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Abstract

Wheelchair users are exposed to whole-body vibration (WBV) when driving on sidewalks and in 

urban environments; however, there is limited literature on WBV exposure to power wheelchair 

users when driving during daily activities. Further, surface transitions (i.e., curb-ramps) provide 

wheelchair accessibility from street intersections to sidewalks; but these require a threshold 

for water drainage. This threshold may induce high WBV (i.e., root-mean-square and vibration-

daily-value accelerations) when accessibility guidelines are not met. This study analyzed the 

WBV effects on power wheelchairs with passive suspension when driving over surfaces with 

different thresholds. Additionally, this study introduced a novel power wheelchair with active 

suspension to reduce WBV levels on surface transitions. Three trials were performed with a 

commercial power wheelchair with passive suspension, a novel power wheelchair with active 

suspension, and the novel power wheelchair without active suspension driving on surfaces with 

five different thresholds. Results show no WBV difference among EPWs across all surfaces. 

However, the vibration-dose-value increased with higher surface thresholds when using the passive 

suspension while the active suspension remained constant. Overall, the power wheelchair with 

active suspension offered similar WBV effects as the passive suspension. While significant 

vibration-dose-value differences were observed between surface thresholds, all EPWs maintained 

WBV values below the ISO 2631-1 health caution zone.
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1. Introduction

There are about 5.5 million wheelchair users in the United States (US) [1]. Wheelchairs 

provide independent mobility [2], comfort [3], and quality of life for people with disabilities 

to participate in communities [4]. However, the technology may be limited by surface 

conditions. For instance, multiple studies have demonstrated that manual wheelchair users 

are exposed to whole-body vibrations (WBVs) when driving on uneven and rough surfaces 

for long periods of time [5]. This exposure causes negative effects such as pain in the lower 

back, neck, and buttocks and increases the rate of muscle fatigue [6–8]. The International 

Standards Organization (ISO) Standard 2631-1: Mechanical Vibration and Shock. Part 1: 

Evaluation of Human Exposure to Whole Body Vibration 1 was established to assess the 

health concerns associated with WBV [9]. The standard defines a health guidance caution 

zone using the root-mean-square value of the weighted acceleration (RMS, unit: m/s2) and 

the vibration dose value (VDV, unit: m/s1.75). Based on an eight-hour exposure, a lower limit 

was defined at 0.5 m/s2 for RMS and 9.1 m/s1.75 for VDV. Research has shown that manual 

wheelchair users are exposed to vibration levels exceeding these standard recommendations 

[5] and tend to be exposed to vibration for about 13 h per day [6]. Further, the vibration 

levels may vary depending on different factors including the device suspension and ground 

surface properties (e.g., roughness [10]). Although ISO 2631-1 (1997) has served as a form 

of standardized guidance in many studies for WBV exposure in manual wheelchair users, 

such guidelines were originally derived from a vocational exposure level and do not consider 

the vibration exposure in everyday life. Further, there is limited research on the question of 

whether the standards adequately represent the shock and vibration exposure that electric 

power wheelchair (EPW) users experience daily in everyday environments. Many studies 

have measured vibration exposure in able-bodied people who sit for work; however, these 

values may not translate to people who sit on power wheelchairs for approximately 10 h 

per day, drive in the community, and perform vocational and recreational activities of daily 

living [11].

Wolf et al. demonstrated that EPW users experience about 0.1–0.5 m/s2 when driving on 

flat surfaces composed of brick pavers and the RMS increases with surface gaps and speeds 

[12]. Further, Duvall et al. evaluated the RMS vibration exposure of commercial EPWs 

in relation to sidewalk surface roughness [10]. Their results recommended a roughness 

index threshold of 5.0 cm/m or an RMS vibration of 1.2 m/s2 for sidewalks longer than 

30.5 m. These studies evaluated flat but uneven surfaces typically found on sidewalks 

and traversed by wheelchair users. It is important to address WBV exposure on other 

surfaces that EPW users commonly commute on but that may not meet the American with 

Disabilities Act Accessibility Guidelines (ADAAG) [13]. For instance, curb-ramps provide 

a surface transition between intersections and elevated sidewalks for wheelchair users. 

