HC) or each other. Many of these studies have reported promising pre-

diction performances with the claim that complex mental illness can be

diagnosed robustly, accurately and rapidly in an automatic fashion. How-

ever, until now, these tools have not been integrated into the clinical

realm. We believe a key reason for this is that many of the studies of this

nature, despite the promising results on a specific research dataset, are

not designed to generalize to other datasets, specifically the clinical ones.

In this systematic review, we surveyed the existing literature on

the application of machine learning-based techniques for diagnostic-

focused predictive analyses in psychiatric research and discuss current

trends and future directions. While previous reviews have focused on

a specific machine learning technique (Orru, Pettersson-Yeo,

Marquand, Sartori, & Mechelli, 2012), a single disorder (e.g., schizophrenia

[SZ], Calhoun & Arbabshirani, 2013; Kambeitz et al., 2015), major

depression disorder (MDD; Gao, Calhoun, & Sui, 2018), and autism

spectrum disorder (Retico, Tosetti, Muratori, & Calderoni, 2014)), a

single imaging modality (B. Sundermann, Herr, Schwindt, & Pfleiderer,

2014), a small subset of disorders (Klöppel et al., 2012), or general

brain-based disorders (Arbabshirani, Plis, Sui, & Calhoun, 2017), we aim

to provide a comprehensive review of all major psychiatric disorders.

So far, the most extensive review on major psychiatric disorders is the

review article by Wolfers et al., where about 120 pattern recognition

studies in SZ, mood disorders, attention-deficit hyperactivity disorder

(ADHD), autism spectrum disorder (ASD), anxiety disorders, and spe-

cific phobias have been reviewed (Wolfers, Buitelaar, Beckmann,

Franke, & Marquand, 2015). While there are some overlaps among the

aforementioned studies and this current survey, to the best of our

knowledge, this is by far the largest survey in the field of major psychi-

atric disorders based on the number of papers reviewed (about

250 papers). Further, in recent years, there has been an exponential

growth of predictive analysis studies, and therefore, an updated survey

is much warranted.

In this review, a general discussion of the current trends in the

brain-based psychiatric “predictome” and their translational perspec-

tives will be provided, along with highlighting some of the common

challenges and guidelines for future directions. We also discuss

emerging trends in neuroimaging such as data sharing, multimodal

brain imaging, and differential diagnosis. The main goals of this study

include: (a) to review and systematically compare a large number of

recent MRI-based mental disorder diagnostic/prognostic studies in

SZ, MDD, bipolar (BP) disorder, ASD, ADHD, obsessive–compulsive

disorder (OCD), social anxiety disorder (SAD), posttraumatic stress

disorder (PTSD) and substance dependence (SD), and (b) to discuss

pitfalls and promises of existing machine learning techniques, and

(c) to provide our vision and future directions to address some of the

challenges. While there are a number of challenges remain to be

addressed, brain-based predictome studies have made a considerable

progress in recent years. We hope that, with more sophisticated

machine learning approaches integrated with large-scale data, predic-

tive modeling tools will transition from the “proof-of-concept” stage

to the “ready for clinical implementation” stage in the near future.

2 | DEVELOPING A MENTAL ILLNESS
PREDICTOME PIPELINE

Predictome studies using neuroimaging data aim to extract multivari-

ate brain network features from one or more neuroimaging modalities

to predict outcome measures such as specific psychiatric diagnoses.
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Typically, after feature extraction and selection, a classifier is trained

in a supervised or semi-supervised way with a predefined set of labels.

Further model validation is performed either using an independent

testing dataset or by incorporating a cross-validation (CV) scheme.

Figure 1 presents the most common components of a brain-based

predictome pipeline of mental illness prediction using neuroimag-

ing data. While specific pipelines might vary at different

preprocessing and postprocessing stages, conventional predictome

analyses typically include the following steps: (a) feature extraction

and selection/reduction, (b) classifier training, (c) classification and

CV, and (d) performance evaluation.

2.1 | Feature extraction, selection/reduction

The first step of a predictome analysis is to transform neuroimaging

data into features (i.e., deciding what to use as features and extracting

these feature values from the data). A neuroimaging feature refers to

F IGURE 1 Predictome pipeline. An overview of neuroimaging-based predictome pipeline. (a) Neuroimaging modalities typically used for
mental illness prediction. (b) Current approaches for feature selection. Feature extraction can include (i) voxel-based (ii) network-based, (iii) data-

driven approaches (e.g., independent component analysis, ICA), or (iv) jointly estimated features from multiple modalities (e.g., fMRI and
genomics). (c) Types of feature selections can include automatic or expert selection approaches. (d) Choice of classifiers may include support
vector machine (SVM), linear discriminant analysis (LDA), Gaussian process classifier (GPC), neural network classifier (NNC) or logistic regression
classifier (LRC). (e) Model validation can be performed using either a test-validation setup or using a k-fold cross-validation scheme. (f) Data-
driven subtype identification can also be performed for homogeneous disorders (Gupta et al., 2017; Marquand, Rezek, Buitelaar, &
Beckmann, 2016). (g) Various measures for performance evaluation such as accuracy, sensitivity, specificity, precision and F1-score. FN, false
negative; FP, false positive; TN, true negative; TP, true positive
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any derived variable containing valuable information about the class

labels that can be extracted from the data.

In this survey, we reviewed and highlighted predictome studies

based on the type of features used for classification purposes, includ-

ing voxel-based, region-based, and brain-network based feature selec-

tion approaches. For example, features can simply be a set of brain

voxels within a particular brain network, or a region of interest (ROI),

multivariate data-driven (e.g., using independent component analysis

[ICA]) brain networks, or jointly estimated multimodal features, as

seen in Figure 1b. A voxel-based approach employs feature extraction

at the brain voxel level, while a region-based approach identifies and

extracts predefined region-of-interests (ROIs) as features based on a

brain atlas (either functional or structural). A network-based feature

extraction approach, such as ICA, aims at combining multiple voxels

across brain network (Calhoun, Adali, Pearlson, & Pekar, 2001b;

McKeown et al., 1998).

In addition to feature extraction, it is often important to reduce

the number of features from high-dimensional neuroimaging data

before proceeding with model training. In the context of neuroimag-

ing, feature selection can help achieve higher accuracy rates

(Ad-Dab'bagh et al., 2006), and allow a more specific focus on the

underlying brain regions that account for between-group differences

(Plitt, Barnes, & Martin, 2015). Indeed, the number of features in

neuroimaging data is large with many irrelevant features not contrib-

uting to the prediction power of the model, and not all disorders

affect every brain network in the same way. Thus, some brain-based

features might not contribute to the diagnosis labels, and some fea-

tures may capture redundant information already uncovered by

other features. Computational time and model generalization can

also be improved by excluding redundant and unrelated features

(Dash & Liu, 1997; Guyon & Elisseeff, 2003; Moradi et al., 2015).

Feature selection approaches (e.g., principle component analysis

[PCA]) project the high-dimensional neuroimaging data into a lower

dimensional space with a goal of preserving model discriminative

power. Although not an essential step, in order to improve the

strength of the prediction algorithm, it is important to select both

optimum and meaningful features (Chu et al., 2012; Cuingnet

et al., 2011). In a supervised learning approach, most discriminative

features are selected to amplify the signal and reduce the noise.

Often, prior information is used to address the dimensionality issue

of neuroimaging data. Based on the characteristics of features and

the type of learning problem, a particular feature selection

approach is used (Mwangi, Tian, & Soares, 2014). Common feature

selection approaches include: (a) expert feature selection (based on

prior knowledge) and (b) automatic feature selection (based on a

feature selection algorithm). A combination of these two

approaches can also be used for feature selection. For example, an

expert feature selection approach can first be implemented by

selecting a previously known disorder-specific ROI, and then an

automatic feature selection algorithm can be used to favor discrim-

inative features within the predefined ROI. Note that, to avoid per-

formance bias, feature selection and extraction methods should be

limited to training dataset.

2.2 | Classifier training

A classifier is a function that takes features as input and generates a

class label prediction. Based on the learning function and underlying

assumptions, different types of classifiers can be developed. Neuroim-

aging studies have applied various classifiers for mental illness predic-

tion. The dimensionality issue associated with the relatively large

number of features and the small number of samples should be

accounted for while applying such classification algorithms. Typically,

the classifier learns a rule and separates the underlying classes opti-

mally. Any type of classification or regression algorithm can be used

for training purpose, such as linear and logistic regression algorithms,

multilayer neural networks and Gaussian approaches (Bishop, 2006),

in the current review, we have limited our focus on classifiers using

discrete outcome measures (i.e., diagnostic labels), with the exception

of discussion on translational perspective and advanced predictive

modeling (Sections 5 and 6).

2.2.1 | Nearest-neighbor

The simplest form of classifier is known as the “nearest-neighbor”

which does not require any explicit learning of a classification

function. Using the nearest-neighbor approach, classification of an

independent test sample is performed by identifying the most similar

measures, for example, lowest Euclidean distance, between the

training and testing samples, and then assigning the label of the train-

ing sample (i.e., nearest neighbor) to the test sample.

2.2.2 | Discriminative and generative models

Other classifiers that require explicit learning function can be catego-

rized as discriminative and generative models (Trevor, Robert, &

Friedman, 2009). A discriminative classifier directly learns to predict

from the training data using a learning function based on predefined

parameters. In contrast, generative classifier learns a statistical model

to generate class labels by modeling the distributions of feature values

that are conditional on example class labels.

2.2.3 | Support vector machine

During the training stage of a supervised learning, data labels are used

to optimize the model by finding a hyperplane or decision boundary

that can maximally discriminate between groups. The most common

choice for a simple learning function is predicting class labels based on

a linear combination of the features that might influence the outcomes.

A linear classifier can be viewed as learning a line or boundary

(i.e., decision boundary) that separates points within the two classes

and discriminates their labels. For instance, a linear support vector

machine (SVM) is such a classifier that learns the decision boundary.

Due to its widespread use and promising results in neuroimaging-based
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prediction, SVM is the most commonly seen classifier in our current

survey. The SVM algorithm is typically intended for binary classifi-

cation that aims at maximizing the boundary between different

classes in a higher dimensional space. Mathematically, the discrim-

inant function for SVM consists of a weight vector orthogonal to

the decision boundary, and is specified by the data points that lie

closest to the decision boundary, known as support vectors. This

decision boundary further defines the classification rule of new,

unseen cases.

2.2.4 | Linear discriminant classifier

Another powerful linear model is the linear discriminant classifier

(LDC) that attempts to separate classes by maximizing the variance of

between-class to within-class ratio. An example of probabilistic dis-

criminant model is the logistic regression classifier (LRC) that focuses

on learning an optimum decision rule by modeling the log-odds ratio

as a linear combination of predictor variables (i.e., feature). Both LDC

and LRC methods yield probabilistic predictions that a new case can

be assigned to a particular class and a class label.

2.2.5 | Gaussian process classifier

Further, a Gaussian process classifier (GPC) is a probabilistic model

and is a Bayesian extension of LRC (Wolfers et al., 2015). Briefly, GPC

is first trained using the training feature to determine an optimized

predictive distribution distinguishing between case and control. Note

that, parameters relevant to this predictive distribution are estimated

by maximizing the logarithm of the marginal likelihood on the training

features. During the training stage, GPC then predicts the case and

control by providing the predictive distribution of the test data using

a sigmoid function (Frangou, Dima, & Jogia, 2017). For technical

details of GPC, refer to Schrouff et al. (2013).

2.2.6 | Neural network classifier

Also, artificial neural network classifiers (NNC) have recently

become popular for modeling biological networks. Multilayer NNC

is the extension of linear perceptron classifier, which can yield

complex nonlinear decision boundaries. Typically, the structure of

NNC includes an input layer, hidden layer(s) and an output layer.

Neurons from each of these layers are connected to the neurons of

the subsequent layers. A variety of nonlinear transfer functions of

the hidden later neurons can be used (e.g., sigmoid function).

Briefly, during the training phase, the weights across a set of artifi-

cial connected neurons are adjusted for learning purposes using

backpropagation technique (Werbos, 1990), and then used for clas-

sification. For example, in case of mental illness prediction, artificial

NNC analyzes the training labels (i.e., healthy versus disorder) and

learns to identify a test example.

2.2.7 | Random forest

Other recent and more powerful approaches for brain-based predic-

tion include random forest and deep learning classifiers. In the random

forest classifier, which is an ensemble of decision tree classifiers,

multiple levels of randomization are integrated (Breiman, 2001). Using

a randomized subset of the training data, each decision tree is grown,

and each node is subsequently formed by searching through a random

subset of training features. For each feature, the classifier estimates a

score to highlight the feature's discriminative power (i.e., Gini Impor-

tance [GI] score). The random forest approach offers improved gener-

alization accuracy as it randomizes training subjects, particularly in

cases with a relatively smaller training subjects compared to the num-

ber of training features. Further, the random forest classifier provides

nonlinear decision boundaries, which helps to model nonlinear patters

of features during training.

2.2.8 | Deep learning

Deep learning classifiers have recently become an attractive choice

for mental illness prediction (Calhoun & Sui, 2016; Han, Huang,

Zhang, Zhao, & Chen, 2017; Iidaka, 2015; Jang, Plis, Calhoun, &

Lee, 2017; J. Kim, Calhoun, Shim, & Lee, 2016; Plis et al., 2014). Deep

learning classifiers can learn the features with optimal discriminating

power directly from the raw data by using a hierarchical approach

(Schmidhuber, 2015; Vieira, Pinaya, & Mechelli, 2017). This provides a

great advantage over conventional classifiers that require explicit fea-

ture reduction steps. By applying nonlinear transformations to the

raw data, deep learning classifiers automatically overcome issues with

feature selection which is particularly helpful for higher-dimensional

features or data with lack of prior knowledge.

2.3 | Classification and CV framework

Once the classifier learns the decision rule based on features from a

training set, the next step is to validate the model in a testing set. In

order to mitigate performance bias and overfitting from predictive

modeling, it is critical to analyze the training and testing datasets inde-

pendently. During the training stage, the classifier learns to predict

the labels from the training features based on the associated learning

algorithm. For example, for learning problems without complex, itera-

tive feature selection, the trained classifier is tested on previously

unseen testing data (Wolfers et al., 2015). In order to achieve

better model performance, a classifier should be trained with as much

training data as possible, which is often a challenging issue in

neuroimaging-based prediction studies. CV approach offers us to train

classifiers with a higher number of training samples. A common CV

approach is to repeatedly evaluate model performance using multiple

training and testing partitions, a validation approach known as k-fold

CV (k: number of data partitions; Kohavi, 1995; Patel, Khalaf, &

Aizenstein, 2016). Other popular CV approaches include, leave-one-out
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(LOO-CV), and holdout. LOO-CV is an iterative process, typically used

on smaller sample size, where k is equal to the number of samples and

every subject in the whole sample is left out once for testing the classi-

fier. Briefly, the LOO-CV procedure includes the following steps:

(a) leave one sample out, train on the remaining ones, make a prediction

for this sample (b) repeat for each sample in turn, and (c) compute the

accuracy of the predictions made for all the samples. While a popular

choice, leaving each sample out could become computationally expen-

sive as it requires training of as many classifiers as the number of sam-

ples. In addition, LOO-CV has also been shown to potentially introduce

some prediction bias (Varoquaux et al., 2017), as it could introduce high

variance by providing more data during the training state, which could

also result in overfitting (Elisseeff & Pontil, 2003; Refaeilzadeh, Tang, &

Liu, 2009). Because of this, the preferred approach is k-fold CV where

k < number of samples. Common choices for partitioning are k = 10 or

k = 5, corresponding to leaving out 10 or 20% of the total samples dur-

ing each validation fold. Other important considerations for designing a

CV procedure include: (a) inclusion of examples from all classes in

the training data for better prediction accuracy, (b) having roughly

equal number of samples across classes (i.e., balanced classes), and

(c) inclusion of correlated samples in the same fold to avoid misleading

performance that may accurately predict test samples with a correlated

counterpart in the training set (Pereira, Mitchell, & Botvinick, 2009).

