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Abstract

Background

Although the interregional disparity in chronic kidney disease (CKD) prevalence has been

reported globally, little is known about differences in CKD prevalence within a region. We

aimed to study the intraregional distribution of renal function in the Northern Netherlands

and identify determinants of geographical differences in renal function.

Methods

We included 143,735 participants from the Lifelines population-based cohort in the Northern

Netherlands. Spatial analysis was performed to identify regional clusters of lower eGFR

(cold spots) and higher eGFR (hot spots) at the postal code level, without and with adjust-

ment for clinical risk factors. Multivariate logistic regression was used to identify the

contribution of neighborhood-level health-related behaviors, socioeconomic status, and

environmental factors (air pollution parameters, urbanity) to regional clustering of lower

eGFR.

Results

Significant spatial clustering of renal function was found for eGFR as well as for early stage

renal function impairment (eGFR<90 ml/min/1.73 m2), (p<0.001). Spatial clustering per-

sisted after adjustment of eGFR for clinical risk factors. In adjusted cold spots, the aggregate

eGFR was lower (mean ± SD: 96.5±4.8 vs. 98.5±4.0 ml/min/1.73 m2, p = 0.001), and the

prevalence of early stage renal function impairment (35.8±10.9 vs. 28.7±9.8%, p<0.001)

and CKD stages 3–5 was higher (median (interquartile range): 1.2(0.1–2.4) vs 0(0–1.4)%,

p<0.001) than in hot spots. In multivariable logistic regression, exposure to NO2 (Odd ratio

[OR], 1.45; 95% confidence interval [95% CI], 1.19 to 1.75, p<0.001) was associated with

cold spots (lower renal function), whereas proportion of fat intake in the diet (OR, 0.68; 95%

CI, 0.48–0.97, P = 0.031) and income (OR, 0.91; 95%CI, 0.86–0.96, p<0.001) for median

level income) were inversely related.
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Conclusions

Significant intraregional clustering of renal function, early renal function impairment and

CKD were observed in the Northern Netherlands even after adjustment for renal function-

related clinical risk factors. Environmental (air pollution), neighborhood-level socioeconomic

factors and diet are determinants of intraregional renal function distribution. Spatial analysis

might be a useful adjunct to guide public health strategies for the prevention of CKD.

Introduction

Chronic kidney disease (CKD) is a global public health problem leading to considerable mor-

bidity and mortality, with an increasing prevalence [1–2]. Patients with CKD are at increased

risk of morbidity and premature mortality, mainly due to the increased prevalence of cardio-

vascular disease and infections. CKD may progress to end-stage kidney disease (ESKD) requir-

ing dialysis or transplantation, and leads to substantial healthcare costs [3–5].

Regional differences in the prevalence of CKD have been reported globally. For example, in

Europe, the reported prevalence of CKD stages 3–5 varies between 1.0% in central Italy and

5.9% in northeast Germany [6]. In the adult U.S. population, the prevalence of CKD stages 3–5

varies from 4.8% in the Northeast to 11.8% in the Midwest [7]. Similarly, in China the preva-

lence of CKD stages 3–5 varies from 1.1% in East China to 3.8% in Southwest China [8]. The

observed differences in CKD prevalence across countries and regions can be explained by true

discrepancies in CKD prevalence, but also due to heterogeneity of studies and methodology

[6]. Analysis of factors driving regional variation might be useful to guide prevention strate-

gies. Yet, the application of spatial analysis as a dissection tool has so far been limited, amongst

others by the relatively coarse geographic scales of currently available data, whereas emerging

evidence emphasizes the importance of regional variation at smaller spatial scales, such as

neighborhood variance [9].

People living in the same community or neighborhood to some extent experience similar

exposures and health status due to a common environment [10]. Emerging evidences show

that living in socioeconomically disadvantaged neighborhoods is related to higher rates of dis-

ease, such as diabetes, cardiovascular disease and ESKD incidence [11–12]. Health interven-

tions and policies may be less effective when neighborhoods factors are not taken into account

