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Objectives: The performance of multiparametric MRI-based radiomics models for
predicting H3 K27M mutant status in diffuse midline glioma (DMG) has not been
thoroughly evaluated. The optimal combination of multiparametric MRI and machine
learning techniques remains undetermined. We compared the performance of various
radiomics models across different MRI sequences and different machine learning
techniques.

Methods: A total of 102 patients with pathologically confirmed DMG were retrospectively
enrolled (27 with H3 K27M-mutant and 75 with H3 K27M wild-type). Radiomics features
were extracted from eight sequences, and 18 feature sets were conducted by
independent combination. There were three feature matrix normalization algorithms,
two dimensionality-reduction methods, four feature selectors, and seven classifiers,
consisting of 168 machine learning pipelines. Radiomics models were established
across different feature sets and machine learning pipelines. The performance of
models was evaluated using receiver operating characteristic curves with area under
the curve (AUC) and compared with DeLong’s test.

Results: The multiparametric MRI-based radiomics models could accurately predict the
H3 K27M mutant status in DMG (highest AUC: 0.807–0.969, for different sequences or
sequence combinations). However, the results varied significantly between different
machine learning techniques. When suitable machine learning techniques were used,
the conventional MRI-based radiomics models shared similar performance to advanced
MRI-based models (highest AUC: 0.875–0.915 vs. 0.807–0.926; DeLong’s test, p >
0.05). Most models had a better performance when generated with a combination of MRI
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sequences. The optimal model in the present study used a combination of all sequences
(AUC = 0.969).

Conclusions: The multiparametric MRI-based radiomics models could be useful for
predicting H3 K27M mutant status in DMG, but the performance varied across different
sequences and machine learning techniques.
Keywords: diffuse midline glioma, H3 K27M mutant, multiparametric MRI, radiomics, machine learning
INTRODUCTION

As a newly defined subtype of the 2016 WHO Classification of
Tumors of the Central Nervous System, “diffuse midline glioma
(DMG), H3 K27M mutant” is characterized by a genetic
alteration pattern in either H3F3A or HIST1H3B/C (1).
Compared to the wild-type group, the group with DMG with
an H3 K27M mutation exhibited a particularly dismal prognosis,
with 3-year overall survival of 5% and 2-year overall survival of
less than 10% (2–5). In addition, the previous studies revealed
that H3 K27M mutant status represented a potential novel
therapeutic target for DMG, which confronts the fact of
resistance to the conventional therapy strategies (6–10).
Identifying H3 K27M mutant status plays an essential role in
tumor diagnosis, survival prediction, and therapeutic decision-
making. Surgical resection or biopsy could provide an accurate
result of H3 K27Mmutant status but is not always feasible due to
tumor tissue’s spatial heterogeneity and unforeseeable
complications. Developing a non-invasive method for
accurately predicting H3 K27M mutant status is critical for
DMG management.

Several recent attempts have been made to use the
multiparametric MRI-based radiomics model to predict H3
K27M mutant status, but the results varied greatly (11–16).
Most of them focused on different kinds of conventional MRI
(cMRI), which could only reflect the tumor’s morphologic
information and benefi t l imitedly to reveal tumor
heterogeneity. The advanced MRI (aMRI) (e.g., diffusion-
weighted imaging [DWI], susceptibility-weighted imaging
[SWI], and dynamic susceptibility contrast perfusion-weighted
imaging [DSC-PWI]), which could provide physiological
information within the tumor, has been proved to be helpful in
radiomics-based glioma genotype prediction (17–19). However,
the utility of an advanced MRI-based radiomics model in
predicting H3 K27M mutant status has not been well
evaluated. On the other hand, previous studies indicated that
arent diffusion coefficient; AE, auto-
F, cerebral blood flow; CBV, cerebral
d T1-weighted imaging; DMG, diffuse
eptibility contrast perfusion-weighted
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the performance of the radiomics model predominantly varied
with the type of image set used (20, 21). As such, it is unclear
whether aMRI or a combination of cMRI and aMRI could make
an equivalent or superior performance as compared to cMRI.

In addition to the heterogeneous sequence used, the previous
studies on H3 K27M mutant status prediction employed a great
diversity of machine learning techniques, including
dimensionality-reduction algorithm, feature selector, and
classifier. It has been well recognized that the radiomics model
established via different machine learning techniques could
achieve diverse results even when the same sequence was used
(22, 23). This could be a potential reason for the inconsistent
prior radiomics-based H3 K27M mutant status prediction
results. Therefore, there is an urgent need for a head-to-head
comparison of the prediction power across different machine
learning techniques and sequence or sequence combinations to
determine the best machine learning techniques with the best
image sets.