However, Bennet et al. found that only 21 out of 79 intersections in Nova Scotia, Canada 

had a smooth transition from curb-ramps to gutters (<1.3 cm) and only half of these meet 
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the maximum slope requirements (<4.9°) [14] (Figure 1). The ADAAG guidelines state that 

obstacles should be no more than 1.3 cm in height for accessibility, regardless of flat or 

inclined surfaces. Driving on these surfaces may cause higher WBV magnitudes relative to 

smooth flat surfaces (e.g., a concrete surface). No studies were discovered evaluating the 

WBV exposure in EPWs on these surfaces.

Passive suspension has been widely used in manual wheelchairs and EPWs due to its 

low cost, simple structure (i.e., fixed spring and damper), and ability to absorb vibrations 

induced by the road conditions. Despite its benefits, Lariviere et al. highlighted the 

inconclusive results of passive suspension in manual wheelchairs. Cooper et al. found 

that the addition of suspension caster forks reduced the amount of vibration in manual 

wheelchairs when driving on small bumps of 1.3 cm by a factor of two to three [15]; 

the RMS values were below the health caution safety zone for a 1-h exposure for 

frequencies below 10 Hz. In addition, Hashizume showed similar results when driving 

manual wheelchairs on curbs of up to 5 cm [16]. Evaluation of passive suspension has been 

limited to manual wheelchairs on different surface thresholds; hence, there is a need to 

evaluate WBV exposure in EPWs on similar surface conditions.

An alternative to passive suspension is the use of an active suspension system that uses 

extra actuators together with passive suspension elements (e.g., springs and dampers) to 

effectively dismiss forces from the road excitation [17]. This type of suspension is used 

more often in commercial vehicles to increase the car’s stability and ride comfort on uneven 

terrains and ongoing research focuses on suspension control to reduce cost and power 

consumption [18]. Very few studies have proposed active suspension in EPWs; however, 

these were limited to simulations without a real-prototype [19,20].

The aims of this study are:

• To analyze WBV exposure in a commercial EPW, using passive suspension, 

when traversing different surfaces thresholds.

– EPWs incorporate a similar suspension to manual wheelchairs in 

addition to their weight; hence we hypothesize that WBV measures in 

EPWs would be over the health safety zone of 1-h exposure on surface 

thresholds.

– Additionally, WBV measures may increase with threshold height.

• To compare different types of suspension systems in EPW to minimize WBV 

exposure on different surface thresholds.

– With the assumption that EPWs are exposed to vibration levels over the 

health guidance caution zone; we proposed a novel EPW with active 

suspension to ameliorate vibration exposure when facing different 

surface thresholds.

– Alternatively, we hypothesized that active suspension in EPWs may 

reduce vibration and increase comfort on surface thresholds compared 

with the passive suspension presented in commercial EPWs.
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2. Materials and Methods

2.1. Instrumentation

MEBot consists of six independently height-adjustable wheels with a modular drive-wheel 

configuration, omni-wheels as caster wheels to eliminate swivel, and a footprint comparable 

to that of commercially available EPWs [21]. Each wheel was linked to an active suspension 

(AS) system that included an adjustable pneumatic shock absorber and an electro-hydraulic 

motor in series (Figure 2A,B). Shock absorbers provided a passive suspension to reduce 

vibration on uneven surfaces similar to EPWs; while electro-hydraulics were automatically 

controlled to maintain stability when surface irregularities (e.g., inclined surfaces) were 

detected. We hypothesize that electro-hydraulics might reduce WBV in conjunction with 

shock absorbers when driving on surfaces transitions that combine an inclined surface with 

a threshold. This study compared MEBot with active suspension (MEBot-AS), MEBot 

without active suspension (MEBot-noAS), and a commercial EPW with passive suspension.