[13]. Consequently, there is an increasing interest in evaluating health problems at the neigh-

borhood level, and analyze differences on an intraregional scale. Identification of intraregional

distribution of renal function could guide the medical community and policymakers to focus

on allocating the limited resources effectively. Therefore, we investigated the spatial distribu-

tion of renal function at postal code level in the Lifelines cohort in the Northern Netherlands,

a region comprising 9,315 km2 and 986 postal codes, with an even distribution of cohort par-

ticipants over the region, and aimed to identify determinants of the geographic variation

in renal function. To this purpose, we first performed spatial analysis on crude eGFR, thus

identifying regional clusters of lower (cold spots) and higher (hot spots) eGFR. Next, to assess

whether spatial distribution of eGFR might be explained by the spatial distribution of renal

function-related risk factors, we performed spatial analysis for eGFR adjusted for known clini-

cal risk factors. Finally, we identified determinants for the identified adjusted cold and hot

spots by multivariate logistic regression, investigating the possible contribution of neighbor-

hood-level health-related behaviors, socioeconomic status, and environmental factors, i.e air

pollution parameters and urbanity.
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Methods

Lifelines Cohort Study

Lifelines is a population-based cohort in a three-generation design to study the health and

health-related behaviors of more than 165,000 participants living in the Northern Netherlands,

accounting for 10% of the population, evenly distributed over the region. Participants were

recruited from 2006 and 2011 through invitation by their general practitioners in the three

Northern provinces of the Netherlands (Groningen, Friesland and Drenthe), and subsequently

included their children, and parents, if available. In addition, inhabitants of the Northern

provinces, who were not invited by their general practitioner, could register themselves via the

Lifelines website. Detailed information about the Lifelines Cohort Study can be found else-

where [14]. The Lifelines adult study population is broadly representative with respect to

socioeconomic characteristics, lifestyle factors, the prevalence of chronic diseases and general

health in the Northern Netherlands [15]. Before entering the study, all participants signed

the informed consent. The Lifelines Cohort Study is conducted according to the principles of

the Declaration of Helsinki. Our research protocol and data access application were reviewed

and approved by the medical ethical review committee of the University Medical Center

Groningen.

In the Lifelines cohort, 152,728 participants were older than 18 years. After excluding the

missing clinical data on serum creatinine, weight and height, estimated glomerular filtration

(eGFR), body mass index (BMI) and body surface area (BSA) data were calculated for 147,688

participants. Due to 94 participants with missing postal codes, 625 participants whose postal

code area included less than 10 participants, and 3,234 participants who were not living in the

Northern Netherlands, a total of 143,735 participants remained for the current analysis. Fig 1

shows flow diagrams outlining the study population, exclusions, and missing data.

Sociodemographic characteristics and health-related behaviors

Sociodemographic characteristics and health-related behavior data were assessed based on

self-administered questionnaires. Education level was classified into four groups (low: never

been to school or elementary school only or lower vocational or secondary school; median:

intermediate vocational school or intermediate/higher secondary school; high, higher voca-

tional school or university; unknown or no answer. Income level was defined as a mean gross

monthly income of: low:<1,000 euro; median: 1,000–3,000 euro; high: >3,000 euro; unknown

or no answer. Smoker was defined as current smokers. Physical activity was evaluated by the

validated Short Questionnaire to Assess Health-enhancing physical activity (SQUASH) ques-

tionnaire. In this study, we evaluated the moderate to vigorous physical activity. Self-adminis-

tered food frequency questionnaire (FFQ) were used to assess proportions of the total protein

intake, carbohydrate intake, fat intake in the diet, and total energy intake in this study [14,16].

Clinical factors

Following a standardized protocol, trained technicians measured each individual’s height and

weight, waist circumferences, and blood pressure. Body mass index (BMI) was calculated as

weight (kg) divided by height squared (m2). Body surface area (BSA) was calculated by the Du

Bois formula: BSA = 0.007184 ×Weight0.425 ×Height0.725. Biochemistry and renal function

assessment included blood laboratory assessment and urine laboratory assessment. Estimated

glomerular filtration rate (eGFR) was calculated using the Chronic Kidney Disease Epidemiol-

ogy Collaboration equation (CKD-EPI) [17]. Early stage renal function impairment was

defined as eGFR< 90 ml/min/1.73m2. CKD stages 3–5 was defined as eGFR<60 ml/min/
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1.73m2. Participants were categorized as having diabetes if they had self-reported diabetes

and/or a non-fasting plasma glucose�11 mmol/L and/or a measured glycated hemoglobin

(HbA1c)�6.5% (48 mmol/mol) and/or use of oral anti-diabetics and/or insulin. Cardiovascu-

lar disease included coronary artery disease, heart failure and/or stroke. Hypertension was

defined as blood pressure >140/90 mmHg or use of anti-hypertensive medication.