The purposes of this study were to 1) detect the best MRI
sequence or sequence combinations for predicting H3 K27M
mutant status in DMG and 2) determine the optimal machine
learning technique for different image sets.
MATERIALS AND METHODS

Study Population
The Ethical Committee of the First Affiliated Hospital of Fujian
Medical University approved this study. The requirement for
written informed consent was waived due to the retrospective
nature. One hundred two patients were consecutively enrolled in
the present study from July 2010 to August 2021. The inclusion
criteria were as follows: 1) patients have a pathological diagnosis
of diffuse glioma and confirmation of H3 K27Mmutant status; 2)
tumor is located in the midline structure of the brain; and 3) full
preoperative MR images were available. Exclusion criteria were
as follows: 1) absence of any required MR images or the image
quality was insufficient for analysis and 2) the tumor volume was
less than 1.5 cm3. The patients were randomly split into training
and test groups with a ratio of 7:3. Extra effort was made to keep
the balance between the training and test cohorts.

MRI Protocol
The neurologic MRI examinations were performed with the 3.0-
Tesla MR scanner (MAGNETOM Verio/Skyra/Prisma, Siemens
Healthcare, Erlangen, Germany). The standard multiparametric
March 2022 | Volume 12 | Article 796583
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MRI sequences in the present study, including T2-weighted
imaging (T2WI), T1-weighted imaging (T1WI), fluid-
attenuated inversion recovery (FLAIR), contrast-enhanced
T1WI (CE-T1WI), SWI, DWI, and DSC-PWI. The details of
MRI acquisition parameters are listed in the Supplementary
Material 1 (Table S1). The apparent diffusion coefficient (ADC)
map was automatically derived fromDWI data with b-values of 0
and 1,000 s/mm2. The DSC-PWI raw data were scrolled into a
dedicated commercial software package (SyngoVia, Siemens),
and the standard perfusion maps (cerebral blood volume [CBV]
and cerebral blood flow [CBF]) were conducted as guidance of
the software. In the 4th phase during the DSC-PWI scanning, a
standard dose (0.1 mmol/kg) of gadobenate dimeglumine (Gd-
BOPTA) followed by 20 ml of saline was injected intravenously
with a flow rate of 3 ml/s. CE-T1WI was scanned after
DSC-PWI.

Image Pre-Processing and
Tumor Segmentation
Before pre-processing, the DICOM images were converted to the
nifti format. The standard image pre-processing included four
steps: 1) all sequences were registered to T2WI initially with a
block matching algorithm; 2) following the co-registration, the
images were resampled into the uniform voxel size of 1 × 1 × 5
mm3; 3) N4 Bias Field Correction package was applied to correct
the bias filed; 4) finally, the image intensities were standardized
to [0, 255] to reduce the influence of imaging intensity
inconsistency. All of the pre-processing procedures were
achieved using G.K software (Glioma kit, version 1.2.1.R, GE
Healthcare, Shanghai, China).

Tumor segmentation was performed by one radiologist (DS,
with 10 years of experience in neuroradiology) and verified by
another radiologist (DC, with 30 years of experience in
neuroradiology) who were unaware of the pathological results.
The volume of interest (VOI) was created to cover the tumor
core (including the enhancing, non-enhancing, and necrotic/
cystic components) on T2WI with ITK-SNAP (http://www.
itksnap.org) by referring to the T1WI, CE-T1WI, and FLAIR
images. According to VASARI guidelines (Visually AcceSAble
Rembrandt Images; https://wiki.nci.nih.gov/display/CIP/
VASARI), the respective portions of the tumor were defined as
described in the previous study (24, 25). As the radiomics feature
extraction differed between VOIs, the intra-observer and inter-
observer reproducibility analyses were achieved to minimize the
influence of segmentation bias. Of intra-observer reproducibility
analysis, the VOIs of 30 randomly chosen patients were
segmented twice by one radiologist (DS). The inter-observer
reproducibility analysis was performed based on the same cohort
above, where the VOIs were segmented by two radiologists (ZX
and DS, both with 10 years of experience in neuroradiology). The
intraclass correlation coefficient (ICC) was calculated to evaluate
the agreement of radiomics feature extraction.