MEBot-noAS refers to inhibited electro-hydraulic actuators and is only reliant on its shock 

absorbers. The shock absorbers were air-pressured, adjustable, and set at 100 psi per wheel. 

The selected commercial EPW was the Permobil F5 Corpus, a front-wheel-drive EPW with 

shock absorbers (Figure 2C) in each wheel to ameliorate WBV exposure [22]. EPWs with a 

front-wheel-drive configuration assist with obstacle climbing, stability, and traction outdoors 

[23]. Both EPWs used an R-Net controller to configure the same driving parameters (i.e., 

speed and acceleration).

The Shimmer 3 triaxial accelerometer (Shimmer, Boston, MA, USA) was mounted in the 

seat pan of each EPW with its z+ axis facing orthogonal to the seat as shown in Figure 

3. The accelerometer incorporates a stand-alone microcontroller (STMicro LSM303AHTR) 

with a 14-bit resolution, high sensitivity (to detect +/−8 g), and at a sampling frequency 

of 100 Hz. The sampling frequency was selected in order to identify a suitable range of 

frequencies between 0.01 and 80 Hz according to the ISO 2631:1 standard. Similar studies 

acquired vibration data through accelerometers at a sampling frequency between 50 and 

102 Hz [5,6,10]. The sensor was validated for use in human health monitoring, monitoring 

activities of daily living, and environmental and habitat monitoring [24,25].

Its accelerations were used to calculate the RMS and VDV values following the 

ISO 2631:1 (1997) standard. A rehabilitation seating cushion was used following the 

ISO 16840-2 wheelchair seating standards. The cushion material was made of high-

density foam developed to support bariatric loads and to manage tissue integrity. The 

cushion was previously used in Garcia’s and DiGiovine’s studies, which showed a 

transmissibility coefficient of 1.2 and 0.5, respectively [6,26]. The cushion transmissibility 

was approximated to 1; therefore, the seat pan and cushion showed similar WBV exposures. 

Additionally, the accelerometer was placed under the seat cushion to prevent it from moving 

during testing and to measure vibrations directly from the rigid body.

2.2. Protocol

A 50th percentile Hybrid II anthropometric dummy of 100 kg was used to simulate a person 

seated in each EPW. Three trials were performed by driving each EPW on five selected 
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surfaces for a total of 45 trials. Each EPW was controlled remotely by a researcher. The 

wheelchair speed was set to 1.2 m/s, which is the same as an average person’s speed when 

walking across the street [27]. A MATLAB Graphical User Interface (GUI) was developed 

to measure the time-series accelerations in real-time during the completion of each trial. 

The GUI facilitated data collection by connecting to the accelerometer, recording data, and 

saving it to a custom filename.

2.3. Surfaces

Five engineered driving surfaces were selected to represent surface transitions that EPW 

users commonly encounter daily. The tasks included: going up and down a 10° slope with 

and without a 2.5 cm threshold (Figure 4A,B), surfaces with a roughness of 12.5 cm/m 

and 18.3 cm/m (Figure 4C), and a series of potholes of up to 30.5 cm in diameter and 

5.0 cm in depth (Figure 4D). The 10° slope simulated conventional incline and decline 

ramps considered worst-case scenarios for wheelchair dynamic stability as part of the ANSI/

RESNA wheelchair standards ISO 7176-2 [28].

The slopes measured 3.1 m in length and 1.2 m in width. The 2.5 cm surface threshold 

simulated non-ADA thresholds obtained from Bennet’s study that reported a curb-ramps 

threshold of 1.9 ± 0.1 cm [14]. The ADAAG guidelines recommend a maximum 0.6 cm 

threshold in lip height for water drainage. Two surfaces of 12.5 cm/m and 18.3 cm/m in 

roughness represented uneven sidewalks and rough terrains. Both tasks were 1.2 m wide by 

2.4 m long and used wooden slabs of 1.9 cm in height [10]. Last, a series of potholes were 

simulated based on Kirby’s wheelchair skills test v.4.1 that included 5.0 cm deep potholes 

across an 2.4 m long by 1.2 m wide surface [29]. The surface represented potholes caused by 

wear-and-tear due to weather conditions and constant use by heavy-load vehicles to which 

wheelchair users are exposed [30].