Performance measures, including accuracy, are averaged across

iterations for the training and testing phase. For a supervised

approach, a model is optimized using labeled data to find a discrimina-

tive decision boundary or hyperplane differentiating between case and

control groups. The model parameters are optimized for maximum dis-

crimination between groups. The CV approach helps ensure generali-

zation of the training. During the classification stage, the trained

model is then used to predict the label for new, unseen observations

from testing set. For an unbiased generalization, it is important that

the testing data do not overlap with the training data (Lemm,

Blankertz, Dickhaus, & Müller, 2011). Further, the new data should be

preprocessed in the same way as the training data.

More recently, another type of CV has been introduced, where

various types of classifiers are cross-validated by running multiple

classifiers on the same training data. For example, “Polyssifier” can be

used to cross-validate multiple classifiers, where the baseline is first

computed by applying multiple classifiers, such as nearest neighbors,

linear SVM, radial basis function or RBF-SVM, decision tree, random

forest, logistic regression, naive Bayes, and linear discriminative analy-

sis (LDA; http://mialab.mrn.org/software/#polyssifier).

2.4 | Measures for performance evaluation

The most commonly used performance evaluation measures for pre-

dictive algorithms include accuracy, sensitivity, specificity and the

receiver operating characteristic (ROC) curve. These measures provide

an evaluation of how accurately a classifier can generalize to new test

samples (i.e., cases). In a clinical context, accuracy indicates how accu-

rately the model classifies the cases and controls, sensitivity shows

the proportion of true positives correctly identified (i.e., what percent-

age of cases are truly identified), and specificity demonstrates the

proportion of true negatives correctly identified (i.e., what percentage

of controls are truly identified) by the model. The overall performance

of the model can be assessed by the ROC curve which provides a

summary of the area under the curve (AUC). A high sensitivity sug-

gests that only a few participants are falsely diagnosed as HCs while

actually being patients, and a high specificity indicates that a few

participants are falsely diagnosed as patients while actually being

HCs. The accuracy refers to the total proportion of samples correctly

classified. The ROC curves show the balance between the true posi-

tive rate (sensitivity) and the false positive rate (1-specificity) across a

range of decision thresholds within the model. To avoid bias by poten-

tial imbalances between groups, a common practice is to report

balanced accuracy measures, by taking an average accuracy obtained

for each diagnostic label (Brodersen, Ong, Stephan, & Buhmann, 2010).

A useful measure to summarize the classification performance is to pro-

vide a confusion matrix, which represents actual labels on one side and

the predicted labels on the other side. This is more important with

models predicting more than two groups (Baldi, Brunak, Chauvin,

Andersen, & Nielsen, 2000). Other useful performance measures can

be extracted from the confusion matrix including positive predictive

value (PPV), negative predictive value (NPV), F1-score (harmonic mean

of precision and recall), and G-mean (geometric mean of precision and

recall; Alberg, Park, Hager, Brock, & Diener-West, 2004). Positive and

negative predictive values are important for predictive studies as they

directly quantify the potential utility of the classifier for clinical diagno-

sis. The positive predictive value is defined as the number times the

classifier correctly predicted participants as patients (i.e., positive diag-

nosis) divided by the total number of positive predictions. The negative

predictive value is defined as the number of times the classifier cor-

rectly predicted a negative diagnosis divided by the total number of

negative predictions.

3 | PREDICTION OF MENTAL ILLNESS
USING NEUROIMAGING TECHNIQUES

With recent advancements in medical imaging technology, neuroimag-

ing data is being collected more rapidly and at finer resolution than ever

before. In recent years, there has been an increasing interest in leverag-

ing this vast amount of brain data across analytic levels, acquisition

approaches, and experimental designs to achieve a deeper understand-

ing of brain structure and function. In this review, we use the term

“predictome” to describe the use of multivariate brain network features

from one or more neuroimaging modalities to predict mental illness.

In the predictome, multiple brain network-based features (either

from the same modality or multiple modalities) are incorporated into

a predictive model to jointly estimate features that are unique to a

disorder and predict subjects accordingly. Here, we review recent

predictomic approaches used for neuroimaging classification and

prediction, and provide an overview of studies for prediction of men-

tal illness from their healthy counterparts.

RASHID AND CALHOUN 3473

http://mialab.mrn.org/software/#polyssifier


3.1 | Survey procedure for the current literature
review

The current review is based on a comprehensive literature search for

research articles performing MRI-based predictive analyses of psychi-

atric illnesses. A systematic literature search was performed primarily

in PubMed from 1990 to 2018, and more than 550 articles were

found. SZ (Calhoun, Kiehl, Liddle, & Pearlson, 2004) was one of the

first disorders investigated with predictive analyses, followed by major

depressive disorder (MDD; Fu et al., 2008; Marquand, Mour~ao-

Miranda, Brammer, Cleare, & Fu, 2008) and BP disorder (Arribas,

Calhoun, & Adali, 2010), ADHD (C.-Z. Zhu et al., 2008), ASD (Ecker

et al., 2010), PTSD (Q Gong et al., 2014), OCD (Weygandt

et al., 2012), SAD (Liu et al., 2015) and SD (Vergara, Mayer, Damaraju,

Hutchison, & Calhoun, 2017; Vergara, Weiland, Hutchison, &

Calhoun, 2018). Figure 2 illustrates the systematic literature search

process for this current study. Briefly, the search consistent of the fol-

lowing steps: (a) different terms related to classification/machine

learning as well as their abbreviations (e.g., for support vector

machine, search with the term “SVM”), (b) all terms and abbreviations

related to structural, functional and diffusion MRI (dMRI) combined

with the term “biomarker”, and (c) all terms and abbreviations for one

of the eight psychiatric disorders mentioned above. These steps were

repeated for all disorders, and the identified references were further

checked for missed publications which were included in the review

as well. An additional screening process included on the relevance of

the publications for the current review. Finally, we focused on all

publications using a predictive analyses approach on MRI-based data

in a case–control design of mental illness diagnoses that explicitly

evaluated classification performance measures (e.g., overall classifica-

tion accuracy). Further, the same search procedure was repeated in

Google Scholar in order to reduce the probability of missing relevant

articles of interest. About 250 papers were eventually selected for

this survey that includes: 101 SZ, 61 MDD/BP, 35 ADHD, 38 ASD,

1 PTSD, 12 OCD, 2 SAD, and 7 SD. We categorized these articles

based on a scheme developed for this review as depicted in

Figure 1a–e and a summary of all articles is presented in Tables 1–8.

Further, we limited our search range to journal articles in English

published up until December 2018. Search criteria also included exclu-

sion of articles without available full-text, and similar papers published

by the same authors. For each study, key aspects such as imaging

modality, classification method, sample size, and type features were

investigated in a quantitative manner, as seen in Figures 3–6.

3.2 | Schizophrenia

SZ is a chronicmental disorder (Bhugra, 2005), which is typically character-

ized by cognitive problems, disintegration in perception of reality, auditory

and/or visual hallucination, and a chronic course with lasting impairment

(Heinrichs & Zakzanis, 1998). There is currently no standard clinical diag-

nostic test for SZ, and there has been considerable focus on identifying a

biologically based marker using neuroimaging features which has shown

some promise. We surveyed 101 peer-reviewed articles, which are pres-

ented in Table 1. Calhoun et al. (2004), Davatzikos, Shen, et al. (2005) and

Yushkevich et al. (2005) are among the first studies to perform predictive

analyses on SZ usingMRI-based neuroimaging data (Table 1).

1 Structural MRI: By utilizing sMRI data, Davatzikos, Shen, et al. (2005)

used voxel-based feature set and applied a high-dimensional

nonlinear pattern classification approach to compute the degree of

separation between SZ and HCs (HC). Using the leave-one out CV

(LOO-CV), the authors reported 81% classification accuracy (for

gender-wise classification, 82% for women and 85% for men).

Another study by Yushkevich et al. (2005) used SVM classifier and

region-based feature sets to discriminate SZ patients with 72%

accuracy. More recently, Koutsouleris et al. (2009) used sMRI and a

principal component feature selection approach, where based on

the overall predictive performance of the feature selection algo-

rithm, an optimal number of principal components was identified to

predict SZ. This study is particularly of importance as it reported to

reliably predict different subcategories of SZ, with a three-class

classification for SZ showing a maximal accuracy of 82%. Another

large-scale study with a sample size of 256 case–control as well as

a similar sized replication cohort predicted SZ based on sMRI-

derived features with an accuracy of about 70% for both CV and

replication study (Nieuwenhuis et al., 2012).

2 Functional MRI: More recently, a high number of studies used fea-

tures from resting-state and task functional MRI (fMRI) for predictive

modeling of SZ, and achieved promising outcomes.

F IGURE 2 The systematic literature review procedure, the
inclusion criteria and the number of surveyed studies for each
modality. ADHD, attention-deficit/hyperactivity disorder; ASD,
autism spectrum disorder; MDD/BP, major depression disorder/
bipolar disorder; OCD, obsessive–compulsive disorder; PTSD,
posttraumatic stress disorder; SAD, social anxiety disorder; SD,
substance dependence; SZ, schizophrenia
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(a) Task-based: Studies using features from task-based fMRI para-

digms include experiments with verbal fluency, working memory

and auditory oddball (Castro et al., 2011; Costafreda et al., 2011;

Honorio et al., 2012). One of the first relatively large-scale study

(i.e., sample size >150) classified SZ using three different task-based

fMRI data (i.e., auditory oddball, Sternberg item recognition and sen-

sorimotor tasks) of 155 participants from two sites (Demirci, Clark,

Magnotta, et al., 2008). The authors applied a projection pursuit

algorithm on ICA spatial maps, and achieved classification accuracies

ranging between 80 and 90%, with sensorimotor task providing the best

performance. Further, based on regions with greater synchrony esti-

mated from synchronous hemodynamic independent maps of auditory

cortex as features, Calhoun and colleagues used awithin-participant sub-

tractive comparison to discriminate SZ fromHCwith97% initial accuracy

and 94% accuracy after a retest validation using a new subjects scanned

at a different site (Calhoun et al., 2004). Another study focusing on

three-class differential diagnosis of SZ, BP and HC individuals reported

that verbal fluency led to a reliable diagnostic specificity for SZwith 92%

accuracy (Costafreda et al., 2011). Many psychotic disorders, such as SZ,

schizoaffective and BP disorders may share substantial number of over-

lapping symptoms, risk genes, brain dysfunctions, and treatment

response. Thus, it becomes very challenging to clinically differentiate

these patients based on traditional diagnostic approaches. A few recent

studies have investigated the heterogeneity associated with SZ and

schizoaffective disorder, as well as BP disorder with psychosis (Cardno&

Owen, 2014; Cosgrove & Suppes, 2013; Pearlson, Clementz, Sweeney,

Keshavan, & Tamminga, 2016). Clementz and colleagues proposed a

“biotypes” based approach where they identified three neurobiologically

unique biologically defined psychosis categories and shown that bio-

types did not follow a straightforward disease severity continuum, with

heritable properties in unaffected first-degree relatives (Clementz

et al., 2015).

(b) Resting-state: The rsfMRI studies for SZ prediction included a variety

of classifiers, such as, SVM, fused lasso, GraphNet, RF, C-means clus-

tering, regularized LDC, and ensembles of SVM classifiers, as presented

in Table 1. Overall, the sample size was relatively large across these

studies, with classification accuracies ranging from 62% to 100%,

although the study with 100% accuracy rate had a very small sample

size (20 participants) and therefore, the results might not be generaliz-

able across other studies (Pouyan& Shahamat, 2015).

3 DiffusionMRI: The dMRI studies surveyed in this review reported accura-

cies ranging from 62% to 96%, with classifiers such as SVM, LDA, Fish-

er's LDC or combination of multiple classifiers (Ardekani et al., 2011;

Caan et al., 2006; Caprihan et al., 2008; Mikolas et al., 2018; Rathi

et al., 2010; J. Shao et al., 2017). Features from these studies included

fractional anisotropy (FA)maps and structural connectivity fromROIs.

4 Multimodal: Recently, by using connectivity measures from multi-

modal dMRI and sMRI data, Zhu, Shen, Jiang, and Liu (2014)

predicted SZ patients and achieved a perfect accuracy (i.e., 100%).

However, given the small sample size (i.e., HC = 10 and SZ = 10)

and the choice of CV (i.e., LOO-CV), the framework might have

introduced classification bias with lack of generalizability with inde-

pendent study sample.T
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In general, the existing SZ predictome studies mostly used func-

tional and structural MRI data as features and LOO-CV approach as

CV, with many studies having a very small sample size. Therefore,

future studies examining predictive modeling with more robust CV

approaches and greater small size are necessary. Further, while these

initial results suggest that SZ can be predicted with higher accuracies,

the accuracy range varies substantially across these studies, and repli-

cation studies are required to confirm generalizability.

3.3 | Major depression/bipolar disorder

While the overlapping symptoms make it challenging to differentiate

between MDD and BP as well as with other disorders (e.g., SZ and

schizoaffective disorder), recent studies have reported successful

diagnostic prediction of of BP and MDD (Arribas et al., 2010;

Costafreda et al., 2011; Lueken, Hilbert, Wittchen, Reif, &

Hahn, 2015; Redlich et al., 2014). We reviewed 61 studies that used

neuroimaging for automatic diagnose BP and MDD which are listed in

Table 2. Among the surveyed studies, structural MRI was primarily

used to predict BP patients, although only few studies included BP

samples. Therefore, further investigation is required prior to rec-

ommending particular classifiers or machine learning frameworks as

diagnostic tools for BP prediction. As presented in Table 2, many stud-

ies have performed classification on MDD samples. While there is an

increase in studies predicting MDD using rsfMRI, sMRI, and task-

based fMRI as features and primarily SVM classifier, with the accura-

cies ranging from 52% to 99%, the sample size is relatively small in

most studies (Table 2).

1 Structural MRI: Costafreda et al. (2009) utilized sMRI data where

they used gray matter maps as features from 37 MDD and 37 HC

participants and achieved 67.6% classification accuracy. Another

recent study with relatively large sample size (i.e., 62 MDD and

62 HC) used voxel-based gray matter maps driven from sMRI and

SVM classifier and achieved 90% accuracy (Mwangi et al., 2012).