Environmental factors

Urbanity and air pollution were included as environmental factors in this study. The degree of

urbanity was obtained from Statistics Netherlands (CBS) 2011 data [18]. There were three cate-

gories of urbanity: rural,<500 addresses per km2; semi-urban, 500–1,500 addresses per km2;

urban, >1,500 addresses per km2. Two air pollutants were included in the present study.

Annual average concentration of NO2 and fine particulate matter with aerodynamic diameter

<2.5 μm (PM2.5) were estimated at place of residence for the periods 2009–2010 using the

European Study of Cohort for Air Pollution Effects (ESCAPE) land-use regression (LUR)

model incorporating satellite-derived and chemical transport modelling data, which have been

described elsewhere [19–21].

Neighborhoods and neighborhood-level factors

Neighborhood was defined by postal code in this study. The Northern Netherlands comprises

a total of 986 postal codes. Participants resided in 1,879 postal codes in Lifelines cohort. After

excluding postal codes not in the Northern Netherlands and postal codes with less than 10 par-

ticipants, a total of 819 postal codes were included in our study (Fig 1). The mean number of

Fig 1. Flow chart of participants selection.

https://doi.org/10.1371/journal.pone.0223908.g001
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participants per postal code in our study was 176 (median 69). The value of neighborhood-

level factors was aggregated as the median value of individual factors at each postal code.

Spatial analysis

Spatial analysis was applied to identify clusters of neighborhoods with higher or lower renal

function and early stage of renal function impairment. Global Moran’s I (GMI) statistic is a

commonly used measure of spatial autocorrelation based on a predefined spatial neighbor-

hood [22]. The index of the GMI ranges between -1 and 1, indicating from maximum negative

association to maximum positive association. A significantly positive GMI means spatial clus-

tering takes place. A significantly negative GMI is called dispersion. A zero value indicates a

random spatial distribution. A higher positive value means a stronger spatial autocorrelation,

and vice versa for negative values. The level of significance is set at p<0.05. We applied this

method to identify unadjusted eGFR and adjusted eGFR clustering at postal code level in Arc-

GIS v10.3.

Global measures of spatial association identify whether clustering takes place across the

study area. However, GMI does not show where the clusters occur. Therefore, Getis-Ord Gi�

Hot Spot Analysis was used in this study to detect spatial clusters. This method was used in

Lifelines cohort previously [23]. The rationale behind the Gi� is that for each area i, a weighted

average is constructed for the variables, using the value for area i with a weight of 1, and the

values of areas surrounding i weighted by the inverse distance to i. The resultant weighted

average is normalized and can then be interpreted as a z-score. Positive z indicated “hot spots”

(red) where postal codes with higher values are near neighboring postal codes with higher val-

ues, negative z indicated “cold spots” (blue) where postal codes with lower values are near

neighboring postal codes with lower values. And then the clusters mapped according to the p-

value related to z-score (p<0.01 mapped in dark blue or red, p<0.05 mapped in medium blue

or red, and p<0.1 mapped in light blue or red). We identified statistically significant hot spots

and cold spots at the postal code level using the Getis-Ord Gi� statistic in ArcGIS v10.3.

Statistical analysis

The aggregate eGFR value per postal code was used to perform GMI and Getid-Ord GI�. The

adjusted eGFR per postal code was first obtained from individual eGFR adjusted for known

renal function-related clinical risk factors by linear regression, and then the derived residuals

were aggregated by postal codes. The adjusted clinical risk factors included age, sex, BSA, BMI,

waist circumference, serum potassium, cholesterol, triglycerides, diabetes, cardiovascular dis-

ease, hypertension. In order to assess the determinants of the clustering of renal function, we

compared neighborhood-level health-related behaviors, socioeconomic status, and environ-

mental factors between adjusted cold and hot spots at 90, 95 and 99% confidence levels. Uni-

variable and multivariable logistic regression was applied to identify the neighborhood-level

factors associated with being located in cold spots compared to hot spots. Statistical analyses

were performed by SPSS (version 25.0, Armonk, NY: IBM Corp).