2.4. Data Analysis

Descriptive analysis (e.g., means, standard deviation) and bar graphs described the WBV 

parameters of each EPW in terms of RMS and VDV. These variables were calculated using 

the raw acceleration data obtained from the triaxial accelerometer. The raw acceleration data 

(ax, ay, az) were first multiplied by their frequency weighting in terms of comfort (kx = ky 

= kz = 1). The study focused on vibration values in the seat pan because the back rest and 

footplate were fixed to the seat and we considered the seat as a rigid body. The weighted 

accelerations were then calibrated and processed for analysis using MATLAB R2021. The 

first and last second time-stamp of the data were cut-off to eliminate zero values. Then, 

the raw accelerations in three axes were calibrated by subtracting the mean of each axis 

from its corresponding value. The total magnitude of each acceleration was calculated and 

used in the data analysis for this study. The total acceleration was viable to use because 

WBVs have an effect in multiple directions. Previous studies were limited in only looking 

at accelerations in the vertical (or gravity) direction [5]; however, this limits the analysis to 

only vertical accelerations and not lateral and front/back accelerations. The RMS and VDV 

were calculated using the total calibrated acceleration with the equations below:
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aTotal = kx
2ax2 + ky

2ay2 + kz
2az2

1
2 (1)

RMS = 1
T ∫

0

T

aTotal t 2dt

1
2

(2)

V DV = ∫
0

T

aTotal t 4dt

1
4

(3)

where T is the duration of the trials.

Statistical analyses were performed using the IBM SPSS software version 24.0 (SPSS, Inc., 

Chicago, IL, USA). Data were analyzed for normality using the Shapiro Wilk test. One-way 

ANOVA was performed to compare the RMS and VDV mean differences between surfaces 

transitions within each EPW to evaluate the effects of a surface threshold/gradient. The same 

statistical test was performed to compare the RMS and VDVD mean differences between 

EPWs for each surface transition to evaluate EPWs’ suspensions. The level of significance 

was set at α = 0.05 for all comparisons. If results were significant, post-hoc analysis was 

performed with a Bonferroni correction to adjust for multiple comparisons.

3. Results

Results show no significant differences in average WBV (RMS and VDV) values between 

the commercial EPW, MEBot with AS, and MEBot with noAS when driving on surface 

transitions with different thresholds (Figure 5).

In terms of WBV differences between surfaces, it was found that potholes caused 

significantly higher RMS values on the commercial EPW compared with the 12.5 cm/m 

surface roughness (p < 0.001) and the 10° ramp without threshold (p < 0.001) (Table 1). 

Additionally, the 10° ramp with a threshold showed higher RMS values on the commercial 

EPW compared with the 12.5 cm/m surface roughness (p = 0.002) and the 10° ramp without 

a threshold (p = 0.002). However, there were no significant RMS differences between 

surfaces when using MEBot with or with no AS (Figure 6).

The VDV differences between surfaces in each EPW were more noticeable with an increase 

in the surface threshold. The commercial EPW and MEBot with AS showed significantly 

lower VDV values when driving on the 10° ramp without a threshold compared with 

potholes of 5.0 cm in depth (p < 0.001). Likewise, the Permobil F5 and MEBot with AS 

showed significantly higher VDV exposure when driving on the 10° ramp with a 2.5 cm 

threshold compared with no threshold (p < 0.001). Additionally, the surface with potholes 

reported significantly higher VDV values compared with surface roughness with a 1.9 cm 
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threshold (p < 0.001). No significant WBV differences were found when driving MEBot 

with no AS across all surfaces.