Few recent studies have also focused on cross-disorder prediction

of MDD and BP, as well as MDD and SZ. For instance, using multi-

variate patterns form gray matter differences and LOO-CV, Redlich

and colleagues differentiated MDD from BP patients with 79.3%

accuracy, and further validated the findings using an independent

dataset and test–retest validation with 65.5% accuracy (Redlich

et al., 2014).

2 Functional MRI:

a Task-based: Among the initial MDD prediction studies are two task-

based fMRI studies by Marquand et al. (2008) (verbal memory

N-back task, 67.5% accuracy) and Fu et al. (2008) (sad facial

processing task, 84% accuracy).Other task-based MRI studies include

the works performed by Sato et al. (2015) (task paradigm included

written statements of actions counter to social and moral values

described by social,78.3% accuracy), Johnston, Tolomeo, et al. (2015)
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task, 97% accuracy [best result]), and Shimizu et al. (2015) (semantic

and phonological verbal fluency task, 95% accuracy [best result]).

b Resting-state: Among the rsMRI studies, Craddock, Holtzheimer

III, Hu, and Mayberg (2009) used region-based feature set from

rsfMRI and achieved 95% accuracy. Further, using rsfMRI data

and SVM classifier, Yu, Shen, Zeng, et al. (2013) achieved 84.2%

accuracy.

c Diffusion MRI: Studies utilizing features from dMRI data include

SVM classifier based pipelines and features such as anatomical

connectivity, graph matric of white matter connectivity, and FA,

with classification accuracies ranging from 63% to 91% (Deng

et al., 2018; Fang et al., 2012; Sacchet, Prasad, et al., 2015;

Schnyer et al., 2017).

d Multimodal: Using sMRI and dMRI data and LDC classifier, Ota

et al. (2013) obtained about 80% accuracy, to distinguish MDD

from SZ and HC individuals. Another large-scale MDD study (total

sample size = 307) by J. Yang et al. (2018) used structural and dMRI

data and reported 75% accuracy.

While these studies utilized a variety of MRI based features, such

as sMRI, resting and task-based fMRI and dMRI, they provide evi-

dence of brain-based differential diagnoses of MDD and BP. Future

studies should employ large-scale sample size, and more BP prediction

research.

3.4 | Autism spectrum disorder

ASD is a neurodevelopmental disorder characterized by impaired

social communication, deficits in social–emotional reciprocity, deficits

in nonverbal communicative behaviors used for social interaction and

stereotypic behavior. Since 2010, a few studies have investigated

automatic diagnosis of ASD in both male-only and male–female sam-

ples (Ecker, Marquand, et al., 2010; Ecker, Rocha-Rego, et al., 2010;

Jiao et al., 2010) with promising results showing accuracies ranging

from 81% to 90% Table 3). We surveyed 30 papers in automatic diag-

nosis of ASD using MRI-based features which are listed in Table 3.

1 Structural MRI: Using voxel-based feature set (Ecker, Rocha-Rego,

et al., 2010) and region-based feature set (Ecker, Marquand,

et al., 2010) from sMRI data and SVM classifiers, Ecker and col-

leagues predicted ASD with 81 and 90% accuracies, respectively.

Interestingly, Uddin and colleagues employed a searchlight algo-

rithm to sMRI features, where a small number of voxels within the

spatial proximity with one another provide the predicting features

(Uddin et al., 2011). The resulting model obtained 92% classifica-

tion accuracy for ASD diagnosis.

2 Functional MRI:

(a) Task-based: More recently, features from task-based fMRI and

SVM, LRC, LDC, and GPC classifiers were used for ASD prediction,

with accuracies ranging from 70% to 96% (Table 3).

(b) Resting-state: Other ASD prediction studies include region-

based feature set and automatic feature selection from resting

fMRI data with 79% accuracy (J. S. Anderson et al., 2011) and ICA

component based features from resting fMRI data with 78% accu-

racy (Uddin et al., 2013).

3 Diffusion MRI: Ingalhalikar and colleagues used region-based fea-

ture set and automatic feature selection from dMRI data and

achieved 80% accuracy (Ingalhalikar et al., 2011). Another dMRI-

based prediction study by Zhang and colleagues used SVM classi-

fier on FA and mean diffusivity measures and reported to achieve

78% accuracy.

4 Multimodal: Studies utilizing multimodal MRI data for ASD predic-

tion include the works by Deshpande and colleagues where both

task fMRI and dMRI data were used to identify causal connectivity

weights, connectivity values, and FA features, resulting in 95.9%

accuracy (Deshpande et al., 2013). Another work discriminating

between ASD and HC participants used rsfMRI and sMRI based

features and achieved 65% accuracy (Ghiassian et al., 2016).

While these studies have utilized all available MRI data modalities

as features for predicting ASD, the number of sample size as well as

studies based on each modality are relatively low. Additionally, het-

erogeneity associated with ASD, including subtypes of lower versus

higher functioning patients, should be further investigated using pre-

dictive models.

TABLE 7 Posttraumatic stress disorder

Reference DisorderModality Number of subjects Feature type Classifier Overall accuracy

Q Gong et al.

(2014)

PTSD sMRI PTSD earthquake = 50

no-PTSD earthquake = 50

HC = 40, Total = 140

Voxel-based

feature set

SVM No-PTSD vs. PTSD:

76.00

No-PTSD vs. HC: 85.00

PTSD vs. HC: 91.00

TABLE 6 Social anxiety disorder

References Disorder Modality Number of subjects Feature type Classifier Overall accuracy

F. Liu, Guo, et al. (2015) SAD rsfMRI SAD = 20, HC = 20, Total = 40 Region-based feature set SVM 82.5%

Frick et al. (2014) SAD Task fMRI; sMRI SAD = 14, HC = 12, Total = 26 Voxel-based feature set SVM 84.5%
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3.5 | Attention-deficit/hyperactivity disorder

One of the most commonly found neurodevelopmental disorders is

ADHD. However, given the lack of biological-based diagnosis

approach, ADHD is currently diagnosed based on behavioral symp-

toms only. In this review, we surveyed 35 papers in automatic diagno-

sis of ADHD using MRI-based features which are listed in Table 4.

1 Structural MRI: Studies based on sMRI features reported accuracies

for ADHD classification ranging from about 72% to 93% (Igual

et al., 2012; Johnston et al., 2014; Lim et al., 2013). Using voxel-

based feature set from sMRI data and automatic feature selection

approach, Johnston and colleagues trained the features using a

SVM classifier and obtained 93% accuracy (Johnston et al., 2014).

Lim and colleagues used whole brain gray and white matter from

sMRI data and GPC classifier and predicted ADHD with 79.3%

accuracy (Lim et al., 2013)

2 Functional MRI:

a Task-based: In order to predict ADHD, Hart and colleagues used

stop signal task-based fMRI data (Hart, Chantiluke, et al., 2014;

77% accuracy) and temporal discounting task-based fMRI data

(Hart, Marquand, et al., 2014; 75% accuracy). However, these stud-

ies were performed using relatively small sample sizes, and there-

fore may lack generalizability across other independent samples.

b Resting-state: A recent study by Zhu and colleague used voxel-

based feature set and automatic feature from rsfMRI data and LDC

and SVM classifiers to classify ADHD with an accuracy of 75–80%

(C.-Z. Zhu et al., 2008). Other resting-state studies include the work

by Sidhu and colleagues where they used SVM classifier in a large

sample with 668 participants and obtained 76% accuracy (best

result; Sidhu et al., 2012).

c Diffusion MRI: While studies have reported disrupted white matter

tracts in ADHD patients (van Ewijk, Heslenfeld, Zwiers, Buitelaar, &

Oosterlaan, 2012), to date no published studies have examined

dMRI based features for ADHD prediction.

d Multimodal: Several multimodal studies for ADHD prediction

include sMRI, rsfMRI, and phenotypic data (A. Anderson

et al., 2014), sMRI and rsfMRI data (Bohland et al., 2012; Colby

et al., 2012; Dai et al., 2012), and sMRI and task-based MRI data

(Iannaccone et al., 2015), with accuracy ranging from 55% to 80%.

3.6 | Obsessive–compulsive disorder

Only a few recent studies have applied classification algorithms to

OCD. We surveyed 12 papers focused on automatic diagnosis of

OCD using MRI-based features which are listed in Table 5.

1 Structural MRI: Using an approach to calculate the distance between

individual participants and the mean of OCD and control group

based on sMRI derived measures, Soriano-Mas and colleaguesT
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distinguished between OCD patients and HCs (Soriano-Mas

et al., 2007). Other sMRI studies for OCD prediction reported overall

accuracies ranging from 73% to 95.6% (X. Hu et al., 2016; Parrado-

Hernández et al., 2014; Takagi et al., 2017; Yun et al., 2015).

2 Functional MRI:

a Task-based: In a task-based fMRI study presenting emotional

valence stimuli, OCD patients were classified with perfect accuracy

in a very small sample of 10 participants per group (Weygandt

et al., 2012).

b Resting-state: The surveyed rsfMRI studies mostly used SVM classi-

fier to predict OCD (Sen et al., 2016; Shenas et al., 2013;

Trambaiolli et al., 2017; accuracy ranging from 66% to 80%), with

an exception of logistic regression classifier (Gruner et al., 2014;

80% accuracy).

c Diffusion MRI: Li and colleagues used voxel-based feature set from

dMRI data and SVM classifier to classify OCD with 84% accuracy

(Li, Tran, et al., 2014).

d Multimodal: Using features from multimodal resting-state MRI and

task MRI data Shenas and colleagues reported 74% accuracy for

OCD prediction while applying SVM and LDC classifiers (Shenas

et al., 2014).

3.7 | Social anxiety

To date, only two studies on SAD have been published which included

relatively small samples, with accuracies above 80% (Frick et al., 2014;

Liu et al., 2015). These studies derived multivariate patterns from dif-

ferent MRI modalities suggesting that features relevant for SAD

F IGURE 3 Visual summary of the surveyed mental illness prediction studies. (a) The number of studies published in each year for each
modality. (b) The number of studies published in each year for each disorder type. (c) The number of studies published in each year for each
disorder type and each modality. (d) The overall prediction accuracy against the commonly used classifiers in each disorder type. (e) The overall
prediction accuracy against each modality and each disorder type. (f) The total sample size against each disorder type for each modality
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classification can be extracted and analyzed across modalities. Both

studies reported useful features to be distributed across widespread

brain areas, rather than localized brain regions typically associated

with anxiety. We surveyed two papers focused on automatic diagno-

sis of SAD using MRI-based features which are listed in Table 6.

3.8 | Posttraumatic stress disorder

Only one study to date has performed discriminative analysis on PTSD,

where 50 earthquake survivors with and without PTSD were compared

to controls using structural imaging (Q Gong et al., 2014). Patients with

PTSD were classified with an accuracy of 91%, with the most discrimi-

native features were found in different brain areas, particularly in left

and right parietal regions. Table 7 presents the surveyed paper in auto-

matic diagnosis of PTSD using MRI-based features.

3.9 | Substance dependence

To date, only a few predictive studies on SD (e.g., alcohol, nicotine,

and cocaine addiction) and treatment completion have been per-

formed, with only one study implementing a multimodal imaging

approach to predict alcohol consumption and treatment effects in the

F IGURE 4 Visual summary of the surveyed mental illness prediction studies. (a) The overall accuracy against the total sample size for each
disorder and for each classifier used in the studies. (b) The overall accuracy against the total sample size for each modality and for each classifier
used in the studies. (c) The overall accuracy against the total sample size for each disorder and each modality used in the studies. (d) The sample
size distribution for number of studies in the survey. (e) The overall accuracy against each modality for each disorder and for each classifier used
in the studies
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brain (Cosa et al., 2017), although using data from Marchigian–

Sardinian (msP) rats. Table 8 provides the seven surveyed paper in

automatic diagnosis of SD using MRI-based features.

1 Structural MRI: Using SVM-RFE classifier, Ding and colleagues utilized

mean gray matter volume features from sMRI data to predict nicotine

dependence with 69.6% accuracy (Ding et al., 2015). Alcohol depen-

dence was predicted in a recent study using regional gray matter maps

from sMRI and weighted robust distance and SVM classifiers

(Guggenmos et al., 2018), resulting in 74%classification accuracy.

2 Functional MRI:

(a) Task-based: Only one study investigated heroin-dependence

using FNC measures from task-based fMRI and SVM classifiers,

and achieved 80.58% accuracy (Steele et al., 2018).

(b) Resting-state: Using FC measures as features from rsfMRI data

and SVM classifiers, Pariyadath and colleagues predicted nicotine

dependence with a maximum accuracy of 78.6% (Pariyadath

et al., 2014). Ding and colleagues further used rsfMRI data and

SVM based classifiers to successfully predict nicotine dependence

(Ding et al., 2017; local measures and network measures, 75.5%

accuracy). Alcohol Dependence was predicted in a recent study

using rsfMRI based FC measures and Random Forest classifier,

obtaining 87% accuracy (Zhu, Du, et al., 2018). Using connectivity

measures from rsfMRI data, SVM classifier was used to predict nic-

otine dependence with 95.2% accuracy (Vergara et al., 2017).

3.10 | Analysis of the survey

Figure 3 demonstrates some key features from this survey. Figure 3a

presents the number of studies published in each year for each modal-

ity, Figure 3b shows the number of studies published in each year for

F IGURE 5 Disorder-specific cumulative density function (CDF) of the surveyed mental illness prediction studies. Summary results are shown
for (a) schizophrenia (SZ), (b) major depression disorder/ bipolar disorder (MDD/BP), (c) autism spectrum disorder (ASD). For each of the
disorders, CDFs for publication year per modality, sample size per modality, accuracy per modality, and accuracy per classifier are presented
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each disorder type, and Figure 3c shows the number of studies publi-

shed in each year for each disorder type and each modality. These

figures show that there is a publication growth since 2007, and

since 2010, the number of studies has been growing rapidly. Only

one ADHD prediction study was performed before 2000, which

included a sample size relatively low compared to the recent

ADHD publications (Semrud-Clikeman et al., 1996). Particularly, all

major disorders’ studies (i.e., SZ, MDD/BP, ASD, and ADHD) have

shown a peak between 2011 and 2013, which might be due to the

recent data-sharing initiatives. From Figure 3c, it can be observed

that all MRI-based features have been utilized for prediction of

these major disorders, with a few multimodal studies. Further, it

shows that structural MRI (sMRI) is the most popular choice of

modality, particularly for SZ studies. For MDD/BP, ASD, and

ADHD studies, rsfMRI is the most popular modality. Moreover,

compared to dMRI, multimodal studies are more common across

these major disorders.

Figure 3d shows the overall prediction accuracy against the com-

monly used classifiers in each disorder type, Figure 3e reports the

overall prediction accuracy against each modality and each disorder

type, and Figure 3f presents the total sample size against each disor-

der type for each modality. SVM classifier was the most popular

across all major disorders, followed by LDA.