Radiomics Feature Extraction
An open-source software, FeAture Explore (V 0.4.2), was used
for quantitative radiomics feature extraction with the
Frontiers in Oncology | www.frontiersin.org 3
Pyradiomics module on Python (3.7.6) (26, 27). A total of
851 features were extracted from each sequence image,
consisting of 18 first-order statistics features, 14 shape-based
features, 75 texture features, and 744 wavelet features from
eight wavelet-transformed images (https://pyradiomics.
readthedocs.io/en/latest/features.html). The details of the
extracted features are listed in the Supplementary Material 1
(Table S2). Eight sequences (T2WI, T1WI, FLAIR, CE-T1WI,
ADC, SWI, CBV, and CBF) were used in the present study.
Thus, a total of 6,808 features were extracted for analysis. We
conducted 18 feature sets by the independent combination of
features extracted from these eight sequences. The feature
sets were generally named with the name of sequences.
Especial ly , “cMRI,” “aMRI,” and “ALL” denote the
combination of all cMRI sequences, aMRI sequences, and
eight sequences, respectively.

Radiomics Feature Matrix Pre-Processing
As described above, for the sake of minimizing the influence of
VOI segmentation bias on radiomics feature calculation and
further machine learning analysis, the features with an ICC value
lower than 0.75 in either the intra-observer or inter-observer
reproducibility analysis were removed. Then we applied the
normalization to the remaining feature matrix. Three feature
normalization methods were considered: mean normalization,
min–max normalization, and Z-score normalization. The mean
normalization subtracted each feature vector by the mean value
of the vector and divided each feature by the length of the vector.
For the min–max normalization, we rescaled the minimum and
maximum values of the feature from zero to one. Then the
feature vector was mapped to a unit vector. When the Z-score
method was applied, we calculated each feature vector’s mean
value and SD. Then each feature was subtracted by the mean
value and was divided by the SD. Notably, only one
normal i za t ion method was used in one mach ine
learning pipeline.

Radiomics Feature Dimensionality
Reduction and Feature Selection
Since the feature space dimension was high, we applied two
alternative feature dimensionality-reduction methods in the
presented study, including Pearson’s correlation coefficient
(PCC) and principal component analysis (PCA). The PCC was
calculated for each pair of two normalized features, and we
removed one of them if the PCC was larger than the preset
threshold. By referring to the previous study, the threshold was
set to 0.8 for the model using a single sequence and 0.6 for the
model using a combination of different sequences (20). When the
PCA method was chosen, the high dimension features were
transformed into the relative lower dimension features. The
feature vector of the transformed feature matrix was
independent of each other.

Following feature dimensionality reduction, four optional
methods were provided for feature selection, including
ANOVA, recursive feature elimination (RFE), Kruskal–Wallis
(KW), and Relief.
March 2022 | Volume 12 | Article 796583
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Predictive Model Establishment
Seven machine learning classifiers were analyzed to determine
the optimal model. The SVM classifier we used was based on a
linear kernel function , and it may be more appreciated to be
cataloged into the linear classifier. The sentence should be
corrected as "These classifiers could be divided into three
categories: linear (logistic regression [LR], linear discriminant
analysis [LDA], and support vector machine [SVM]), non-linear
classifiers (auto-encoder [AE] and decision tree [DT]), and
ensemble classifiers (random forest [RF] and AdaBoost [AB]).
The five-fold cross-validation was applied on the training dataset
to determine the model’s hyper-parameter, such as the number
of features and specific hyper-parameters of each classifier, which
can be referred on the scikit-learn (https://scikit-learn.org/stable/
index.html). The hyper-parameters were set according to the
model performance on the cross-validation dataset.

Considering different combinations of each procedure during
model development, including sequence used, feature matrix
normalization, dimensionality reduction, and feature selection,
could provide controversial results with different classifiers. We
analyzed models’ performance from 8 single sequences and 10
different sequence combinations with different machine learning
techniques. Thus, a total of 3,024 models were conducted in the
present study (18 [sequence groups] × 3 [feature matrix
Frontiers in Oncology | www.frontiersin.org 4
normalization] × 2 [dimensionality reduction] × 4 [features
selector] × 7 [classifiers] = 3,024 [models]). The flowchart of
the present study is illustrated in Figure 1. The above processes,
including feature matrix normalization, dimensionality
reduction, feature selection, and classifier fitness, were
implemented with FeAture Explorer (V 0.4.2) on the training
cohort. Then, we evaluated the models’ performance on the
independent test cohort.