4. Discussion

4.1. WBV Differences between Surfaces

The results showed that surfaces with a threshold over 2.5 cm showed high RMS values 

over 1.2 m/s2 and a maximum RMS of 1.7 m/s2 when driving a commercial EPW. The 

ISO 2631-1 standard suggests that a RMS acceleration of 1.6 m/s2 or greater could be 

harmful over a 1-h period. This is approximately the daily duration that wheelchair users 

drive their assistive devices each day [31]. This finding suggests that the passive suspension 

of commercial EPWs and MEBot is beneficial to reduce vibration exposure on surfaces with 

different thresholds.

It is worth noting that the Permobil F5 is a high-end EPW with a front-wheel-drive 

configuration and all-terrain wheels designed to traverse environments with a threshold of 

up to 3.0 in. in height, according to the manufacturer. The availability of high-end EPWs 

as such depends on the user’s level of impairment and insurance coverage [32]. Alternative 

cost-effective EPWs have less weight for easier transportation but are limited to fewer 

seating features and less efficient drive motors. Additionally, the suspension dampening 

required to ameliorate WBV effects, particularly on these surfaces, is unknown. For 

example, Wolf et al. [12], evaluated an EPW (i.e., the Quickie P200) on flat paved surfaces 

that showed low RMS values within the health caution zone; however, the tested device is no 

longer on the market. Further evaluation of WBV effects on EPWs is encouraged to reduce 

EPW users’ discomfort on surfaces with thresholds.

The MEBot EPW with active suspension was introduced in this study as an alternative 

suspension mechanism that combines a shock absorber and an electro-hydraulic actuator 

in series. There were no significant RMS differences between surface thresholds whether 

using MEBot with or without the AS mechanism. The vibration for each surface remained 

below 1.2 m/s2 expect for potholes and the 10° ramp with a 2.5 cm threshold. These results 

demonstrated that MEBot can reduce the vibration with the use of shock absorbers alone; 

on the other hand, the use of actuators in MEBot for active suspension remains important 

to maintain stability on inclined and uneven surfaces to reduce tips and falls as shown by 

Sivakanthan et al. [33].

The findings showed that VDV results values increased with the surface threshold. For 

instance, the surface with potholes of 5.4 cm in depth showed significantly higher VDV 

values than the 10° ramp (with no threshold) and surface roughness with a 1.9 cm threshold. 

These results are consistent with those of the Permobil F5 and MEBot with AS. The VDV 

is more sensitive to the acceleration peaks; therefore, it is recommended that the amount 

of vibration for the case of inherent shock exposure be estimated [9]. Further, these results 

are consistent with a study that evaluated an EPW at a speed range of 0–0.8 m/s on a 

3.6 cm threshold and showed a VDV range of 0.7–2.25 m/s1.75, respectively [34]. While 

the EPW speed was constant at 1.5 m/s, it is expected that faster speeds will increase the 

likelihood of higher VDV exposure. EPW users tend to avoid surfaces with high thresholds 
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to avoid discomfort and reduce the risk of tipping or falling; however, these surfaces may 

be inevitable when alternative routes are not accessible nor available. Further studies should 

look into automatically changing the speed of the EPW on high WBV surfaces to reduce 

RMS and VDV values.

Further, the 10° ramp with a 2.5 cm threshold showed high VDV values compared with 

no threshold (Figure 6). Although, the results were below the health vibration zone of 9.0 

m/s1.75, Bennet et al. reported a high number of curb-ramps that did not meet the ADA 

standards of a maximum threshold of 0.6 cm usually found in real-world conditions for 

water drainage [14]. Driving on these thresholds exposes EPW users to muscle pain and 

discomfort and can damage the assistive device over time. Damaging EPW users’ only 

source of assistive mobility limits their participation in the community and renders them 

unable to perform leisure and vocational activities. It is worth mentioning that development 

of city infrastructure is recommended for wheelchair user accessibility and independence. 

In addition, adequate settings in the EPW such as shock absorber dampening, drive wheel 

suspension [35], and cushioning [6] are recommended to reduce discomfort and WBV 

exposure when environmental barriers are present. Future studies should investigate what 

additional mechanisms could help reduce WBV not currently in EPWs.