Results

Individual-level subject characteristics of the overall cohort (n = 143,735) and adjusted cold

and hot spots are given in S1 Table. Mean (mean ± standard deviation) age was 44.8±13.0

years. The age range was 18–93 years. Fifty-eight percent of the participants were women. The

prevalence of early stage renal function impairment (eGFR<90 ml/min/1.73m2) was 32.4%,

and the overall prevalence of CKD stages 3–5 was 1.2%.

Renal function distribution in the Northern Netherlands
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Intraregional renal function distribution

Significant regional clustering was found, for both unadjusted (GMI:0.182, p<0.001) and

adjusted eGFR (GMI:0.074, p<0.001), as illustrated in Fig 2A and 2B, showing clusters of

neighborhoods with higher eGFR (hot spots) and with lower eGFR (cold spots). Adjustment

for known renal function-related clinical risk factors (Fig 2B), significant clusters of cold and

hot spot persisted (GMI:0.074, p<0.001), indicating that the regional clustering of renal func-

tion cannot be fully explained by established clinical risk factors of renal function. For early

stage renal function impairment (eGFR<90 ml/min/1.73 m2 (%), significant regional cluster-

ing was detected as well, as illustrated in Fig 3 (GMI:0.122, p<0.001).

Neighborhood-level characteristics of adjusted cold and hot spots

Neighborhood-level characteristics of the overall cohort (819 postal code areas) as well as the

adjusted cold (109 postal code areas) and hot (114 postal code areas) spots are shown in Table 1.

In the adjusted cold spots, the aggregate eGFR (96.5±4.8 vs. 98.5±4.0 ml/min/1.73 m2, p = 0.001)

and 24-hour creatinine clearance (122.8±5.9 vs. 127.6±8.6 ml/min, p<0.001) were lower than in

hot spots. In line, the prevalence early stage renal function impairment was higher (35.8±10.9 vs.

28.7±9.8%, p<0.001) as was the prevalence of CKD stages 3–5 (median (interquartile range): 1.2

(0.1–2.4) vs 0(0–1.4) %, p<0.001). Age was lower, serum potassium was lower, and BMI and

waist circumference were higher in the adjusted cold spots. Other clinical risk factors were not

different. In adjusted cold spots, proportion of fat consumption was lower than in adjusted hot

spots (p<0.001). Socioeconomic status showed differences for education level, with an overrep-

resentation of higher education in the adjusted cold spots, as well as income level, with overrep-

resentation of low income and high income, and underrepresentation of median level income in

the adjusted cold spots, as compared to adjusted hot spots. As to urbanity, 33.9% of the adjusted

cold spots were in urban regions, as compared to 4.4% for the hot spots. (p = 0.001). Exposure to

NO2 and PM2.5 was higher in adjusted cold spots than in adjusted hot spots (p<0.001).

Determinants of renal function distribution

Univariate and multivariate logistic regression analysis were conducted on adjusted cold and

hot spots to identify their neighborhood-level determinants. The results are given in Table 2. In

univariate logistic regression, high education, low and high income, urbanity and air pollution

was positively associated with being in cold spots (all p<0.05), whereas proportion of total fat

intake in the diet, low and median education, and median income showed inverse associations

with being in cold spots (all p<0.05). In final multivariate logistic regression model (model 3),

NO2 (Odds ratio [OR], 1.45; 95% confidence interval [95% CI], 1.19 to 1.75, p<0.001) was pos-

itively associated with being in the adjusted cold spots, while proportion of total fat intake in

the diet (OR,0.68; 95%CI, 0.48–0.97, p = 0.031) and median level income (OR,0.91; 95%CI,

0.86–0.96, p<0.001) were negatively associated. Notably, the association with education lost

significance after adjustment. The association with urbanity lost significance when adjusted for

air pollution. Taken together, neighborhood-level socioeconomic status, i.e income level, and

diet, i.e proportion of fat intake, and environmental factors, i.e NO2 exposure were associated

with spatial clustering of eGFR, with lower proportion of fat intake, median level income and

higher NO2 exposure being related to adjusted cold spots (lower eGFR).