Figure 4a shows the overall accuracy against the total sample size for

each disorder and for each classifier used in the studies, Figure 4b shows

the overall accuracy against the total sample size for eachmodality and for

each classifier used in the studies, and Figure 4c shows the overall accu-

racy against the total sample size for each disorder and eachmodality used

in the studies. Interestingly, even with a sample size smaller than

100, almost all studies reported very high accuracies, with few reporting

F IGURE 6 Disorder-specific cumulative density function (CDF) of the surveyed mental illness prediction studies. Summary results are shown
for (a) attention-deficit/hyperactivity disorder (ADHD), (b) obsessive–compulsive disorder (OCD), and (c) substance dependence (SD). Summary
for posttraumatic stress disorder (PTSD) and social anxiety disorder (SAD) were excluded due to very few publication number. For each of the
disorders, CDFs for publication year per modality, sample size per modality, accuracy per modality, and accuracy per classifier are presented
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100% classification accuracy. The reported overall accuracy decreaseswith

increasing sample size in most of the major disorders, including SZ and

MDD/BP, which is concerning as it indicates that the classification frame-

work utilized in these small sample size studies might not be generalized

across large-scale studies. Further, SVM classifier shows to achieve very

high accuracy across most of the major disorders. Also, rsfMRI and task-

based SZ,MDD/BP andADHDstudies showhigh accuracy rate.

Figure 4d reports the sample size distribution for number of stud-

ies in this survey. The dashed lines represent mean (red) sample size

across all studies. Figure 4e shows the overall accuracy against each

modality for each disorder and for each classifier used in the studies.

MDD/BP and ADHD studies reported the lowest accuracies.

Based on our surveyed studies (Tables 1–8), volume and cortical

thickness from structural MRI, the activation maps and functional con-

nectivity among ROIs or ICA components from fMRI data and FA from

dMRI data were some of the most commonly used features for classifica-

tion. Further, SVM was the most popular classifier of choice across all

disorders’ studies, and different extensions of SVM methods, including

linear, nonlinear (different kernel), and SVM with recursive feature

elimination (SVM-RFE), were observed. Other popular classifiers from the

surveyed studies include LDA, Gaussian process classifier (GPC) and

random forest (RF).

Figures 5 and 6 present the cumulative density function (CDF) for

(a) publication year per modality, (b) sample size per modality,

(c) accuracy per modality, and (d) accuracy per classifier, for the main

disorders (disorders with very few number of studies were excluded).

An interesting observation from this summary is that, there is a

growth in multimodal prediction studies for many of these major men-

tal disorders.

4 | TRANSLATIONAL PERSPECTIVE OF
BRAIN-BASED PREDICTOME RESEARCH FOR
CLINICAL APPLICATION

4.1 | Translating predictive outcomes toward
clinical utility

Typically, in a research-based setup, predictive studies are implemented

using two or more well-proportioned groups of patients with mental ill-

ness and their healthy counterparts. The group labels are carefully diag-

nosed before training a supervised classification algorithm, where

exclusion of subjects with uncertain diagnoses or comorbidities is a

common practice (Wolfers et al., 2015). However, in case of real clinical

population, the disease diagnosis is a more complex and sophisticated

process. Thus, considerable improvement in the field of predictive

modeling is required before they will be useful to apply in clinical prac-

tice. In many clinical cases, the central question to be addressed is not

as simple as how to distinguish patients from controls, but rather the

specific distinction between different illnesses in the same population

(i.e., subtypes). Simply put, a differential diagnostic process is required

before accurate clinical implementation of the available tools can be

made available. Moreover, another limitation of the current predictive

modeling approaches is the lack of appropriate (or any) identification of

comorbidities among patients, which is essential to properly assign

memberships across multiple diagnostic classes. To date, there are only

a few existing studies in the current literature across different disorders

have demonstrated multi-class classification (i.e., subtype classification)

of three or more disorders (Costafreda et al., 2011; Du et al., 2015;

Dwyer et al., 2018; Grotegerd et al., 2013; Koutsouleris et al., 2015;

F IGURE 7 A deep-learning approach for schizophrenia prediction. (I) Methodological illustration of restricted Boltzmann machine (RBM)
based deep learning pipeline. Features were learned from the time-courses of the data. (II) Example showing a smoothed gray matter
segmentation of a training sample of a schizophrenia patient and a healthy control (left), and the effect of a deep belief network's (DBN) depth on
neighborhood relations (right). Results showing that after Depth 1 and Depth 2, the DBN continues distilling details that pull the classes further
apart. Figures reprinted with permission from Plis et al. (2014)
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Lim et al., 2013; Redlich et al., 2014; Serpa et al., 2014; Yu, Shen, Zeng,

et al., 2013). However, to the best of our knowledge, no such studies

have adequately addressed the issue of comorbidity.

Although existing limitations should be addressed before clinical

application of the research-based diagnostic/predictive tools become

available, even current approaches can be used as a supplement to clini-

cal diagnosis with higher decision-making uncertainty or even to make

decisions for any follow-up medical procedure requirements. Beyond

the traditional subjective approaches, incorporating quantitative predic-

tion approaches of psychiatric disorders can assist more accurate clini-

cal diagnosis (Krueger et al., 2018). However, there are several key

factors that need to be considered prior to a successful clinical transla-

tions of the neuroimaging predictive modeling, including reliability of

neuroimaging-based findings and subject-level clinical transition

(Saggar & Uddin, 2019). Moreover, some of the existing gaps in psychi-

atric neuroimaging research need to be addressed (Etkin, 2018, 2019).

More specifically, some immediate clinical application of predic-

tive modeling may include:

• Diagnosis based on “biomarkers” in addition to clinical interviews:

Current clinical diagnoses are primarily made based on clinical

interviews. In addition to the existing behavioral measures,

F IGURE 8 Schematic description showing the multimodal, MEG-fMRI classification framework. (a) Both resting-state fMRI and MEG data
went through group ICA, windowed-FNC and k-means clustering approach. Regression analyses were performed on dynamic FNC measures to
extract features. (b) Bar plots showing average classification accuracy improvement with static FNC approach. (c) Bar plots showing average
classification accuracy improvement with dynamic FNC approach. Dynamic approach clearly outperformed static FNC approach. Figures reused
with permission from Cetin et al. (2016)
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predictive modeling outcomes can provide more accurate brain-

based endophenotypes or “biomarkers”, and combining both mea-

sures can provide deeper understanding of biological pathways,

mechanisms and progression of the disease. For example, brain-

based biomarkers for ASD and ADHD could aid in disease diagno-

sis more objectively (Uddin, Dajani, Voorhies, Bednarz, &

Kana, 2017).

• Multi-class classification: In clinical practice, it is very challenging to

diagnose severe mental disorders that share substantial over-

lapping symptoms such as SZ, schizoaffective, unipolar and bipolar

depression, and mood disorders. By obtaining estimates of

predictive confidence level across multiple disease classes, predic-

tive models could offer to identify comorbidities in patient groups.

Recent multi-class approaches can specify a predictive value for all

classes of interest for each subject, and are able to indicate comor-

bidity of subjects for multiple disorders based on their predictive

confidence level (Filippone et al., 2012). Other approaches to iden-

tify comorbidities include multi-label classification (M.-L. Zhang &

Zhou, 2014) and multi-task learning (Pan & Yang, 2010), where

multiple class labels are assigned to each sample.

• Patient screening: Before proceeding with clinical procedures or

expert opinions, neuroimaging-based predictive outcomes can be

F IGURE 9 Prediction of schizophrenia (SZ) and bipolar disorder (BP) using temporal lobe and default mode components. (a) Group-wise
average temporal lobe and (b) default mode features, extracted from fMRI data from healthy control (HC), SZ, and BP patients. Components are
thresholded at p < .001 (corrected). (c) Classification results illustrated with a priori decision regions, and actual diagnosis of test subjects. The
average sensitivity and specificity were 90 and 95%, respectively. Figures modified and reprinted with permission from Calhoun et al. (2008)
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utilized as a patient screening phase. A prior screening of patients

using predictive modeling might reduce the time and expenses

related to clinical interviews.

• Treatment response/outcome prediction: In addition to aiding the

decision-making procedure in clinical diagnoses, predictive tech-

niques can also be utilized in predicting treatment response

(Bzdok & Meyer-Lindenberg, 2018) (e.g., Gong et al., 2011) and

treatment outcome (e.g., Schmaal et al., 2015). By monitoring

treatment outcomes and pursuing potential treatments using pre-

dictive modeling, the clinical diagnosis can become more cost-

efficient.

• Drug trial design: Based on predictive modeling outcomes, future

response can also be classified. By selecting subsets of individuals who

are most likely to response to a particular medication, more efficient

drug trails can be designed. For example, medication-class of response

to mood stabilizers (bipolar) or antidepressants (depression) can be

classified using machine learning approaches (Osuch et al., 2018).

4.2 | Prediction of continuous measures versus
categorical diagnoses

Most of the mental illness prediction studies surveyed in this review are

based on assignment of discrete or categorical class labels for test samples.

However, the categorical diagnosis approach overlooks the continuous

measures while predicting a certain disease class, which can lead to mis-

leading outcomes, or miss sub-clinical tendencies that can be useful for

predicting risk. Formore reliable outcomes, predictivemodeling using con-

tinuous measure, such as pattern regression, can become a valuable tool.

Moreover, for mental illness prediction using brain-based features,

regression-based modeling can be used to estimate the disease progres-

sion and treatment outcomes, and can estimate continuous measures

(e.g., neuropsychiatric or cognitivemeasures). In order to estimate continu-

ous clinical measures from neuroimaging data, a recent study by Wang

and colleagues proposed a framework using the relevance vector machine

(RVM) to build regression and obtained higher classification accuracy and

F IGURE 10 Classification approach using static and dynamic FNC measures. (a) Windowed FNC and k-means clustering methods were used
to extract dynamic FNC features from schizophrenia (SZ), bipolar (BP) and healthy control (HC). (b) Classification results showing that dynamic
FNC approach outperformed static FNC framework (accuracy: 84% versus 59%, respectively). (c) Another FNC-based approach showing dynamic
FNC approach clearly outperforms static FNC approach (Saha et al., 2019, ISBI). Multiple dynamic states (k = 2–10) were utilized to evaluate
classification performance. (d) Further, using subsets of states and flat and Brute Force (BF) approaches, performance was evaluated, showing
improvement in accuracy with subsets of states (Saha et al., 2019, ohbm). Figures modified and reprinted with permission from Rashid
et al. (2016), Saha, Abrol, et al. (2019), and Saha, Damaraju, et al. (2019)
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better generalizing ability compared to support vector regression

(Y. Wang, Fan, Bhatt, & Davatzikos, 2010). Another study explored inter-

regional cortical thickness correlations to identify and characterize the

autism diagnostic observation schedule score in ASD (Sato et al., 2013).

The results from this study showed that structural covariance measures

among multiple brain networks are associated with autistic symptoms.

Further, Tognin and colleagues used relevance vector regression to Predict

Positive and Negative Syndrome Scale scores of subjects at high risk of

psychosis based on gray matter volume and cortical thickness measure-

ments (Tognin et al., 2014). More recently, studies have started to predict

continuous measures of assessment in both health and disease (e.g., the

research domain criterion [RDoC]; T. Insel et al., 2010). These studies sug-

gest that promising results can be achieved by using continuous measure

for disease prediction in addition to categorical diagnosis.

4.3 | Prediction of disease risk (prodromal state)

While challenging, early diagnosis of individuals at high risk of future

mental illness is very critical in order to delay or prevent the disease

progression. Since most mental illnesses typically have an onset in

adolescence or early adulthood (Kessler et al., 2005), early detection

could delay, or even prevent, future onset of these severe illnesses in

high-risk adolescents. Predictive modeling based approaches offer

promising tools to be used for clinical diagnosis, such as identification

of neuroimaging-based biomarker that can support early identification

of potentially at-risk individuals of developing mental disorders, with

the potential risk being unidentified. However, only a limited number of

studies have explored the discriminative power of predictive modeling

to identify healthy adolescents genetically at-risk for mental illnesses.

Mour~ao-Miranda and colleagues investigated whether Gaussian

process classifiers (GPC) based machine learning algorithm using neuro-

imaging data could help differentiate healthy adolescents genetically

at-risk for BP disorder and other Axis I psychiatric disorders from

healthy adolescents at low risk of developing these disorders, and iden-

tify those healthy genetically at-risk adolescents who were most likely

to develop future Axis I disorders (Mour~ao-Miranda et al., 2012).

Results from this study showed that the model can discriminate healthy

low-risk from healthy adolescents genetically at-risk for Axis I disorders,

as well as help predict which at-risk adolescents subsequently develop

F IGURE 11 A joint estimation
approach for schizophrenia prediction using
parallel group ICA + ICA. Flowchart
showing steps to extract first-level fMRI
(a) and sMRI (b) features, feature

integration using parallel GICA+ICA (c),
group-level components extraction from
GICA (d), subject-level GICA components
extraction (e), group-level GICA
components extraction (f), FNC analysis.
Figures reprinted with permission from Qi
et al. (2019)
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these disorders. Further, Guo and colleagues used fractional amplitude

of low-frequency fluctuation (fALFF) to characterize signals from the

default-mode network in unaffected siblings of SZ patients using

resting-state functional MRI data (W. Guo, Su, et al., 2014). Also, using

machine learning methods, Fan and colleagues explored structural

endophenotypes in unaffected family members of SZ patients, and

reported that family members had structural profiles highly overlapping

with those of SZ patients (Fan et al., 2008).

4.4 | Prediction of disease onset and treatment
outcome/responses

Typically, prediction approach is applied for predicting disease onset,

progression, diagnosis, or treatment outcome/response. For more clini-

cal context, predictive modeling can be used as a diagnostic tool or for

predicting treatment response. In order to predict the onset of MDD, a

recent machine learning-based longitudinal, 5-year follow-up study was

performed (Foland-Ross et al., 2015), where cortical thickness measures

were used to predict differences between participants who later experi-

enced depression and subjects who remained healthy, with a predictive

accuracy of 70% (p = .021). A few studies have attempted to predict the

treatment response of mental disorders. Using machine learning

approach, Liu and colleagues obtained an accuracy of 82.9% to predict

treatment response and resistance (F. Liu et al., 2012). Another study by

Osuch and colleagues examined the translational perspective of fMRI

(i.e., spatially independent components [ICs]) based classification for

medication-class of response prediction in patients with MDD and BP

(Osuch et al., 2018). Using SVM classifiers and a nested CV approach,

the algorithm predicted the medication class of response 91.7% of the

time. To prevent or delay disease progression, as well as to develop opti-

mized treatment plans, further applications of machine learning-based

disease onset and treatment response prediction are required.