Statistical Analysis
The performance of each model was evaluated with receiver
operating characteristic curve analysis. The area under the
receiver operating characteristic curve (AUC) and accuracy
were calculated. We also estimated the 95% CI by bootstrap
with 1,000 samples. To assess the variability in the performance
of different models, we compared the top-one-performing
models and the top-five-performing models of each sequence
or sequence combination. Continuous variables of the baseline
characteristics were described as the mean ± SD and compared
using the Mann–Whitney U test. Categorical variables of the
baseline characteristics were described as number (percentage)
and compared using Pearson’s chi-squared test. The comparison
of AUCs between different models was performed using Delong’s
test. The statistical analyses were performed with R statistical
March 2022 | Volume 12 | Article 796583
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FIGURE 1 | The flowchart of the presented study. (A) Multiparametric MRI data collection, image pre-processing, tumor segmentation, and radiomics feature
extraction. (B) Machine learning and model performance analysis.
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software (version 3.5.3; https://www.r-project.org/). A p-value <0.05
was considered statistically significant.
RESULTS

Baseline Characteristics of Patients
Of the 102 patients, 27 (26.47%) patients were confirmed with an
H3 K27M mutation. The mean age was 41.19 ± 20.64 years, and
the male ratio was 64 (62.75%). No statistically significant
difference was found in the baseline characteristics between the
training and test groups (p > 0.05) (Table 1).

Performance of Sequence
In general, most of the high-performing models (with an AUC
value larger than 0.9 in the test set) were conducted from the
combination of different sequences (Figures 2, 3 and Tables 2
and S3). The ALL model showed the strongest predictive power
among various models for H3 K27M mutant status (AUC =
0.969), while the best single-sequence model was the CBF-based
model (AUC = 0.926), followed by the T2WI-based model (AUC
= 0.915). The CBV-based model yielded the lowest AUC value of
0.807 among the top-one-performing models of different
sequences or sequence combinations (Figure 4).
Frontiers in Oncology | www.frontiersin.org 5
The cMRI showed comparable performance to aMRI when
suitable machine learning techniques were employed (DeLong’s
test, all p > 0.05) (Table 3). In models based on a single sequence,
the highest AUCs were 0.875–0.915 for cMRI sequences and
0.807–0.926 for aMRI sequences (Table 2 and Figure 4). The
model of cMRI yielded a slightly higher AUC than the model of
aMRI in the test set (AUC: 0.921 vs. 0.915). When combining
limited sequences of cMRI and aMRI, the model of T2WI+CE-
T1WI+SWI+CBF reached the highest AUC of 0.955. No
statistically significant difference of the highest AUC values
between the optimal model (ALL, AUC = 0.969) and other
sequence-based models was found (DeLong’s test, all p >
0.05) (Table 3).

Performance of Machine
Learning Technique
Figures 2 and S1 demonstrate the performance of different
machine learning techniques. The machine learning pipeline of
the optimal model was Z-score_PCA_KW_RF and Z-
score_PCA_ANOVA_RF, both with an AUC value of 0.969
(Figure 2 and Table S3). Among the 90 top-five-performing
models, the Z-score normalization method outperformed others
with darker color lines in Figure 2 and a higher mean AUC value
in Figure S1. In the same way, feature sets applying
TABLE 1 | Baseline characteristics of the training and test groups.

Characteristics All (n = 102) Training (n = 72) Test (n = 30) p-Value

Age (years) 41.19 ± 20.64 41.63 ± 20.80 40.13 ± 20.57 0.649
Gender (%) 0.711
Male 64 (62.75%) 46 (63.89%) 18 (60.00%)
Female 38 (37.25%) 26 (36.11%) 12 (40.00%)
H3 K27M mutant status (%) 0.977
Mutant 27 (26.47%) 19 (26.39%) 8 (26.67%)
Wild type 75 (73.53%) 53 (73.61%) 22 (73.33%)
March 2022 | Volume 12 | Article
A p-value <0.05 indicates the statistical significance of the variate difference between training and test sets. Continuous variables were described as the mean ± SD. Categorical variables
were presented as the number, with percentages in parentheses.
FIGURE 2 | The machine learning pipelines and performance of top-five-performing models of different sequences. The color of lines indicated the performance of
models in the test set.
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dimensionality reduction with the PCA method had a higher
AUC value. Figure 5 shows the best performance across different
sequences and classifiers. The comparison results of the different
classifiers are shown in Table 3. Of ADC-based models, CBF-
based models, and T2WI+CE-T1WI+ADC+CBF-based models,
a significant difference could be found in the AUC values
between the best classifier and worst classifier (DeLong’s test,
p < 0.05) (Table 3). In contrast to the sequence with a suitable
classifier, if the non-optimal classifier was used, the performance
of different sequences varied significantly (DeLong’s test, p <
0.05) (Table 3).