Discussion

In this study, we found significant spatial differences in renal function and the prevalence of

early stage renal function impairment as well as the prevalence of CKD stages 3–5. The spatial

Renal function distribution in the Northern Netherlands
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distribution was not explained by the known renal function-related clinical risk factors. The

neighborhood-level factors, NO2, income and lower proportion of fat intake, were indepen-

dently related to clusters of lower renal function after adjustment. This is the first study to

identify intraregional renal function difference at the neighborhood level in The Netherlands

Fig 2. The intraregional distribution of eGFR-based renal function in Northern Netherlands. (A) Hot (red colors)

and cold spot (blue colors) clusters of unadjusted eGFR. (B) Hot (red colors) and cold spot (blue colors) clusters of

eGFR adjusted for known clinical risk factors, including age, sex, BSA, BMI, waist circumference, serum potassium,

cholesterol, triglycerides, diabetes, cardiovascular disease and hypertension.

https://doi.org/10.1371/journal.pone.0223908.g002
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and to identify explanatory factors, namely diet, income level and air pollution. These findings

provide a basis for better-targeted preventive and public health measures in the prevention of

renal function decline and CKD.

The spatial analysis in this report suggested the presence of regions in which the renal func-

tion is higher and lower, respectively, than could be expected if the renal function would be

randomly distributed over the Northern Netherlands. A similar variation within regions was

recently reported within the United States and France. Here, Bowe at al. examined the geo-

graphic variation of kidney function decline among U.S. counties, and identified county

characteristics associated with rapid kidney function decline. However, the authors did not

identify factors responsible for these clusters [24]. And Occelli at al. mapped the end-stage kid-

ney disease (ESKD) on small area level in Northern France and revealed significant geographic

difference in ESKD incidence [25]. In agreement with US and France study, we found rela-

tively consistent renal function distribution with or without adjustment of renal function-

related clinical risk factors. The results showed that regions and geographic factors still matter

among individuals within the homogeneous (national) health care system, indicating the

Fig 3. The intraregional distribution of proportion of eGFR<90 ml/min/1.73m2 in Northern Netherlands. Hot spots were shown as red colors and

cold spot were shown as blue colors.

https://doi.org/10.1371/journal.pone.0223908.g003
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Table 1. Cohort characteristics at neighborhood level (overall and for adjusted cold and hot spots).

Overall cohort

(aggregate value) 1
Cold spots

(aggregate value)

Hot spots

(aggregate value)

P values2

Number 819 109 114

Demographics

Age (year) 45.7±4.1 44.1±6.1 45.9±3.8 0.010

Sex, female (%) 58.3±5.4 58.8±4.3 58.7±5.9 0.877

Clinical factors

Body surface area (m2) 1.9±0.1 1.9±0.1 1.9±0.1 0.583

24h urine creatinine clearance (ml/min) 124.9±7.0 122.8±5.9 127.6±8.6 <0.001

Serum creatinine (μmol/L) 72.0±2.4 72.9±2.4 70.7±2.7 <0.001

eGFR (ml/min/1.73 m2) 97.0±4.0 96.5±4.8 98.5±4.0 0.001

eGFR<90 ml/min/1.73 m2 (%) 32.9±9.6 35.8±10.9 28.7±9.8 <0.001

CKD stages 3–5 (%) 0.8(0–1.7) 1.2(0.1–2.4) 0(0–1.4) <0.001

Serum potassium (mmol/L) 3.9±0.1 3.8±0.1 3.9±0.1 <0.001

BMI (kg/m2) 25.5±0.9 25.6±1.2 25.2±0.8 0.023

Waist circumference (cm) 89.5±3.2 89.6±3.9 88.9±2.7 0.088

Cholesterol (mmol/L) 5.1±0.2 5.0±0.2 5.1±0.2 0.101

Triglycerides (mmol/L) 1.0±0.1 1.0±0.1 1.0±0.1 0.103

Diabetes (%) 3.0(1.0–4.7) 3.2(1.8–5.1) 2.7(0–4.4) 0.079

Hypertension (%) 21.1±7.1 20.4±7.2 21.0±7.5 0.547

Cardiovascular disease (%) 2.6(0.9–4.2) 2.9(1.6–4.1) 2.5(0–4.3) 0.161

Health-related behaviors

Smoker (%) 18.2±6.9 18.3±7.1 18.8±7.6 0.647

Physical activity (min/week) 360(265–440) 435(378–540) 390(279–585) 0.144

Total protein intake (g/day/1000kcal) 38.2±5.7 37.3±4.0 36.8±3.2 0.325

Total carbohydrate (g/day/1000kcal) 109.8±6.8 111.1±5.4 111.2±4.6 0.896

Total fat intake (g/day/1000kcal) 39.2±2.0 39.1±1.2 39.8±1.3 <0.001

Total energy intake (kcal) 1881±466 1901±252 2027±289 <0.001

Socioeconomic status Education (%)