5 | CURRENT TRENDS IN THE BRAIN-
BASED PREDICTOME

5.1 | Univariate versus multivariate approaches

The recent methodological developments of a wide range of multivari-

ate neuroimaging analysis approaches have received growing attention

due to their ability to examine additional features beyond the

voxel-wise, univariate techniques. In case of univariate, functional

neuroimaging approaches, typically a model of the expected response

variable is fitted independently at each voxel's time course, and then

further tests are performed using the estimated response levels during

experimental conditions (K. J. Friston et al., 1994). Although conve-

nient, this approach introduces a large number of statistical tests as it

results in statistical difference maps of responses by targeting only

selective brain locations related to a specific stimulus (i.e., voxels or

ROIs; K. J. Friston et al., 1994). Thus, it limits the study of stimulus-

F IGURE 12 Predicting cognition. An approach to predict cognition with constrained data fusion. Comparison of composite cognition
associated with multimodal covarying patterns between multiple cohorts. The composite cognitive scores were used as references for multisite
data cohorts. Figures reprinted with permission from Sui et al. (2018)
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independent relationships among brain regions (e.g., functional connec-

tivity). In addition, the univariate approach does not allow estimation of

the stimulus effects at multiple brain locations. Multivariate neuroimag-

ing approaches take into account the full spatial pattern of brain activity

simultaneously at multiple spatial locations, and are able to detect sub-

tle but localized measures of brain activity that are not captured by uni-

variate approaches (Allen et al., 2011; Habeck et al., 2008; Habeck

et al., 2005; J. Liu & Calhoun, 2014; McIntosh & Lobaugh, 2004;

Moeller & Strother, 1991; Narayanan et al., 2015; Sui, Adali, Yu, Chen, &

Calhoun, 2012). In contrast to the traditional univariate, model-based

approach which lacks the ability to directly address interaction between

voxels/regions, multivariate approach estimates correlation or covari-

ance of activation across brain regions. Multivariate results can also be

more reliably translated as a signature of underlying brain networks.

Recent multivariate neuroimaging methods offer to analyze the rela-

tionship between a stimulus and the responses simultaneously

measured at many locations, such as spatial response patterns or

multi-voxel response patterns. Compared to univariate techniques,

multivariate approaches provide potentially greater statistical power

and better reproducibility.

In neuroimaging-based diagnoses, multivariate machine learning

methods integrate available features simultaneously to jointly differ-

entiate between groups. Typically, for a multivariate machine learning

approach, a classifier is trained on a training dataset to predict differ-

ent classes (e.g., patient groups), which is then applied to the testing

dataset. The classification accuracy (i.e., correct classification rate) is

then estimated, using a CV procedure for improved accuracy. To date,

a number of multivariate machine learning methods have been applied

in neuroimaging-based prediction, such as SVM, k-nearest neighbor

(KNN), Gaussian Naive Bayes (GNB), and LDA. Among these classi-

fiers, the SVM-based classifier has been reported to obtain greater

classification performance (Davatzikos et al., 2005; Mitchell

F IGURE 13 An approach to classify
schizophrenia (SZ) using resting-state
functional network connectivity (FNC)
measures. (a) Feature extraction and
classification steps of the FNC-based
framework. (b) group-wise mean FNC
(left), and T values (FDR corrected,
p < .05) (right). (c) Group difference in
mean FNC measures (left), and FDR

corrected (p < .05) T values showing
group difference. Figures reprinted with
permission from Arbabshirani
et al. (2013)
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et al., 2004; Mourao-Miranda, Bokde, Born, Hampel, & Stetter, 2005;

Wang, Hutchinson, & Mitchell, 2004). Other recent and more efficient

classifiers include: The Random Forest (Breiman, 2001), deep learning

(Calhoun & Sui, 2016; Han et al., 2017; Jang et al., 2017; Plis

et al., 2014; Figure 7) and artificial neural network (ANN; H. Guo

et al., 2014; J. Kim et al., 2016) classifiers.

Example of multivariate machine learning methods for mental

illness diagnoses includes classification of SZ using structural MRI data

with classification accuracies ranging from 81% to 93% (Gould

et al., 2014; Greenstein et al., 2012; Kawasaki et al., 2007; Sun

et al., 2009; Yoon et al., 2008).

5.2 | Multimodal studies

Although neuroimaging techniques have become popular tools to

identify mental illness related biomarkers, each imaging technique has

its limitations (Calhoun & Adali, 2009; Calhoun & Sui, 2016; S. Liu,

Cai, et al., 2015). The modality-specific limitations can be partly over-

come by developing multimodal neuroimaging techniques, by combin-

ing data obtained from multiple neuroimaging techniques, such as

EEG, structural magnetic resonance imaging (sMRI), and fMRI, which

provides more informative and reliable results on brain structure and

dynamics than unimodal neuroimaging approach. Multimodal neuro-

imaging is a relatively new and rapidly expanding field that integrates

data from different modalities to understand the pathophysiology of

mental illness (Calhoun et al., 2006; Sui et al., 2012). For instance, by

linking the genomic variation to brain function, structure and connec-

tivity measures, imaging genomics approach can characterize the

underlying neural mechanisms through which genomics variations

affect cognition and behavior in mental illness. Multimodal data fusion

approaches utilize complementary information available from both

data modalities to jointly estimate their association by accounting for

inter-modality relationships. Particularly, for complex disorders such

as SZ, the relationship between features from multiple modalities may

be better understood by incorporating additional information pro-

vided by advanced multimodal modeling. Thus, it is important to study

the inter-relationships between multimodal neuroimaging data, as well

as nonimaging features, such as, behavioral and genomic data, while

performing predictive modeling of mental illness.

There are currently multiple approaches to integrate data

acquired from various unimodal imaging techniques, as described by

Calhoun and Sui (2016). These include a separate visual inspection of

unimodal results, multimodal integration after individually analyzing

unimodal results to prevent any interaction between the unimodal

data, and data fusion using either asymmetric approach where one

modality constrains the other (e.g., fMRI constrained EEG) or a sym-

metric approach where multiple modalities are analyzed jointly

(e.g., joint independent component analysis [joint-ICA] or parallel

independent component analysis [parallel-ICA]).

While most of the studies in the existing literature used a single

modality for mental illness prediction, recent development in data

fusion approaches have made multimodal neuroimaging a popular

trend. Several recent studies have differentiated SZ patients from HC

by combining data from rs-fMRI or task-based fMRI, and sMRI (Cabral

et al., 2016; J. Ford, Shen, Makedon, Flashman, & Saykin, 2002;

Qureshi, Oh, Cho, Jo, & Lee, 2017; Yang, He, & Zhong, 2016), fMRI

and single nucleotide polymorphism (SNP; genomic feature; Yang

et al., 2010), and rs-fMRI and MEG (Cetin et al., 2016), while only a

few studies combined data from three or more modalities (Sui

et al., 2013; Sui et al., 2014), with accuracy ranging from 75% to

100%. Other recent data fusion advances include integration of multi-

ple task-based fMRI data sets (D. I. Kim et al., 2010; Sui, Adali,

Pearlson, & Calhoun, 2009; Sui et al., 2015) from the same partici-

pants, where common versus specific sources of activity was specified

to a greater degree than conventional general linear model-based

approaches. Using a Fisher's linear discriminate classifier, Ford and

colleagues classified SZ and HC based on tasked-based fMRI data

with 78% accuracy, and sMRI data with 52% accuracy, however, the

combined multimodal data (fMRI and sMRI) resulted in the highest

accuracy of 87% (J. Ford et al., 2002). Another recent multimodal neu-

roimaging study by Yang and colleagues integrated rs-fMRI based

connectivity features and sMRI based structural features extracted

using ICA, and used SVM classifier to compare unimodal versus multi-

modal accuracy (Yang, Chen, et al., 2016). Results from this study

showed that multimodal features achieved higher accuracy (77.91%)

than single modality accuracy (72.09%). Using multimodal sMRI

and rs-fMRI data, Cabral and colleagues classified SZ patients and HC

individuals with 75% accuracy, where the multimodal features based

classification outperformed both of the unimodal features based pre-

diction accuracy (69.7% accuracy using sMRI data and 70.5% accuracy

using rs-fMRI data; Cabral et al., 2016). Qureshi and colleagues

employed a similar approach to classify SZ patients and HC individuals

using combined rs-fMRI and sMRI data but on a higher number of

samples, and achieved 10-by-10-fold nested cross-validated predic-

tion accuracy of 99.29% (Qureshi, Oh, Cho, et al., 2017). Note that, in

order to use as much training data as possible and overcome the sam-

ple size issue, the framework utilized a nested CV without novel data

for testing, which might have introduced classification bias and

resulted in such high prediction accuracy. Regardless of the methodo-

logical limitations, these and other studies show the potential of

leveraging multimodal imaging data. However, more robust multi-

modal fusion approaches and validations are required before making

them available for clinical purposes.

Besides multimodal integration of MRI modalities, recent stud-

ies have also combined neuroimaging data with non-neuroimaging

features, such as genomics data (e.g., SNPs), DTI, MEG, and EEG

for classification of mental illnesses. Using ICA and SVM-based

classifier ensemble (SVME), in a relatively small sample size and

SNPs array, Yang and colleagues classified SZ patients and HC

with 73.88% accuracy for SNPs data, 81.63% accuracy for voxel-

level fMRI activations, 82.50% accuracy for ICA component-

specific fMRI activation, and finally, 87.25% accuracy for combined

fMRI-SNPs data (Honghui Yang et al., 2010). Further, in a large

dataset, using multiple classifiers including sparse representation-

based classifier (SRC), fuzzy c-means (FCM) classifier, and SVM-
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based classifier, Cao and colleagues discriminated between SZ

patients and HC individuals by combining fMRI and SNP data

modalities, and found the best classification accuracy of 89.7%

achieved using SRC (L. Cao et al., 2014). Another recent study by

Cetin and colleagues integrated rs-fMRI and MEG data to distin-

guish SZ from HC, and found that the best performance of 87.91%

accuracy was obtained by using the ensemble classifier (Cetin

et al., 2016; Figure 8). Using a novel data fusion technique known

as mCCA + jICA and multiple types of classifiers, Sui and col-

leagues integrated features from rs-fMRI, sMRI, and DTI (i.e., FA)

to classify SZ patients and HC individuals, and achieved a maxi-

mum classification accuracy of over 90% using radial basis function

support vector machine (RSVM) classifier on DTI (i.e., FA) and

sMRI (gray matter) features (Sui, He, Pearlson, et al., 2013).

Further, using the sample data fusion technique (i.e., mCCA+jICA)

and features from rs-fMRI, sMRI, and EEG modalities, Sui and

colleagues utilized a SVM classifier with recursive feature elimina-

tion (SVM-RFE), and obtained 91% accuracy in training data

and 100% accuracy (i.e., predication rate) with combination of all modali-

ties to classify SZ patients and HC individuals (Sui et al., 2014). In order

to classify ultra-high-risk individuals for psychosis, first-episode psycho-

sis and HC, Pettersson-Yeo and colleagues used a multi-step data fusion

approach that includes an unweighted sum of kernels, multi-kernel

learning, prediction averaging, and majority voting, and obtained 86.33%

accuracy by combining features from DTI and fMRI modalities

(Pettersson-Yeo et al., 2014).

The results of the above-mentioned studies are encouraging for

using multimodal neuroimaging in classification of mental illness,

suggesting that data fusion methods combined with advanced

machine learning techniques present a promising direction for mental

illness prediction.

5.3 | Multi-class classification for disease subtype
to reduce diagnoses heterogeneity

While the case (i.e., patient with mental illness) versus control diag-

nostic approach has been successfully implemented in the existing

mental illness prediction literature, it does not address the differential

diagnosis aspect of mental illness prediction (i.e., distinguishing

between illnesses with overlapping symptoms or subgroup diagnosis).

Traditional case versus control model ignores the heterogeneity

within the disease group by assigning predefined case or control label

to the test sample. Many severe mental illnesses, such as SZ,

schizoaffective disorder, unipolar and bipolar depression, and other

mood disorders share substantial overlapping symptoms, and there-

fore disease prediction based on the reported symptoms alone is not

adequate for accurate diagnosis. To address this, the National Insti-

tute of Mental Health introduced the research domain criteria (RDoC;

http://www.nimh.nih.gov/research-funding/rdoc), as a way to classify

mental illnesses based on multiple symptom, behavioral and biological

dimensions, with a goal of reducing heterogeneity across diagnostic

groups (T. Insel et al., 2010; T. R. Insel, 2014). Consistent with

the European roadmap for mental health research (Schumann

et al., 2014), the RDoC offers an improved classification validation

at the neurobiological level. Most of the studies addressing the

RDoC initiative have implemented various data-driven, clustering

approaches based on neuropsychological measures in order to divide

the clinical populations. These studies include subtype diagnoses of

SZ (Bell, Corbera, Johannesen, Fiszdon, & Wexler, 2011; Brodersen

et al., 2014), mood disorders (Lamers et al., 2010; Van Loo, De Jonge,

Romeijn, Kessler, & Schoevers, 2012), and ADHD (Dias et al., 2015;

D. A. Fair, Bathula, Nikolas, & Nigg, 2012; Koutsouleris et al., 2015;

van Hulst, De Zeeuw, & Durston, 2015).

As discussed above, one of the main limitations of the traditional

case–control prediction is the binary disease characterization, where

test samples are assigned to either case or control category. This

approach overlooks the associated disease heterogeneity, commonly

known as the disease subtype. However, many heterogeneous mental

illnesses including autism and SZ are defined as spectrum disorders

(i.e., a continuum) with multiple disease etiologies lying under the

same diagnostic category. While it is a common practice to classify

such spectrum-like disorders using the generic category to find diag-

nostic biomarkers, a major issue in mental illness diagnostic procedure

is the lack of differential diagnosis of patients across several disease

subtypes. Accurate diagnosis of disease subtype is very critical for the

appropriate course of treatments. For example, in case of SZ, patients

can exhibit similar cognitive deficits but with variable magnitude.

Therefore, to emphasize the phenotypic heterogeneity in SZ, two

major subtypes with different genetic and cognitive profiles have

been introduced: (a) cognitive deficit and (b) cognitively spared (Green

et al., 2013; Jablensky, 2006). However, differential diagnosis of SZ

subtypes has been rarely studied, due to limited sample size. The

number of subjects in each disease subtype is small in most of

the existing datasets, which limits the ability to develop robust

subtype predictor to accurately differentiate them. Ingalhalikar and

colleagues proposed an unsupervised spectral clustering approach

using multi-edge graphs derived from a structural connectivity

network among 78 ROIs to classify subtypes of autism and SZ

(Ingalhalikar et al., 2012).

Among the surveyed studies in this review, only a few considered

the important area of automatic differential diagnosis. Costafreda and

colleagues used fMRI with a verbal fluency task for subject-level clas-

sification of SZ, bipolar and HCs (Costafreda et al., 2011). Two studies

by Calhoun et al. (2008) (Figure 9) and Arribas et al. (2010) used fMRI

with an auditory oddball task where they have applied an ICA

approach to extract the default model network related features and

the temporal lobe of the brain. Both of these studies achieved high

prediction accuracy between SZ and BP disorder. Rashid and col-

leagues proposed static dynamic functional network connectivity

(FNC) features-based algorithms (Figure 10) to automatically classify

SZ, bipolar and HCs (Rashid et al., 2016). Another study by Pardo

and colleagues used a combination of volumes of 23 ROIs derived

from structural MRI along with 22 neurophysiological test scores for

automatic classification of SZ, bipolar and HCs (Pardo et al., 2006).