Among the top-five-performing models, the distribution of
machine learning techniques varied considerably in different
categories of MRI sequences (Figures 2, 6). PCA was more
frequently used in the top-five-performing models (66% of all
sequences), especially in the model that simultaneously
combined multiple MR images (86%). Feature selector of KW
has a higher percentage in both single sequence-based (which
have fewer features) and combined sequence-based (which have
more features) models.
DISCUSSION

This study developed and validated various machine learning-
based models with radiomics features extracted from
multiparametric MRI to predict H3 K27M mutant status in
DMG. The model’s performance was compared across different
sequences and machine learning techniques. Radiomics models
derived from multiparametric MRI performed well in
differentiating H3 K27M mutant and wild-type DMGs when a
suitable machine learning technique was used (highest AUC:
0.807–0.969). However, the performance of the models can vary
significantly regarding different machine learning techniques
(DeLong’s test, p < 0.05). Generally, the models developed with
Frontiers in Oncology | www.frontiersin.org 6
multi-sequence had a better performance than one with a single
sequence. The cMRI-based model showed comparable
performance to aMRI (highest AUC: 0.875–0.915 for cMRI,
0.807–0.926 for aMRI).

In line with the previous study, radiomics models based on
cMRI could accurately predict the H3 K27M mutant status in
DMGs (11–14). As an essential supplement to prior studies, our
result also declared that the radiomics model developed with the
aMRI, including ADC, SWI, CBV, and CBF, could be qualified
for this purpose. Meanwhile, when appropriate machine learning
techniques were used, the cMRI and aMRI shared comparable
performance (DeLong’s test, p > 0.05). A significant difference in
ADC, CBV, and CBF values (measured with the freehand regions
of interest) has been reported between H3 K27M mutant and
wild-type DMGs (28–30). Other studies found that several
semantic and semiquantitative features on cMRI could be used
to predict H3 K27M mutant status in DMG (31, 32). But other
non-radiomics studies using cMRI and DWI to predict H3
K27M mutant status showed converse results (33, 34).
Radiomics has been proved to excavate numerous features
from medical images, and most of these features are
undiscoverable by the naked eye (35, 36). Analyzing medical
images with a non-radiomics method may result in a loss of
information within images. Wu et al. used radiological features
and radiomics features to predict H3 K27M mutant status. Their
results showed that the radiomics model performed significantly
better than the clinical model (developed with radiological
features) (16). The controversial results of non-radiomics
studies and the robust results of radiomics studies supported
that if the diagnostic information had been sufficiently explored
using the radiomics method, the predictive ability of
multiparametric MRI could be improved. This has been
proved again by our results.

Another important observation was that most models that
originated from combined sequences have a better predictive
FIGURE 3 | Box-and-whisker plots illustrate the top-five-performing area under the curve (AUC) values of different sequences.
March 2022 | Volume 12 | Article 796583
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performance, whether the optimal classifier was used (Figures 2,
3) or not (Figure 5). Previous studies using a multiparametric
MRI-based radiomics model to predict glioma molecular subtype
also showed similar results to ours (18, 37). However, only three
multiparametric MRI-based radiomics models were established
previously and achieved the highest AUC value of 0.920 in the
test cohort for H3 K27M mutant status prediction (12, 14, 16).
They only make a direct combination of all sequences used, and
the performance between single and combined sequences was
not compared. Liu et al. developed a machine learning model
based on T1WI images only to predict H3 K27M mutant status
in DMGs, which yielded the highest AUC value of 0.953 (11).
However, the sample size was relatively small (n = 55), and the
final model features were slightly overmuch (n = 30). Another
radiomics model based on FLAIR images showed an AUC value
of 0.903 (13). It is unfair to compare the model’s performance
when different datasets were used. Our study compared the
Frontiers in Oncology | www.frontiersin.org 7
model performance based on the same dataset. The results
showed that the model had the best predictive power when
combined with all sequences (AUC = 0.969). The reason may be
that complementary information among multiparametric MRI
could provide a more comprehensive understanding of tumor
heterogeneity and discriminate more precisely tumor classes.
Also noteworthy is that the model combined with limited
sequences was sufficient to differentiate H3 K27M-mutant and
K27M-wt DMGs, such as the model based on feature sets from
T2WI+CE-T1WI+SWI+CBF (AUC = 0.955) and T2WI+CE-
T1WI+CBF (AUC = 0.932). This is relevant, as it could guide
model application in various clinical circumstances and make it
more time-efficient.