Low 29.6±10.7 28.3±13.0 32.9±10.5 0.005

Median 39.7±9.5 38.6±9.9 42.6±11.0 0.005

High 28.3±12.6 32.5±15.9 24.0±10.7 <0.001

Unknown/no answer 2.3±2.2 0.5±0.7 0.5±1.2 0.395

Income (%)

Low 5.7±4.5 8.4±6.9 5.2±3.7 <0.001

Median 46.0±11.6 45.4±10.5 50.5±10.5 <0.001

High 28.2±12.4 27.6±11.5 24.5±10.1 0.037

Unknown/no answer 20.0±9.1 18.7±8.1 19.8±8.6 0.296

Environmental factors Urbanity (%)3

Rural 65.8 46.8 84.1 0.001

Semi-urban 15.3 19.3 11.5

Urban 18.9 33.9 4.4

Air pollution (ug/m3)

NO2 18.3±4.0 21.4±5.4 16.8±2.4 <0.001

(Continued)
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importance of taking these factors into account in allocating health care resources. The GMI

statistic as a geographic tool can be a useful adjunct to guide strategies for prevention of renal

function decline and CKD at a local scale. Even when known clinical risk factors are taken into

account, spatial disparities in renal function remain, suggesting that neighborhood-level fac-

tors may play important roles.

Table 1. (Continued)

Overall cohort

(aggregate value) 1
Cold spots

(aggregate value)

Hot spots

(aggregate value)

P values2

PM2.5 14.4±0.9 14.8±0.8 14.1±0.8 <0.001

1 Neighborhood characteristics are presented as aggregate value, that were calculated as follows: medians were calculated per postal code area, and the average (±SD) of

the medians is presented in the table.
2 P values: comparison between cold and hot spots; p<0.05 presents statistical significance
3 Urbanity is a neighborhood-level variable, others are the aggregate value of individuals in each postal code.

Definitions: Education: low: never been to school or elementary school only or lower vocational or secondary school; median: intermediate vocational school or

intermediate/higher secondary school; high, higher vocational school or university. Income: low, < 1,000euro; median, 1,000–3,000 euro; high, >3,000 euro. Urbanity:

rural, <500 addresses per km2, semi-urban, 500–1,500 addresses per km2; urban, >1,500 addresses per km2.

https://doi.org/10.1371/journal.pone.0223908.t001

Table 2. Association between neighborhood-level health-related behaviors, socioeconomic status and environmental factors and adjusted cold spots by logistic

regression.

Univariate logistic regression Multilvariate logistic regression

Model 1 Model 2 Model 3

OR 95%CI P OR 95%CI P OR 95%CI P OR 95%CI P

Health-related behaviors

Smoker (%) 0.99 0.96–1.03 0.645 0.99 0.95–1.04 0.856 0.98 0.93–1.03 0.452 0.97 0.91–1.02 0.260

Physical activity (min/week) 1.01 0.99–1.01 0.546 1.01 0.99–1.01 0.192 1.01 0.99–1.01 0.231 1.01 0.99–1.01 0.238

Total protein intake (g/day/1000kcal) 1.04 0.95–1.14 0.354 0.98 0.79–1.20 0.821 0.95 0.77–1.17 0.635 0.93 0.74–1.17 0.548

Total carbohydrate (g/day/1000kcal) 0.99 0.95–1.05 0.895 1.02 0.87–1.15 0.966 0.96 0.83–1.11 0.583 0.94 0.80–1.10 0.439

Total fat intake(g/day/1000kcal) 0.59 0.43–0.78 <0.001 0.65 0.47–0.89 0.008 0.68 0.49–0.94 0.019 0.68 0.48–0.97 0.031

Socioeconomic status Education (%)

Low 0.97 0.95–0.99 0.006 0.94 0.69–1.30 0.725 1.01 0.72–1.39 0.987 1.04 0.74–1.45 0.835