More recently, using gray matter densities, Schnack and colleagues
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proposed a classification framework for SZ, bipolar and HCs (Schnack

et al., 2014). Using gray matter maps from structural MRI,

Koutsouleris and colleagues classified SZ from mood disorder

(Koutsouleris et al., 2015). Ota and colleagues combined volumetric

measures derived from structural MRI with FA from dMRI in selected

ROIs to classify SZ from MDD (Ota et al., 2013). Moreover, using

gray matter volumes of caudate and ventral diencephalon, Sacchet,

Livermore, et al. (2015) proposed an algorithm to classify MDD,

bipolar and remitted MDD patients.

Although the limited sample size in most of the current datasets

makes it challenging to perform disease subtype prediction as the

number of subjects in each diseases subtype is small, it shows the

potential for a paradigm shift in the predictive modeling of spectrum-

like mental illness beyond discrete, case–control diagnosis.

5.4 | Advanced algorithms for brain-based
prediction

Recent advanced machine learning algorithms have shown tremen-

dous potential for neuroimaging-based mental illness prediction. For

example, a recent study proposed a novel parallel group ICA-based

framework to jointly estimate the association between functional net-

work variability and structural covariation in SZ, as well as to predict

several cognitive domain scores based on these associated functional/

structural features (Qi et al., 2019; Figure 11). Briefly, by jointly incor-

porating and estimating temporal domain features from fMRI

(extracted from group ICA) and structural MRI features within a paral-

lel group ICA algorithm, functional network variability and structural

covariation were jointly estimated to identify between-modality link-

age. Using real neuroimaging data, a significant functional and struc-

tural MRI component pair was identified that captured group

difference in both imaging modalities, which further correlated with

cognitive scores suggesting that multimodal brain features can predict

multiple cognitive scores. Another recent SZ study proposed a multi-

modal fusion with reference algorithm by combining multi-site canoni-

cal correlation analysis with reference and joint-ICA (MCCAR+jICA) to

identify co-varying multimodal feature patterns using a reference

(specifically, working memory performance) in a three-way data fusion

(fMRI, sMRI, and dMRI; Qi et al., 2018). Results identified several

brain regions that were previously linked with working memory defi-

cits in SZ, suggesting that the novel MCCAR+jICA method has great

potentials to identify biomarkers for severe mental disorders, such as

SZ. Further, Sui and colleagues implemented a constrained fusion

approach to predict cognition in SZ (Sui et al., 2015; Figure 12). The

assessment of cognition was measured using the MATRICS Consen-

sus Cognitive Battery (MCCB), and using multi-set canonical correla-

tion, the linkage between MCCB and brain abnormalities as measured

by fractional amplitude of low-frequency fluctuations (fALFF) from

resting fMRI, gray matter density (GM) from structural MRI, and FA

from dMRI were explored. Findings from this study suggested that

the associated functional and structural deficits might be linked to

cognitive impairments in SZ. Other recent neuroimaging-based data-

driven advanced algorithms include biclustering and triclustering ICA

approaches that utilize spatial and temporal variance as a measure to

cluster mental disorders into homogeneous subgroups. For instance,

using gray matter concentration (GMC) from SZ patients, Gupta and

colleagues implemented source-based morphometry (SBM) decompo-

sition, followed by subtype component reconstruction using group

information-guided ICA (GIG-ICA), and identified two subtypes

(i.e., two different subsets of subjects; Gupta et al., 2017). Also,

Rahman and colleagues have used structural MRI features from SZ

patients to perform multi-component and symptom bi-clustering

(Rahaman et al., 2019), and further extended this approach into tri-

clustering framework using dynamic FNC measures to identify disease

subtypes (Rahaman, Damaraju, & Calhoun, 2019).

5.5 | Functional connectivity measures
for brain-based prediction

In recent years, brain connectivity studies using neuroimaging have

become popular to investigate the associations among brain networks.

Functional connectivity (FC) can be quantified using a variety of dif-

ferent neuroimaging techniques. A commonly used measure is fMRI,

which measures synchronized brain activity via blood oxygenation

and infers functional interactions among different brain regions

(Craddock et al., 2013). FC, defined as temporal correlation (or other

types of statistical dependency) among spatially distant brain regions

(K. Friston, 2002), has recently been used to examine the functional

organization and temporal dependencies among these remote brain

regions. Different analytic tools have been applied to resting-state

fMRI data to describe brain functional connectivity. Two widely used

FC approaches are (a) seed-based analysis (B. Biswal, Zerrin Yetkin,

Haughton, & Hyde, 1995; Greicius, Krasnow, Reiss, & Menon, 2003)

and (b) purely data-driven methods, such as ICA (Calhoun &

Adali, 2012; Calhoun, Adali, Pearlson, & Pekar, 2001a; Calhoun,

Eichele, & Pearlson, 2009; Fox & Raichle, 2007). FC can also be inves-

tigated at the network level using spatial ICA, and connectivity among

spatial components is referred to as FNC (Jafri, Pearlson, Stevens, &

Calhoun, 2008). In most common cases, FC (as well as FNC) is consid-

ered to be stationary over the entire scanning period, formally known

as the sFC/sFNC analysis.

For predictive analyses, specific methods for measuring functional

connectivity might influence the features of interest as well as the

classification accuracy. Given the high dimensional features resulting

from FC analysis, without efficient but meaningful feature selection,

the classifier could introduce overfitting problem, leading to poor clas-

sification performance. Thus, to eliminate redundant features and

choose only appropriate features from FC measures, application of

suitable feature selection strategies is critical. For FC based feature

selection, approaches such as filter (e.g., statistical test, Fisher score

and correlation coefficient; Figure 13; J. S. Anderson et al., 2011;

Arbabshirani et al., 2013; Bassett et al., 2012; Calhoun et al., 2008;

W. Du et al., 2012; Guyon & Elisseeff, 2003), wrapper (e.g., recursive

feature elimination [RFE], sequential feature selection and genetic
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algorithm; Fan et al., 2011; Guyon & Elisseeff, 2003; Venkataraman

et al., 2012; Yu, Shen, Zhang, et al., 2013), and embedded (e.g., LASSO

regularization, decision tree; Fonti & Belitser, 2017; B. Jie et al., 2014;

Lal, Chapelle, Weston, & Elisseeff, 2006; Watanabe et al., 2014)

methods can be applied.

Table 9 presents FNC-based classification studies for automatic

diagnoses of SZ, MDD/BP, ASD, and ADHD patients. Both FC and

FNC measures have been utilized for subject-level diagnosis

(i.e., prediction) of severe mental disorders, such as SZ and bipolar. For

example, by using the connectivity between functional brain networks

(i.e., FNC) identified by ICA several recent studies have classified SZ

(80% accuracy (A. Anderson & Cohen, 2013) 63–96% accuracy

(Arbabshirani et al., 2013); 84.4% accuracy (Kaufmann et al., 2015).

Another popular estimate for FC between ROIs identified based on dif-

ferent atlases has also been used to distinguish between SZ and healthy

individuals (75% accuracy (Venkataraman et al., 2012); 82.8% accuracy

(Su et al., 2013); 80.9% accuracy (Yu, Shen, Zeng, et al., 2013), 62%

accuracy (Yu, Shen, Zhang, et al., 2013); 59.7–90.8% accuracy

(Watanabe et al., 2014); 86% accuracy (J. Kim et al., 2016)). Further,

Bassett et al. (2012) have use high-level network organization as fea-

tures for classification of SZ (75% accuracy). In addition to the single

modality based FNC features, studies have also explored the fusion of

FC with features from other modalities to classify SZ. For example,

Yang and colleagues developed a hybrid machine learning approach

using fMRI (voxels and ICA networks) and SNP features for

classification of SZ and achieved 87% classification accuracy using the

combined features (i.e., voxel, ICA network, and SNP data; Yang

et al., 2010). Recent studies have also classified SZ and BP disorder

using FC-based features. Using ICA spatial maps of the temporal lobe

and the default mode networks, Calhoun and colleagues classified SZ

and bipolar patients with accuracies of 83–95% (Calhoun et al., 2008).

Another study used the ICA spatial maps as features and a probabilistic

Bayesian classifier to discriminate between SZ, BP disorder, and healthy

individuals, and achieved the average three-way correct classification

rate within the range of 70–72% (Arribas et al., 2010). Few recent stud-

ies also performed of classification of mental illnesses with overlapping

symptoms, such as SZ, schizoaffective disorder, and BP disorder with

psychosis (Cardno & Owen, 2014; Cosgrove & Suppes, 2013; Pearlson

et al., 2016). Du and colleagues used GIG-ICA to extract resting-state

brain networks and classified SZ patients, BP disorder with psychosis,

schizoaffective disorder with manic episode disorders schizoaffective dis-

order with depressive episodes exclusively and healthy individuals

(Du et al., 2015). FNC features were selected using RFE method and a

five-class SVM classifier was used for training purpose, achieving 68.75%

of classification accuracy (Figure 14).

FC measures have also been utilized as features for classification

of autism and ADHD. Using resting-state FC measures from 7,266

ROI unclosing only the gray matter, Anderson and colleagues achieved

89% accuracy for the subjects <20 years age and at 79% for all sub-

ject (J. S. Anderson et al., 2011). Murdaugh and colleagues used both

F IGURE 14 An example showing prediction of schizophrenia and bipolar using network measures and hierarchical clustering. (a) Distance
matrix from the feature vectors. (b) The mean inter-group and intra-group distance matrix. (c) The Results from t-distributed stochastic neighbor
embedding (t-SNE) method showing the projection results of subjects, where each point refers to a subject (group-wise colored). (d) The linkage
results from the hierarchical clustering method. BP, bipolar; HC, healthy control; SADD: schizoaffective (depression); SADM, schizoaffective
(manic); SZ, schizophrenia. Figure reprinted with permission from Du et al. (2015)
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seed-based FC and whole-brain FC in a logistic regression classifier to

classify autism and reported 96.3% accuracy with both whole-brain

and seed-based FC features (Murdaugh et al., 2012). Further, using

FC between three ROI sets from ABIDE dataset, Plitt and colleagues

applied RFE-based feature selection and both logistic regression and

SVM classifiers to classify autism and achieved an overall 76.7% accu-

racy (Plitt et al., 2015). In a multimodal classification study of autism,

Deshpande and colleagues used FC estimates and fractional anisot-

ropy (from DTI data) and obtained a maximum classification accuracy

of 95.9% with a recursive cluster elimination based SVM classifier

(Deshpande et al., 2013). Another recent resting-state FC-based

(between 90 ROIs) prediction study used deep learning classifier

(probabilistic neural network [PNN]) for classification of ASD and

achieved a classification accuracy of about 90% (Iidaka, 2015). Inter-

estingly, FC between signals in different frequency bands was used as

features in a recent ASD classification study, where the Slow-4 band

(0.027–0.073 Hz) was found to capture the most discriminative fea-

tures (H. Chen et al., 2016). To discriminate ADHD from healthy indi-

viduals, Zhu and colleagues used a PCA-based Fisher discriminative

analysis (PC-FDA) with regional homogeneity (ReHo) from fMRI data

as features, and showed a classification accuracy of 85% (C.-Z. Zhu

et al., 2008). Another study by Wang and colleagues also used ReHo

from resting-state fMRI data in a SVM classifier, and obtained a classi-

fication accuracy of 80% for discriminating ADHD from healthy indi-

viduals (Wang et al., 2013). Several other studies also used FC

measures to successfully classify ADHD from HCs (Dey et al., 2014;

D. Fair et al., 2013; Jo~ao Ricardo Sato et al., 2012). Moreover, by

leveraging a large-scale resting-state fMRI study of SZ from multiple

sites (i.e., human connectome project), another recent study proposed

a ICA-based preprocessing pipeline to extract FNC and spatial map

based imaging features as potential biomarkers. Results showed that

compared to FNC-based features, spatial map shows better classifica-

tion performance in all experiments (Lin et al., 2019). Another study

proposed a robust group information guided ICA (GIG-ICA) based

framework to estimate functional network maps and connectivity for

linking neuromarkers among different diseases and separate studies,

where the connectivity measures were independently computed and

optimized to achieve independence based on each coming individual-

subject data. Findings from this study showed that the network fea-

tures computed using the proposed method were more effective for

predicting different diseases and classifying patients (Y. Du

et al., 2019). One of the advantages of this framework is it does not

require selecting components of interest and can be fully automated

(Figure 15).

F IGURE 15 Illustration of the neuromark approach. The neuromark approach aims at linking neuromarkers among different diseases and
separate studies. (a) The fully automated Group ICA components were found to be very stable which can be performed for individual subjects.
(b) Strong correlation (>0.95) between functional network connectivity (FNC) was obtained across data from multiple sites, with consistent group
difference between schizophrenia (SZ) and healthy cohorts. Figures reprinted with permission from Y. Du et al. (2019) and Lin et al. (2018)
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6 | COMMON SHORTCOMINGS IN
PREDICTOME STUDIES

6.1 | Feature selection and reduction

An additional limitation of mental illness prediction studies includes

the selection and dimensionality reduction of meaningful features.

Almost all of the papers surveyed in this review have group-level dis-

criminative analysis followed by subject-level classification. Many of

these studies have first performed discriminative analyses using

statistical tests (e.g., t tests) to extract significant features showing

group difference, and then using these features performed subject-

level classification. However, the use of test dataset together with the

training dataset during feature selection, extraction or reduction

will introduce additional bias to the predictive model. This process of

feature selection based on the group differences results identified from

the whole sample could cause a “double dipping” issue, that may lead

to a biased performance (Bishop, 2006; Demirci, Clark, Magnotta,

et al., 2008). Another major issue with the group difference based fea-

ture selection approach is that the significance levels are based on

F IGURE 16 An approach for schizophrenia (SZ) prediction using multi-component and symptom biclustering. (a) Block diagram of the general
framework. (b) Discriminative components whose loading parameters were used as features. (c) F1 similarity index between estimated and
ground truth biclusters, where a higher value indicates more similarity (better estimation). Red dotted line indicates method outperformed other
methods. (d) Correlations between the symptom scores and biclusters. Colors represents different symptom scores; tall spikes indicate significant
correlations. (e) Mean and standard deviation of symptom scores across biclusters. The dots represent the subject-wise symptom score. Magenta:
positive scores; black: negative scores; blue: general scores. Figures reprinted with permission from Rahaman, Turner, et al. (2019)
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p values of the statistical tests, which are not necessarily linearly associ-

ated with the discriminative power of the models. An alternative solu-

tion to the feature selection based on univariate group-level statistical

tests could be the use of filtering and wrapper methods (Blum &

Langley, 1997; Hall & Smith, 1998). Filtering methods assign scores to

each feature from which a number of top ones can be selected, while

the wrapper methods consider selection of a set of feature as a search

problem. Supervised feature selection methods have been most com-

monly used in the existing literature. However, since it has been

reported that feature selection performance can be improved by

increasing the sample size (Jain & Zongker, 1997), classification using a

supervised feature selection algorithm on a small dataset might result in

suboptimal performance. Further, unsupervised feature reduction

methods, such as PCA have also been applied in the field of neuroimag-

ing studies. As suggested by Osborne and Costello, unsupervised fea-

ture reduction methods on larger datasets could provide additional

information for accurately generalizing population trends, which may

lead to a more efficient model (Osborne & Costello, 2004).