According to previous results, the feature selector and classifier
were two major determinant factors of radiomics model
performance (20–23, 38, 39). When a suitable classifier was
used, there was no significant difference in the AUC value of
TABLE 2 | The performance of the top-one-performing models.

Sequence Machine learning technique Dataset AUC 95% CI ACC SEN SPE PPV NPV

T2WI Min–max_PCA_RFE_AB Training 1.000 1.000–1.000 1.000 1.000 1.000 1.000 1.000
Test 0.915 0.769–1.000 0.900 0.750 0.955 0.857 0.913

T1WI Z-score_PCC_KW_AE Training 0.767 0.631–0.890 0.694 0.842 0.642 0.457 0.919
Test 0.881 0.733–0.984 0.700 1.000 0.591 1.000 0.471

FLAIR Mean_PCC_Relief_AB Training 1.000 1.000–1.000 1.000 1.000 1.000 1.000 1.000
Test 0.875 0.722–0.984 0.833 0.625 0.909 0.870 0.714

CE-T1WI Min–max_PCC_Relief_LR Training 0.780 0.669–0.883 0.653 0.947 0.547 0.429 0.967
Test 0.881 0.733–0.984 0.800 1.000 0.727 1.000 0.571

ADC Min–max_PCC_RFE_RF Training 1.000 1.000–1.000 1.000 1.000 1.000 1.000 1.000
Test 0.886 0.718–1.000 0.700 0.000 0.955 0.724 0.000

SWI Mean_PCC_RFE_DT Training 1.000 1.000–1.000 1.000 1.000 1.000 1.000 1.000
Test 0.869 0.694–0.979 0.867 0.875 0.864 0.950 0.700

CBV Mean_PCA_Relief_AE Training 0.640 0.490–0.779 0.736 0.474 0.830 0.500 0.815
Test 0.807 0.585–0.980 0.700 0.875 0.636 0.933 0.467

CBF Z-score_PCA_RFE_LR Training 0.924 0.844–0.983 0.875 0.842 0.887 0.727 0.940
Test 0.926 0.814–1.000 0.833 0.875 0.818 0.947 0.636

T2WI+CE-T1WI Mean_PCA_ANOVA_SVM Training 0.964 0.919–0.995 0.944 0.895 0.962 0.895 0.962
Test 0.909 0.769–1.000 0.800 0.500 0.909 0.833 0.667

T2WI+CE-T1WI+ADC Z-score_PCA_RFE_AE Training 0.965 0.920–1.000 0.931 0.842 0.962 0.889 0.944
Test 0.869 0.727–0.976 0.733 0.625 0.773 0.850 0.500

T2WI+CE-T1WI+SWI Z-score_PCA_RFE_LDA Training 0.963 0.905–1.000 0.958 0.947 0.962 0.900 0.981
Test 0.898 0.761–0.988 0.800 0.750 0.818 0.900 0.600

T2WI+CE-T1WI+CBF Z-score_PCA_RFE_RF Training 1.000 1.000–1.000 1.000 1.000 1.000 1.000 1.000
Test 0.932 0.824–1.000 0.733 0.125 0.955 0.750 0.500

T2WI+CE-T1WI+ADC+SWI Min–max_PCA_KW_SVM Training 1.000 1.000–1.000 1.000 1.000 1.000 1.000 1.000
Test 0.892 0.728–0.994 0.867 0.750 0.909 0.909 0.750

T2WI+CE-T1WI+ADC+CBF Mean_PCA_Relief_LR Training 0.555 0.379–0.733 0.736 0.421 0.849 0.500 0.804
Test 0.881 0.701–1.000 0.900 0.750 0.955 0.913 0.857