4.2. WBV Differences between EPWs

The results show no significant RMS and VDV differences between EPWs’ suspensions 

across all surface thresholds and these were below the health caution zone of 1.6 m/s2 over 1 

h of exposure at the comfort level. EPWs serve as a means of mobility for users to commute 

from home to work/school/shops, particularly when public or private transportation is not 

available or accessible [36]. The typical EPW user can drive at least 1 h/day assuming a 

normal speed of 1 m/s between locations [37]. During travel, EPW users may drive on 

sidewalks and roads with a threshold of over 2.5 cm in height. Further, EPW users are more 

exposed to these surface thresholds on sidewalk elevations due to tree growth on paved 

sidewalks and a lack of maintenance [38]. While WBV values remained below the health 

risk threshold, these values can increase with additional elements within the EPW such as 

speed, cushioning, longevity, and weight.

Figure 5 shows high WBV variance in MEBot with AS and no AS across all surfaces. 

A possible cause is the low dampening settings of the shock absorbers, which caused a 

high degree of displacement of its suspension. Likewise, a delay in the activation of the 

legged-wheel actuators in the AS system may have caused the EPW to replicate the surface 

profile, causing a bounce effect. On the other hand, the WBV variance in the EPW was 

only noticeable when driving on the surface with 5.0 cm potholes. Additionally, the crash 

dummy also plays a passive role compared with a real end-user who may intentionally 

correct his/her posture and, hence, reducing the WBV variance.

The active suspension of MEBot did not reduce nor increase the vibration effects when 

traversing surface thresholds. MEBot-AS was designed to prevent tips and falls when 

driving on inclined surfaces by adjusting its legged-wheel actuators in the base. Likewise, 

the goal of the shock absorbers was to serve as a form of passive suspension to reduce 

vibration [33]. The results only demonstrated that its actuators can be inhibited when 
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driving on surfaces with thresholds to improve power consumption while prioritizing shock 

absorbers in these surface conditions.

4.3. Limitations

The study was conducted within lab settings and in controlled environments. Real-world 

surfaces may be affected by wear-and-tear due to weather conditions and pedestrian/vehicle 

traffic that we may not have included. Additionally, the wheelchair and user might be 

exposed to other sources of vibrations, such as large vehicles [39] and construction sites 

[40].

A constant speed was used, which might not be typical when facing these types of 

surfaces. In addition to surface thresholds, driving at a faster speed may induce higher 

WBV magnitudes [12]. EPW users tend to slow down when facing irregular and unfamiliar 

surfaces [41]. These factors should be observed in further studies on WBV exposure in 

EPWs and other mobility assistive devices.

The commercial EPW used had a front-wheel-drive configuration that is mostly used 

for active wheelchair users in the community. However, there are other drive wheel 

configurations (mid- and rear-wheel drive) where WBVs may have different effects on EPW 

users. For example, mid-wheel drive provides high stability on flat surfaces and a small 

turning radius, but it is at risk of getting stuck on small thresholds and ramps. Rear-wheel 

drive is a less common in EPWs and mostly used outdoors due to its fast speed but it is 

prone to tipping as its center of mass is located towards the back and its front wheels may be 

smaller than the suggested ADA thresholds.

Finally, EPW users were not recruited for the study to avoid WBV exposure. A crash test 

dummy was used to prevent discomfort to end-users and for safety when operating the 

EPWs on challenging surfaces. Additionally, using a crash test dummy provided control 

over other factors that may influence the vibration exposure, such as weight shifting, 

repositioning, and weight distribution, commonly encountered with end-users. On the other 

hand, EPW users can provide feedback in terms of health and comfort when exposed to 

the vibration levels on surface transitions. Their feedback is important to be able to offer 

the most adequate mobility assistive device to reduce WBV exposure. Further studies may 

include subject testing to evaluate the feasibility of EPW suspensions.