6.2 | Overfitting

Overfitting refers to a model that models the training data too well,

resulting in very good classification performance on the training data

(i.e., observed data) but very poor performance on independent, test-

ing data (Pereira et al., 2009). Overfitting can be caused by utilizing

models with large number of features from small sample size or com-

plex models with many parameters, as the model would capture noisy

features from the data more than the actual features of interest

(Franke et al., 2010; Klöppel et al., 2008). Since neuroimaging datasets

on mental illnesses have smaller samples in general and many features

of interest, predictive models using these datasets are susceptible to

overfitting. The majority of the surveyed studies reported in the cur-

rent work performed predictive modeling based on a very small num-

ber of subjects, resulting in a decrease in the overall classification

accuracy with smaller sample size. CV and regularization are common

approaches to control for overfitting in neuroimaging data-based pre-

dictive modeling.

6.3 | Optimal model selection

In predictive modeling, model selection, more formally known as

hyperparameter optimization or tuning, refers to the problem of

choosing a set of optimal hyperparameters for a learning algorithm

in order to achieve the best performance of the algorithm. The

hyperparameter optimization step is performed during the training

stage, typically during the CV of the training samples. One of the

most commonly used classifiers is the SVM which is designed for

binary classification that maximizes the boundary between classes in

a high-dimensional space. Linear SVM classifier includes a user-

defined soft margin hyperparameter that affects the trade-off

between errors on training data set and margin maximization. A

smaller soft margin would introduce more errors, resulting in a larger

margin. Nonlinear SVM classifier includes additional hyper-

parameters depending on the kernel of choice (e.g., sigma/gamma

for RBF kernel and degree for polynomial kernel). Therefore, ineffi-

cient hyperparameter optimization could negatively influence model

performance.

6.4 | Challenge with reproducibility

In the existing brain-based prediction literature, variability across raw

data processing and analysis streams, feature types, feature selection

schemes, choice of classifier, and CV methods may limit reproducibil-

ity of outcomes across independent datasets. Indeed, without any

standard approach, the growing flexibility across machine learning

pipelines is introducing less reliable replication across studies

(Squeglia et al., 2016). In order to provide optimum diagnostic tools,

the predictive models should be able to handle new samples obtained

from independent research facilities. Further, the models should perform

consistently across different data-acquisition devices (e.g., Siemens/

Philips/GE scanners), across different geographic areas (e.g., United

States, Europe, etc.), and across diverse populations (e.g., same mental ill-

nesses with distinctive comorbidity). Also, the performance should per-

sist across different evaluation metrics (e.g., accuracy, sensitivity,

specificity, etc.), as well as different medical settings (e.g., rural vs. city

hospital; Woo, Chang, Lindquist, & Wager, 2017).

6.5 | Prediction outcome comparison across
studies

A common practice in prediction studies is to highlight the overall

accuracy as the ultimate model performance measure. While many

surveyed studies have reported that their algorithms performed bet-

ter than other existing studies, this claim is often unsubstantiated

and solely based on the comparison between their overall accuracy

and that of the existing studies. Without well-matched study vari-

ables (i.e., sample size, age, sex, scanner parameters and imaging

sequences, medication, symptom scores, data modality, length of

scanning for functional data, preprocessing pipeline, features of

interest, feature selection methods, classifier type, and CV scheme),

these comparisons are simply impractical. Further, any such

performance-related claims must be made after appropriate statisti-

cal significance tests.

6.6 | Heterogeneity between patients

Another limitation for neuroimaging based machine learning studies is

the substantial heterogeneity that exists between patients. In

research-based neuroimaging studies, participants are recruited based

on well-matched age, sex, or education background, typically with a

particular type of brain pathology. In contrast, participants recruited in

RASHID AND CALHOUN 3515



the clinical settings may include several types of pathology with vari-

ability in disease stage and demographic variables (i.e., age, sex etc.).

As mentioned earlier, classification performance (e.g., accuracy) can be

improved by using a larger training sample (Franke et al., 2010; Klöppel

et al., 2008), and may also reduce the disease heterogeneity by inte-

grating the whole spectrum of clinical and pathological features. Recent

approaches, such as outlier detection (i.e., treating patient classification

as an outlier detection problem (Mour~ao-Miranda et al., 2011) can be

implemented to reduce higher heterogeneity across patients. Further,

two recent studies have performed multi-component and symptom

bi-clustering where homogeneous clusters along various dimensions

were identified for SZ subtype prediction (Gupta et al., 2017; Rahaman,

Turner, et al., 2019; Figure 16).

7 | FUTURE DIRECTIONS FOR BRAIN-
BASED PREDICTOME STUDIES

7.1 | Prediction using deep learning techniques

In recent years, deep learning, which is a family of machine learning

techniques, has gained significant attention for patterns recognition

and classification in various data analysis fields including neuroimag-

ing. The fundamental difference between traditional machine learning

and deep learning is that, deep learning has the capability to detect

and learn complex patterns from the raw data by utilizing consecutive

nonlinear transformations. Due to its ability to identify complex and

subtle (and potentially nonlinear) patterns based on data-driven auto-

matic feature learning process, deep learning has recently become an

attractive tool in neuroimaging studies of mental illness. Deep

learning-based approaches are more effective when examining large

number of features without any proper knowledge in feature selec-

tion. Using a hierarchical model of nonlinear layers, deep learning can

model more complex data patterns. To summarize, the main advan-

tages to use deep learning over traditional machine learning

approaches include: (a) ability to implement data-driven automatic

feature learning and eliminating the subjectivity related to feature

selection, and (b) the depth of model design that includes a hierarchy

of nonlinear layers, allowing the model to efficiently identify complex

data patterns.

Deep learning offers a promising tool for understanding the neu-

ral basis of mental illness by extracting complex, hidden patterns from

high-dimensional neuroimaging data (Kriegeskorte, 2015). Deep

models have multiple advantages, including requiring exponentially

smaller number of parameters to model the same thing as models by

traditional machine learning approaches (Bengio, 2012). Further, for

larger neuroimaging datasets, deep learning provides the opportunity

to more efficiently diagnose mental illnesses (E. Castro, Ulloa, Plis,

Turner, & Calhoun, 2015). In order to examine mental illness using

deep learning, several studies have utilized a wide range of

F IGURE 17 An imaging-
genomics framework to jointly
estimate group differences in
schizophrenia (SZ) and healthy
controls (HC). The parallel ICA

based multimodal framework
incorporating imaging (dynamic
FNC measures) and genomic
(single nucleotide polymorphism,
SNP) data. Figures reprinted with
permission from Rashid
et al. (2019)
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neuroimaging modalities including sMRI, resting fMRI, and multimodal

data. For instance, using deep belief networks on both structural and

functional MRI data, Plis and colleagues have demonstrated that deep

learning methods are able to generate physiologically meaningful

MRI-based features that can uncover associations from high-

dimensional MRI data (Plis et al., 2014). Another study by Hjelm and

colleagues used restricted Boltzmann machines (RBM) to capture

intrinsic brain networks in fMRI data showed that RBMs could extract

spatial networks and their activation with the accuracy of traditional

matrix factorization methods such as ICA (Hjelm et al., 2014). Note

that, RBM can be stacked to obtain deeper models as needed for deep

learning which is a limitation in traditional approaches such as ICA,

non-negative matrix factorization (NMF), or sparse PCA. More

recently, deep learning has been employed in classification of patients

using neuroimaging data. Kim and colleagues used deep learning for

classification of SZ patients from HCs based on functional connectiv-

ity patterns, and showed that their approach outperforms SVM by a

significant margin (J. Kim et al., 2016). Using structural MRI data, Cas-

tro and colleagues developed a nonlinear independent component

estimation (NICE) which is an extension of ICA using deep architec-

ture, and detected gray matter abnormalities in patients with SZ. The

resulting NICE components captured decreased patterns of GMC in

SZ, showing potential for application in SZ prediction studies (Castro

et al., 2016). Further, Jang and colleagues applied fully connected

feed-forward deep neural networks (DNN) to four sensorimotor task-

based fMRI data from 12 HC individuals. More specifically, the frame-

work used a restricted Boltzmann machine-based deep belief network

classifier and obtained lower minimum error rates (mean ± SD; three-

layer DNN = 6.9 ± 3.8%, single-layer DNN = 9.4 ± 4.6 and two-layer

DNN = 7.4 ± 4.1). Results showed that the DNN is able to classify a

single-volume fMRI extracted by hidden representations of task-

specific fMRI volumes distributed across multiple hidden layers, show-

ing great potential for automatic mental illness prediction using fMRI

volumes in cases where limited estimates of activation patterns or

ad hoc statistical evaluation are available (Jang et al., 2017). Plis

and colleagues implemented a deep learning method to identify

association between multimodal neuroimaging data (i.e., sMRI and

fMRI) in 144 SZ patients and 154 HC individuals. Dynamic FNC

states and ICA-based gray matter density maps were used as

functional and structural features, respectively. Using the hidden

association between brain structure and function, this study dis-

tinguished between SZ and HC participants (Plis et al., 2018).

Another multimodal data integration study developed a neural

network framework to study the brain development. Briefly, this

study proposed a deep collaborative learning (DCL) method to

investigated the difference of functional connectivity measures

across different age groups, and achieved a maximum prediction

accuracy of about 98% (W. Hu, Cai, Zhang, Calhoun, &

Wang, 2019).

Within the field of neuroimaging, deep learning techniques have

shown to achieve superior performance over many conventional

machine learning approaches; however, currently there are some limi-

tations and challenges of deep learning techniques which require

further improvement prior to practical implementations. Some of the

limitations of deep learning are discussed as follows:

1 Deep learning techniques are highly dependent on the quality

and amount of training data which may result into overfitting

(i.e., learning unrelated variations in the data), which may, in turn,

result in lack of generalizability. Approaches such as regulariza-

tion strategies (e.g., L1 or L2 norms, dropout, and weight decays)

are being incorporated in deep learning methods in order to

address the issue of overfitting (Hosseini-Asl, Gimel'farb, & El-

Baz, 2016; J. Kim et al., 2016; F. Li, Huang, et al., 2014; S. Liu

et al., 2014). The regularization strategies can improve the per-

formance of the deep learning algorithms. Other approaches to

avoid overfitting include dimensionality reduction (e.g., using

region-level features instead of voxel-level features, selecting

features using principal component analysis) of the data prior to

training them using the model. Although, current evidence sug-

gests that most deep learning models, including convolution neu-

ral network (CNN), can perform well with voxel-level

neuroimaging data without feature selection or reduction

(Hosseini-Asl et al., 2016).

2 Deep learning techniques require a large amount of training data to

identify more generalized features and improved performance, and

therefore demonstrate poorer performance with small sample size

(Nie, Zhang, Adeli, Liu, & Shen, 2016). Further, noisy neuroimaging

data may not improve the performance of the model beyond linear

methods even with increasing sample size (e.g., ImageNet). One

solution to this issue could be to use specific types of less-noisy

features to train the model. For example, in neuroimaging, voxel-

level features tend to be very detailed and noisy, whereas region-

level features show less sensitivity to noise as they overlook more

localized patterns. Further, the accuracy of deep learning tech-

niques may be improved by making full use of the automatically

extracted features even for studies with smaller sample size.

3 Deep learning models offer a black box-like system, which may

introduce lack of transparency during the learning and testing steps

(Alain & Bengio, 2016; Yosinski, Clune, Nguyen, Fuchs, &

Lipson, 2015). In many cases, it is very difficult to understand the

technical and logical bases of the model. The lack of transparency of

deep learning may limit the interpretability of the neuroimaging

results. Indeed, the multiple nonlinearities within deep models make

it challenging to trace back the successive layers of weights to the

original brain data, therefore limiting the ability to detect abnormali-

ties within brain regions (Suk et al., 2015). To address this issue, cur-

rently two approaches are being implemented: (a) input modification

methods (i.e., visualization techniques by systematically modifying

the input, the resulting changes in the output, and in intermediate

layers; example: occlusion method; Zeiler & Fergus, 2014) and

(b) deconvolution methods (i.e., determining the contribution of fea-

tures of the input to the output data; example: guided back-propa-

gation; Springenberg, Dosovitskiy, Brox, & Riedmiller, 2014).

4 Another challenging issue for deep learning methods is the

workflow integration, particularly for clinical use of these models.
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In order to implement these deep models in the clinical settings, it

is necessary to share the relevant knowledge of these models with

the clinicians, as well as receive feedback from them as the end-

users during the model development stage.

7.2 | Large-scale/big data approaches

The most commonly observed limitation in the field of mental illness

predictive studies is the limited sample size. The lack of larger

datasets (i.e., number of subjects) as well as insufficient phenotypic

details, such as clinical record, comorbidities, symptom and disease

progression, treatment outcomes, and responses limit the scope of

utilizing machine learning algorithm for developing personalized care

of mental illness. The majority of the prediction studies in this review

have a relatively small sample size. Although sample size is a com-

mon limitation across all prediction studies, compared to the other

fields of studies in which machine learning is used, neuroimaging

studies in general have very small sample size due to the difficulties

of recruiting patients and the cost of collecting the data and the data

also have high dimensionality. This may introduce several issues including

decrease in classifier performance (Franke et al., 2010; Klöppel

et al., 2009), lack of generalization for diagnosis purposes, and inability to

address disease heterogeneity, and model overfitting due to poor sample

size (Pereira et al., 2009). For optimal evaluation of machine learning

methods, therefore larger sample size is required to minimize the vari-

ance in assessments of accuracy, sensitivity, specificity, and other perfor-

mance measures.

To address this limitation within neuroimaging research, multiple

ongoing efforts have created dataset repositories. The large-scale or

“big data” revolution shows promises to reduce data heterogeneity

related issues in neuroimaging studies (Franke et al., 2010; Klöppel

et al., 2008). While most existing neuroimaging studies consist of

moderate sample sizes, typically less than 50 subjects, a few number

of studies have started to embrace the “big data” for neuroimaging by

either collecting tens of thousands of subjects or taking advantage of

huge increases in the quantity of imaging and nonimaging features

collected on each subject. Currently, there exist three types of big-

data initiatives: (a) centralized, (b) decentralized data sharing reposito-

ries, and (c) large-scale studies.

7.2.1 | Centralized repositories

Centralized data sharing repositories offer open sharing of data. Many

of these repositories include multiple sites and commercial cloud com-

puting setups to provide support with high computational load. Some

examples of centralized repositories (there are many dozens of these

currently) include:

1 NIMH data archive: The Adolescent Brain Cognitive Development

Study (ABCD) (Casey et al., 2018).

2 NITRC: For SZ, ASD, and ADHD (Buccigrossi et al., 2008).

3 COINS: Collaborative Informatics and Neuroimaging Suite or

COINS for ASD patients (https://coins.mrn.org/).

Note that, these are only some examples of what have been

shared vie the centralized repository platforms.

7.2.2 | Decentralized repositories

Additionally, to address the legal, ethical, and sociological concerns

that might prohibit open data sharing initiatives and avoid re-

identification of study subjects, repositories with anonymized raw

data are also being established.