T2WI+CE-T1WI+SWI+CBF Min–max_PCA_RFE_LDA Training 0.888 0.805–0.957 0.806 0.895 0.774 0.586 0.954
Test 0.955 0.854–1.000 0.767 1.000 0.682 1.000 0.533

cMRI Min–max_PCC_Relief_LR Training 0.833 0.731–0.933 0.778 0.842 0.755 0.552 0.930
Test 0.921 0.778–1.000 0.733 1.000 0.636 1.000 0.500

aMRI Mean_PCA_Relief_AB Training 1.000 1.000–1.000 1.000 1.000 1.000 1.000 1.000
Test 0.915 0.800–0.993 0.800 0.875 0.773 0.944 0.583

ALL Z-score_PCA_KW_RF Training 1.000 1.000–1.000 1.000 1.000 1.000 1.000 1.000
Test 0.969 0.904–1.000 0.767 0.125 1.000 0.759 1.000
M
arch 2022
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Machine learning technique was expressed as “feature matrix normalization_dimensionality reduction_feature selector_classifier”.
T2WI, T2-weighted imaging; T1WI, T1-weighted imaging; FLAIR, fluid-attenuated inversion recovery; CE-T1WI, contrast-enhanced T1WI; ADC, apparent diffusion coefficient; SWI,
susceptibility-weighted imaging; CBV, cerebral blood volume; CBF, cerebral blood flow; cMRI, model developed with all of the conventional MRI; aMRI, model developed with all of the
advanced MRI; ALL, model developed with all of the eight sequences; PCC, Pearson’s correlation coefficient; PCA, principal component analysis; RFE, recursive feature elimination; KW,
Kruskal–Wallis; LR, logistic regression; LDA, linear discriminant analysis; SVM, support vector machine; AE, auto-encoder, DT, decision tree; RF, random forest; AB, AdaBoost; AUC, area
under the curve; ACC, accuracy; SEN, sensibility; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value.
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different sequences. Constantly, when an inappropriate classifier
was used, both intra-sequence and inter-sequence comparisons
yielded a significant difference in AUC values (Table 3). For the
single sequence-based model, SVM, LDA, and LR classifiers were
more frequently to have a lower AUC. The reason may be that the
LR and LAD were both linear classifiers, and the SVM used linear
kernel function in our study; thus, these classifiers were not flexible
enough to fit a non-linear relationship between features and tumor
groups. Furthermore, features extracted from a single sequence
could only offer limited messages on tumor biological
heterogeneity. Of note, the multiparametric MRI-based model
with SVM, LDA, and LR demonstrated more favorable results.
The prior study used various classifiers (e.g., SVM, RF, and
XGBoost) and generated an AUC value of 0.549–0.953, which
were lower than ours (AUC = 0.969) (11–15). Several reasons may
account for this variety, including patient data, MRI data, and
machine learning techniques. Hence, a head-to-head comparison
may be more reliable to reveal the influence of these factors and
determine optimal models when different image data are available.

Apart from the feature selector and classifier, our results
revealed that the feature matrix normalization and
dimensionality-reduction method also played a non-negligible
Frontiers in Oncology | www.frontiersin.org 8
role in model performance evaluation (Figure S1). The previous
study focused onH3 K27Mmutant status prediction, which rarely
considered these elements. Two of them made an effort to
compare the predictive power of different classifiers and another
for different feature selectors (11, 15). The limitation of these
studies on model development warrants extra caution in terms of
result explanation. Our results demonstrated that the appropriate
machine learning techniques mentioned above could vary greatly
when various image data were used (Figure 6). This reemphasized
that both the type of image data used and the employment of
machine learning techniques will carry a diverse result. Thus, it is
essential and encouraged to seek the optimal machine learning
techniques when different image data are used. The compatible
combination of medical images with machine learning techniques
could maximize and robust the radiomics model’s performance.

There are several limitations in the current study. First, this is
a single-center retrospective study, which results in an
unavoidable selecting bias and relatively small sample size. The
imbalanced proportion of H3 K27M mutant DMG might
influence the development of our models. A prospective and
multi-institution study is needed for confirming our results.
Second, the dataset was randomly split into the training and
A B

DC

FIGURE 4 | The receiver operating characteristic curve of the top-one-performing models of different sequences in the training (A, C) and test sets (B, D).
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test cohorts. To reduce the selection bias with this kind of splitting,
nest cross-validation may be needed in the future. The third is the
lack of extra validation to facilitate the generalization of our
findings. Unlike other gliomas, the morbidity of DMG was
lower. Furthermore, we analyzed eight MR image sets, which
makes it more challenging to match an external validation cohort.
Frontiers in Oncology | www.frontiersin.org 9
Fourth, we did not compare our model with the human reader as
recommended by a previous study (40). However, the
performance of MRI features evaluated by radiologists with the
non-radiomics method was controversial, and the discriminative
ability was not as well as ours (highest AUC = 0.872) (28). A prior
study showed that the radiomics model was significantly superior
TABLE 3 | Results of DeLong’s test of the best models with different classifiers.