Median 0.96 0.94–0.99 0.006 0.91 0.66–1.25 0.568 0.98 0.71–1.35 0.879 1.01 0.71–1.40 0.997

High 1.04 1.03–1.07 <0.001 0.94 0.68–1.30 0.717 0.99 0.71–1.38 0.966 1.03 0.73–1.45 0.870

Income (%)

Low 1.13 1.06–1.20 <0.001 1.15 1.05–1.25 0.002 1.08 0.98–1.19 0.105 1.02 0.92–1.15 0.671

Median 0.95 0.93–0.98 0.001 0.95 0.91–0.99 0.030 0.3 0.89–0.98 0.004 0.91 0.86–0.96 <0.001

High 1.03 1.01–1.05 0.038 1.01 0.96–1.06 0.636 0.99 0.94–1.04 0.769 0.96 0.91–1.02 0.173

Environmental factors Urbanity (%)

Rural reference - - - reference reference

Semi-urban 3.01 1.39–6.05 0.005 - - - 3.03 1.31–7.01 0.009 0.69 0.24–1.97 0.492

Urban 13.78 5.10–37.24 <0.001 - - - 9.41 2.95–29.99 <0.001 0.48 0.09–2.52 0.385

Air pollution (ug/m3)

NO2 1.36 1.23–1.50 <0.001 - - - - - - 1.45 1.19–1.75 <0.001

PM2.5 2.86 1.95–4.20 <0.001 - - - - - - 1.38 0.79–2.43 0.256

Model 1: adjusted for health-related behaviors and socioeconomic status.

Model 2: model1 plus urbanity

Model 3: model 2 plus air pollution

https://doi.org/10.1371/journal.pone.0223908.t002

Renal function distribution in the Northern Netherlands

PLOS ONE | https://doi.org/10.1371/journal.pone.0223908 October 15, 2019 10 / 15

https://doi.org/10.1371/journal.pone.0223908.t001
https://doi.org/10.1371/journal.pone.0223908.t002
https://doi.org/10.1371/journal.pone.0223908


Accordingly, we identified several neighborhood-level determinants of cold and hot spots

of adjusted eGFR. As to neighborhood-level health behaviors, lower fat intake was associated

with adjusted cold spots on multivariate analysis. The association between fat intake and renal

function is complex, and may relate to type of fat, presence of pre-existing renal and/or albu-

minuria [26], and concomitant cardiovascular and metabolic derangements. Our data may

seem at variance with the literature, as a higher proportion of fat in the diet was associated

with a lower risk of being in a cold spot. However, it should be noted that we analyzed neigh-

borhood-level diet intake, as opposed to the individual-level analysis in the literature which

precludes a direct comparison. Our study design, and lack of data on type of fat, does not

allow to inferences as to possible mechanisms, yet, it is relevant to note that the association

was present for adjusted eGFR clustering, thus pointing towards effects of neighborhood-level

fat intake independent from the known clinical risk factors. The association of diet-related fac-

tors like fat intake suggests that regional differences in dietary habits, as previously reported in

the Lifelines cohort [23], may be relevant to geographic clustering of renal function, but this

assumption would require further study to substantiate.

We found that, neighborhood-level income was independently associated with the risk of

being in the cold spots, with the lowest risk for median level income, whereas the lower risk in

the higher income group (OR 0.96; 95% CI 0.91–1.02) feel short of statistical significance. Low

socioeconomic status has previously been recognized as a risk factor for the incidence and pro-

gression of CKD [27], and both lower income and lower education were proven to be associ-

ated with renal function decline [28], mostly in individual-level studies. One report, from the

US, compared the role of community-level poverty with individual-level poverty as a risk fac-

tor for end stage kidney disease and found that individual poverty was as risk factor, whereas

community-level poverty was not [29]. This might be interpreted as being in contrast with our

finding on neighborhood-level income as a determinant of clustering of lower renal function.

However, our study was conducted in a very different setting, with also a different outcome

parameter, precluding a direct comparison between the studies. Neighborhood-level education

level was not associated with the clustering of renal function after adjustment for multiple risk

factors. However, a previous study reported that education was associated with a less marked

risk gradient than the occupational based socioeconomic status [30]. It seems income level is

better to represent socioeconomic status than the education level.