1 COINSTAC: a decentralized and privacy-enabled infrastructure

model for brain imaging data (Gazula et al., 2018; Plis et al., 2016).

Further information on implementation of decentralized algo-

rithms, enhancement of user interface, regression statistic calculation

for decentralization, and comprehensive pipeline specifications can be

found in Ming et al. (2017).

7.2.3 | Large-scale studies

Moreover, several multi-site studies have also started to share neuro-

imaging data in a collaborative setup. These studies include:

1 FBIRN: For SZ patients (J. M. Ford et al., 2008).

2 COBRE: For SZ patients (center of biomedical research excellence,

http://cobre.mrn.org/).

3 MCIC: For SZ patients (Gollub et al., 2013).

4 Functional Connectomes Project: For healthy subjects (B. B. Biswal

et al., 2010).

5 ABIDE: For ASD patients (Di Martino et al., 2014).

6 ADHD-200: For children with ADHD (Consortium & others, 2012).

While the data sharing initiatives show potential (Milham

et al., 2018), there are several methodological challenges of big data

approaches in the field of neuroimaging which need to be addressed.

1 The lack of uniformity in data acquisition and processing across

contributing sites could introduce performance bias of predictive

modeling while using the pooled multi-site data. For large-scale

imaging studies, there are several potential artifacts of concern

which may include factors affecting imaging and other variables of

interest, such as (a) head motion, (b) head size, (c) heart rate and

respiratory variations, (d) variability in scanner hardware, and

(e) variability in scanner hardware. To mitigate the effects of these

confounding factors, more sophisticated image processing tech-

niques should be developed (for examples of such processing

techniques, see (1) (Salimi-Khorshidi et al., 2014); rsfMRI data,

(2) (Andersson & Sotiropoulos, 2016); dMRI data, and (3) (Fortin
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et al., 2017; Fortin et al., 2018; Johnson, Li, & Rabinovic, 2007);

dMRI and sMRI data. Further efforts are required to standardize data

acquisition parameters across all data sharing sites for more ideal

data pooling. For example, when sMRI data were analyzed, inconsis-

tency in field strength and imaging sequence design showed evi-

dence of significant systematic differences in multi-site studies

(Fennema-Notestine et al., 2007; Stonnington et al., 2008). Without

standardized parameter agreement, the variability observed across

the subjects is increasingly driven by variability in scanner and

imaging parameters, which could potentially introduce false disease-

specific effects. Another study showed similar field related differ-

ences how in 10,000 subjects across 1.5 T and 3 T scanners, they

also showed evidence of highly consistent changes associated with

age (Panta et al., 2016). By designing and maintaining study proto-

cols across all contribution sites, and developing analytic approaches

which are more robust to site effects (e.g., end-to-end deep learning

to predict and remove site effects), chances of observing disease-

specific effects are increased. The benefits of big data are many, and

with improved integration between participating sites, in term of

acquisition and other parameters, the potential inhomogeneities can

be mitigated.

2 Another major issue for “big” imaging data is the statistical chal-

lenge. These rich datasets are designed to explore a variety of

hypotheses. As researchers investigate multiple imaging modalities,

many of them tend to explore various alternative models to search

for significance without proper multiple comparison testing or CV

framework. This makes CV and replication even more essential.

Similarly, the effect size should also be reported, if using null

hypothesis testing, big data can provide highly significant results

for tiny effect sizes, which may not be particularly useful for any

individual subjects. Also, the use of robust test statistics is impor-

tant, for example, the use of, nonparametric testing, such as

permutation-based tests can be incorporated while examining

multiple modalities (Winkler et al., 2016).

3 With big data comes the “curse of dimensionality”. Compared

to the number of observations, there are many features in

high dimensional data, making it susceptible to issues such as

sparsity, multicolinearity, computational cost, model complex-

ity, and overfitting. One potential solution could be to imple-

ment feature selection or reduction approaches, such as

principal component analysis, prior to analyzing and modeling

the data.

4 Neuroimaging data sharing through the big data consortiums have

raised some ethical and privacy concerns, for example, the possibil-

ity of facial reconstruction from structural images. By removing rec-

ognizable facial features using the de-facing approach prior to data

sharing, this concern can potentially be addressed. Other ethical

concerns include the risk of subject identification based on their

geographical location, since typically these large-scale studies are

conducted within a particular region. By adopting multilayer,

restricted data sharing approach, more controlled access to the full

dataset can be achieved, thus eliminating the risk of subject iden-

tification. Another approach is to utilize federated learning or

decentralized analysis approaches, for example, the COINSTAC

tool allows one to perform regression as well as more advanced

voxel-wise and machine learning-based approaches in a

decentralized framework without requiring the data to be shared

(Plis et al., 2016).

7.3 | Standard machine learning competitions in
neuroimaging

In the field of machine learning, recent standard predictive

analyses-based competitions have already contributed to the

growth of technologies. Typical layouts of such competitions

include: (a) provide the participants with a labeled training dataset

and an unlabeled testing dataset, (b) based on the training dataset,

the participants attempt to develop a predictive model with best

performance, and then apply the trained model to predict the test-

ing samples’ labels, and (c) finally, the participants submit the pre-

diction results and performance. Using the standard training and

testing dataset and some basic preprocessing provided by these

competitions, the participants can focus on the predictive model-

ing aspects without any biased outcomes. Although, in neuroimag-

ing, such competitions are not as common as other fields due to

the restricted data sharing policies, a number of brain-based

machine learning competitions have been held in recent years. In

2011, the ADHD-200 competition was held which included

resting-state fMRI data, as well as anatomical and phonotypical

data of 776 subjects (491 typically developing children and

285 ADHD) for training purposes and 197 subjects as testing

dataset (Consortium & others, 2012), with the goal of dis-

tinguishing between patients with ADHD and healthy, typically

developing children. This competition demonstrated a greater

prospect toward multi-site, large-scale ADHD data sharing.

Another more recent machine learning competition was organized

by the IEEE MLSP workshop that provided only neuroimaging-

based features, with the goal of automatic prediction of SZ

patients from HCs (Silva et al., 2014). Briefly, the participants

were provided with FNC measures from resting-state fMRI, as

well as the ICA loadings of SBM measures from structural MRI

from 144 subjects (75 HCs and 69 SZ patients). The competition

included 245 participating teams, with the winning team obtaining

an AUC of around 0.90. Additionally, an AUC of around 0.94 was

achieved by combining the top three models (Silva et al., 2014).

Further, in 2018, to challenge participants in predicting MDD and

HCs using structural MRI data, the predictive analytics competi-

tion (PAC) was arranged (https://www.photon-ai.com/pac). The

competition included training data from 759 MDD patients and

1,033 HCs and unlabeled testing data from 448 subjects obtained

across three different publicly available sites. The winners

achieved a classification accuracy of 65%. These standard machine

learning competitions show the potential for brain-based mental

illness predictions, as they are able to evaluate data with accurate,

unbiased predictive power.
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7.4 | Benefits of leveraging dynamic connectivity
features

Until recently, functional connectivity has been assumed to be rela-

tively stable over the scanning time (usually several minutes). While

convenient for analysis and interpretation purposes, this over-

simplified assumption was recently challenged by several studies

focused on time-varying multivariate connectivity patterns (Sako�glu

et al., 2010), as well as in studies focusing on time-frequency analysis

methods (C. Chang & Glover, 2010). Several other studies have also

delved into the time-resolved connectivity measures and their suc-

cessful applications in identifying biomarkers using dynamic connec-

tivity features (Allen et al., 2014; Calhoun, Miller, Pearlson, &

Adalı, 2014; Du et al., 2016; Rashid et al., 2018; Rashid, Damaraju,

Pearlson, & Calhoun, 2014; Zalesky & Breakspear, 2015). These stud-

ies reported that brain functional connectivity can vary within a short

period (e.g., tens of seconds), and can successfully capture the con-

nectivity disruptions in a disease population.

Only a few studies have utilized dynamic brain connectivity fea-

tures to predict mental illness. Using static and dynamic connectivity

features, Rashid and colleagues developed a classification framework

to predict SZ, bipolar, and healthy subjects (Rashid et al., 2016). The

classification performance measures among static, dynamic and com-

bined static and dynamic connectivity features were compared using

a 10-fold CV framework. The results showed that dynamic FNC (clas-

sification accuracy: 84.28%) significantly outperformed the static FNC

(classification accuracy: 59.12%), suggesting that dynamic patterns in

functional connectivity might provide distinct and more information

over the static FNC. Another study used a novel recurrent neural

network (RNN) approach (i.e., a family of deep learning) to measure

temporal dynamics and dependencies among brain networks (X.-H.

Wang, Jiao, & Li, 2018). Using SVM classifier and LOO/10-fold

CV, another study classified ADHD children using data from the

ADHD-200 Consortium. Specifically, the temporal variability between

intrinsic connectivity networks and the demographic and covariate

variables were utilized as features. The LOOCV achieved total accu-

racy of 78.75, while the 10-folds CVs achieved average prediction

accuracy of 75.54% ± 1.34, showing evidence of accurate prediction

of ADHD using temporal dynamics and SVM classifier. Further,

Demirtas and colleagues used SVM classifier and global spatiotempo-

ral measures, static FNC and variability in FC, and reported that the

combined static FC and variability in FC provided a classification accu-

racy of 81% (sensitivity: 81%; specificity: 81%) for classification of

MDD (Demirtaş et al., 2016).

7.5 | Fusion of dynamic connectivity and other
data types

Dynamic FNC measures estimated from fMRI data can be further

integrated with other data types and modalities, for example, genomic

and structural MRI data, to leverage inter-modality based features for

disease characterization. In a novel imaging-genomic framework,

Rashid and colleagues have recently modeled the association

between dynamic FNC states and genomic features to examine the

SZ-related inter-modality abnormalities (Rashid et al., 2019;

Figure 17). Specifically, the parallel ICA algorithm (J. Liu et al., 2009)

was utilized to combine genetic variants (i.e., single nucleotide poly-

morphism [SNP]) and functional features from fMRI data as subject-

specific states that are revealed from the dynamic FNC data using a

sliding window and clustering approach (Allen et al., 2014; Rashid

et al., 2014) to distinguish SZ from healthy individuals. Results identi-

fied a significant association between a SNP component (defined by

large clusters of functionally related SNPs statistically correlated with

phenotype components) and dynamic FNC component (defined by

clusters of related connectivity links among distant brain regions dis-

tributed across discrete dynamic states, and statistically correlated

with genomic components) in SZ. Moreover, the polygenetic risk

score (PRS) for SZ (computed as a linearly weighted sum of the geno-

type profiles with weights derived from the odds ratios of the psychi-

atric genomics consortium [PGC]) showed negative correlation with

the significant dynamic FNC component, which were mostly present

within a state that exhibited a lower occupancy rate in individuals

with SZ compared with HC, therefore identifying a potential dynamic

FNC imaging biomarker for SZ. Another recent study by Abrol and

colleagues proposed an mCCA+jICA framework to fuse dynamic FNC

from fMRI data and gray matter maps from structural MRI data

(Abrol, Rashid, Rachakonda, Damaraju, & Calhoun, 2017). The frame-

work identified the associated changes in both modalities, highlight-

ing significantly disrupted links between dynamic FNC and gray

matter volumes in SZ patients. Results from this study reported signif-

icant group differences in gray matter maps, particularly in the supe-

rior parietal lobule, precuneus, postcentral gyrus, medial/superior

frontal gyrus, superior/middle temporal gyrus, insula and fusiform

gyrus. Further, results also highlighted alterations in several inter-

regional connectivity strength in SZ patients. In the field of brain-

based prediction of mental illness, fusion approaches using dFNC and

other features could increase the discriminative power of the models,

although future studies are required to confirm their utilities in this

regard.

8 | SUMMARY AND CONCLUSION

Recent brain-based mental illness predictome studies have shown

promising results, although some results require further validation due

to small sample sizes. While many advanced algorithms have been

developed and applied in the field of mental illness prediction, there

exists many challenging issues which must be further resolved prior to

their applications in clinical settings. In this work, we comprehensively

review existing brain-based prediction studies in several mental

illnesses such as SZ, depressive disorders (i.e., MDD and BP), ASD,

ADHD, SAD, OCD, PTSD, and substance disorder. We also highlight a

number of existing approaches and future research directions. A major

challenge in the field is the prediction of phenotypic heterogeneity

that characterizes psychiatric disorders. However, recent approaches
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have started to address the disease subtypes. This can improve dis-

ease prediction, provide biological support for existing categories or

support the revision of existing diagnostic categories. Another major

challenge is the relatively small sample size reported across most stud-

ies. Without more robust validation, it is unclear how generalizable

these results will be when applied to an independent dataset.

However, recent data-sharing initiatives have started to improve the

sample size issue by offering adequate data to develop more robust

and improved prediction models.

While brain-based classification has proven challenging, there has

been considerable progress made in recent years. With the accelerat-

ing growth of large volumes of patient data and data-sharing initia-

tives in the field of neuroimaging and medicine, we anticipate

diagnostic tools operating on comprehensive biomarker profile

accessed from multiple modalities will be available for specific use

cases in the near future. With more sophisticated deep learning

models integrated with large-scale data, we believe that predictive

modeling tools will soon transition from the “proof-of-concept” stage

to the “ready for clinical implementation” stage. Further, while patient

characteristics appear to be more homogeneous within relatively small

samples (Schnack & Kahn, 2016), failing to capture disease-specific

variability, with the power of “big” brain data and advanced machine

learning algorithms, it is now possible to explore the heterogeneity

within a disease (i.e., disease sub-types). It is a common practice for

clinicians to consider diagnostic homogeneity (i.e., patients with simi-

lar clinical symptoms belong to the same broader diagnostic category).

We can also evaluate this within imaging data using, for example,

N-way clustering approaches to identify subgroups of homogeneous

data followed by evaluation of clinical phenotypes. One recent

example shows this in SZ and finds enhanced sensitivity to group

differences and stronger links to symptoms scales that is typically

found (Rahaman, Damaraju, & Calhoun, 2019; Rahaman, Turner,

et al., 2019). By identifying complex and heterogeneous brain-based

disease patterns, predictive modeling can potentially be used clinically

for more personalized medicine targeted at specific subtypes or clus-

ters of the disorder with varying symptomology and disease progres-

sion. However, this can only be achieved by integrating clinical and

technical expertise, possible by some back-and-forth feedback system

between both fields’ experts, until the tools are optimized as well as

simplified for clinical applications. Finally, we expect the brain-based

predictome to progress beyond the categorical diagnosis (i.e., identify-

ing disease groups), and taking into account some of the key continu-

ous measures, such as cognition and behavior, to provide a

comprehensive diagnostic approach. We look forward to seeing the

full potential of the brain-based predictome realized.

There are several limitations to this work. In this survey, we

restricted our search to MRI-based, English journal articles only for

specific mental disorders. Further, we did not focus on other

modality-based mental illness prediction studies, such as EEG, MEG,

and PET. Also, we narrowed our focus on mental disorders only and

did not consider other brain disorders such as Alzheimer's disorder,

mild cognitive impairment, and Parkinson disease. Moreover, we

mostly reported the best performing features and classifiers, and

experimental setups.
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