Sequence Highest AUC Lowest AUC p-Valuea p-Valueb p-Valuec

Classifier AUC Classifier AUC

T2WI AB 0.915 RF 0.847 0.4851 0.4508 0.0527
T1WI AB 0.875 AB 0.815 0.5602 0.1908 0.0621
FLAIR AE 0.881 LR 0.767 0.2334 0.1940 0.0108
CE-T1WI LR 0.881 DT 0.744 0.2568 0.1720 0.0437
ADC RF 0.886 SVM 0.727 0.0118 0.1837 0.0144
SWI DT 0.869 AB 0.761 0.2292 0.1834 0.0271
CBV AE 0.807 DT 0.722 0.3579 0.1108 0.0104
CBF LR 0.926 DT 0.761 0.0302 0.4729 0.0437
T2WI+CE-T1WI SVM 0.909 DT 0.790 0.2944 0.3316 0.0756
T2WI+CE-T1WI+ADC AE 0.869 DT 0.807 0.4912 0.1319 0.0867
T2WI+CE-T1WI+SWI LDA 0.898 DT 0.847 0.5049 0.1872 0.5532
T2WI+CE-T1WI+CBF RF 0.932 SVM 0.847 0.3043 0.5163 0.6795
T2WI+CE-T1WI+ADC+SWI SVM 0.892 DT 0.790 0.1657 0.2710 1.0000
T2WI+CE-T1WI+ADC+CBF LR 0.881 DT 0.824 0.0102 0.3280 0.0584
T2WI+CE-T1WI+SWI+CBF LDA 0.955 DT 0.807 0.1121 0.7520 0.8889
cMRI LR 0.921 DT 0.841 0.2765 0.4145 0.0077
aMRI AB 0.915 DT 0.784 0.1715 0.3243 0.0618
ALL RF 0.969 DT 0.790 0.0640 – –
March 2022
 | Volume 12 | Artic
Bold type indicate p < 0.05.
T2WI, T2-weighted imaging; T1WI, T1-weighted imaging; FLAIR, fluid-attenuated inversion recovery; CE-T1WI, contrast-enhanced T1WI; ADC, apparent diffusion coefficient; SWI,
susceptibility-weighted imaging; CBV, cerebral blood volume; CBF, cerebral blood flow; cMRI, model developed with all of the conventional MRI; aMRI, model developed with all of the
advanced MRI; ALL, model developed with all of the eight sequences; LR, logistic regression; LDA, linear discriminant analysis; SVM, support vector machine; AE, auto-encoder, DT,
decision tree; RF, random forest; AB, AdaBoost; AUC, area under the curve.
ap-Value is for the comparison between the best and worst classifiers in the same sequence.
bp-Value is for the comparison of the best classifiers between all sequence-based models (ALL) and other sequence-based models.
cp-Value is for the comparison between the best classifier of all sequence-based models (ALL) and the worst classifier of other sequence-based models.
FIGURE 5 | The optimal performance across different sequences and classifiers.
le 796583

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Guo et al. Radiomics in Predicting Molecular Subtype
to the clinical model (based on radiological features) (16). In this
regard, our radiomics model might be superior to human readers,
although a head-to-head comparison needs to be implemented in
the future. Finally, the performance of deep learning algorithms
was not evaluated and compared in our study. Deep learning
algorithms have been widely used in glioma molecular subtype
prediction (41–45). However, deep learning usually needs a huge
amount of dataset, such as hundreds or thousands of cases, and
the dataset is limited for our approach. More datasets would be
collected, and deep-learning algorithms would be compared to
classical machine learning algorithms in the future.
CONCLUSION

Our results indicated that the H3 K27Mmutant status of DMG can
be effectively predicted with multiparametric MRI radiomics
models. However, the performance of models varies significantly
across different machine learning techniques and sequences used.
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