Considering the spatial distribution of eGFR, the possible role of environmental factors is

of specific interest. We found that urbanity was a risk factor, but this association lost signifi-

cance after including air pollution in the model. Non-urbanity, and the consequent distance to

specialist care, was a key factor affecting the outcomes of dialysis-dependent or non-dialysis

dependent CKD patients in prior studies [31–32]. Remote dwelling patients were less likely to

receive nephrologist care and had a higher risk of mortality or hospitalization [31]. We assume

that distance to health care provisions is less of a problem in the Netherlands, where distances

are small, and the health care system is accessible for all. The role of air pollution. i.e exposure

to NO2 as an independent risk factor for being in a cold spot is of interest. Air pollution has

previously been reported as a potential explanation of the geographical variation of kidney

disease [33]. Previous studies found that chronic exposure to air pollution, including PM2.5,

PM10, NO2 and CO, is a significant risk factor for the incident CKD and progression to ESKD

[34–35]. Our study found that NO2 exposure was worse in the cold spots, i.e where renal func-

tion was worse, suggesting that air pollution should be considered an actionable risk factor for

prevention of renal damage.

What could be the clinical significance of our findings? The differences in renal function

between the adjusted hot and cold spots were relatively mild, but were accompanied by a corre-

sponding difference in early renal function impairment, as well as CKD stages 3–5, which
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enhances the robustness of our findings. Within the entire cohort, the overall prevalence of

CKD stage 3–5 was 1.2%. The aggregate prevalence of CKD in hot spots was 0 (interquartile:

0–1.4) % and in cold spots was 1.2 (0.1–2.4) %. The prevalence of CKD stages 3–5 has been

reported to vary all over the world. Even within European countries it varies between countries,

with prevalence ranging between 1.0% and 5.9% [6]. Although measurements of creatinine

have been standardized, some interlaboratory variability still exists [36]. In the Lifelines cohort,

for all samples, the same methodology was used to measure creatinine, so renal function distri-

bution reflected true differences in CKD prevalence in cold and hot spots. The low prevalence

of CKD may be explained by the good health care access in the Netherlands. Follow-up studies

will have to show whether being in a cold spot also predisposes to progressive renal function

loss. Yet, an important message is that clinical risk factors alone cannot explain the spatial dis-

tribution of renal function, and that, accordingly, better prevention of CKD requires public

health measures. Our findings suggest that air pollution, and poverty, are relevant targets.

A strength of this study is that it is the first to use spatial analysis to visualize and detect the

patterns of renal function and identify the neighborhood-level factors associated with renal

function distribution in a large representative sample in the Netherlands. This study also has

several limitations. First, due to its cross-sectional nature, this study could not account for

changes in the distribution of renal function and its determinants over time. Second, although

the analyses were adjusted for known renal function-related clinical risk factors, it is possible

that unmeasured or unknown determinants and confounders could not be adjusted for in our

study. Third, the Northern Netherlands is a low prevalence area for renal function impairment

[6], this might limit the generalizability of our findings. Finally, it should be noted that for

analysis of the contribution of neighborhood-level factors on risk of being in a cold spot, we

used the aggregated values. This limits their interpretation, could elicit ecological fallacy, and

in particular limits direct comparison with studies on the role of individual risk factors on

renal function risk.

Significant variation in CKD prevalence are observed between regions and countries glob-

ally. In the present study, clustering of eGFR-based renal function was observed within a single

region in the Northern Netherlands. The neighborhood-level diet, income and NO2 were iden-

tified as region-specific determinants for renal function clusters. More attention should be

paid on neighborhood-level determinants like health-related behaviors, socioeconomic status

and environmental factors. These data could advance our understanding of the neighborhood

determinants of health and guide better prevention strategies.
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25. Occelli F, Deram A, Génin M, Noël C, Cuny D, Glowacki F. Mapping end-stage renal disease (ESRD):

spatial variations on small area level in northern France, and association with deprivation. PloS one.

2014 Nov 3; 9(11):e110132. https://doi.org/10.1371/journal.pone.0110132 PMID: 25365039

26. Lin J, Judd S, Le A, Ard J, Newsome BB, Howard G, et al. Associations of dietary fat with albuminuria

and kidney dysfunction. The American journal of clinical nutrition. 2010 Aug 11; 92(4):897–904. https://

doi.org/10.3945/ajcn.2010.29479 PMID: 20702608
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