5. Conclusions

This study aimed to explore the WBV effects in EPWs when encountering challenging 

surfaces. While many studies have evaluated vibration in manual wheelchairs, there are 

few studies that evaluate the vibration effects in EPWs, particularly on surfaces with 

thresholds that end-users are exposed to daily. To the best of our knowledge, this is the 

first study to evaluate EPW suspensions on surfaces with different thresholds (heights) 

such as uneven sidewalks and curb-ramps that are not ADA-compliant. Likewise, this 

is the first study to compare two types of EPW suspension systems (passive and active 

suspension) to reduce WBV measures on the selected surfaces. The study introduced a novel 

EPW with active suspension to increase stability and the user’s comfort. The results show 
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similar WBV values that lie within the health guidance safety zone; therefore, no difference 

was found between passive and active EPW suspension. The study also demonstrated a 

proportional increase in RMS and VDV values with the surface threshold when using the 

EPW passive suspension compared with the EPW active suspension, which demonstrated 

constant vibration values in all surface thresholds. The results of this study will increase 

the amount on literature of WBV exposure in EPWs. This study was also conducted with 

a crash dummy and in controlled environments for safety reasons. Further evaluation of 

EPW suspension systems should include end-users to obtain their perception of comfort and 

health with respect to the WBV exposure in every day environments.
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Figure 1. 
Examples of surface transitions with different thresholds at the base (illustrated with dashed 

lines). (A) curb-ramp with non-ADA complaint threshold (B) curb-ramp with damaged 

transition (C) sidewalk elevation (D) transition from sidewalk to road with high threshold.
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Figure 2. 
(A) MEBot wheelchair. (B) Front View of the MEBot active suspension model and (C) the 

commercial EPW passive suspension model. Wheels were considered rigid bodies.
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Figure 3. 
(Left) Shimmer 3 Triaxial accelerometer placed on the seat pan of the tested EPWs. (Right) 
Orientation of Shimmer 3 accelerometer with respect to seat pan.
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Figure 4. 
(A) Up-Flat-Down 10° Ramp, (B) Up-Flat-Down 10° Ramp with a 2.5 cm threshold in 

transition, (C) Surface roughness with adaptable slabs, and (D) Potholes of 5.4 cm in depth.
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Figure 5. 
RMS total acceleration (Top) and VDV (Bottom) differences between EPWs in each 

surface.
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Figure 6. 
RMS total acceleration (Top) and VDV (Bottom) differences between surfaces with each 

EPW. Significant differences between surfaces are denoted with an asterisk (* p-value < 0.01 

post-hoc Bonferroni correction).
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Table 1.

Root-mean-square (RMS) and vibration dose value (VDV) of tested devices per surface.

Surfaces Devices RMS (m/s2) VDV (m/s1.75)

Potholes 5.0 cm in depth

Permobil F5 1.4 ± 0.3 6.1 ± 1.3

MEBot no AS 1.1 ± 0.2 4.7 ± 1.1

MEBot with AS 1.1 ± 0.3 4.6 ± 1.3

18.3 cm/m Surface Roughness

Permobil F5 1.0 ± 0.1 2.5 ± 0.4

MEBot no AS 1.2 ± 0.3 3.2 ± 1.0

MEBot with AS 1.1 ± 0.3 3.6 ± 0.5

12.5 cm/m Surface Roughness

Permobil F5 0.6 ± 0.1 1.7 ± 0.1

MEBot no AS 1.0 ± 0.2 4.2 ± 1.0

MEBot with AS 0.8 ± 0.2 3.6 ± 1.2

10° Ramp with 2.5 cm threshold

Permobil F5 1.2 ± 0.0 4.4 ± 0.1

MEBot no AS 0.9 ± 0.2 4.2 ± 0.6

MEBot with AS 1.2 ± 0.2 4.8 ± 0.1

10° Ramp No Threshold

Permobil F5 0.6 ± 0.0 1.7 ± 0.1

MEBot no AS 0.5 ± 0.1 1.8 ± 0.3

MEBot with AS 0.4 ± 0.0 1.4 ± 0.0
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