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A B S T R A C T

Background: National responses to the Covid-19 pandemic varied markedly across countries, from

business-as-usual to complete shutdowns. Policies aimed at disrupting the viral transmission cycle

and preventing the overwhelming of healthcare systems inevitably exact an economic toll.

Methodology: We developed an intervention policy model that comprised the relative human,

implementation and healthcare costs of non-pharmaceutical epidemic interventions and identified the op-

timal strategy using a neuroevolution algorithm. The proposed model finds the minimum required reduc-

tion in transmission rates to maintain the burden on the healthcare system below the maximum capacity.

Results: We find that such a policy renders a sharp increase in the control strength during the early

stages of the epidemic, followed by a steady increase in the subsequent ten weeks as the epidemic

approaches its peak, and finally the control strength is gradually decreased as the population moves

towards herd immunity. We have also shown how such a model can provide an efficient adaptive inter-

vention policy at different stages of the epidemic without having access to the entire history of its pro-

gression in the population.

Conclusions and implications: This work emphasizes the importance of imposing intervention meas-

ures early and provides insights into adaptive intervention policies to minimize the economic impacts

of the epidemic without putting an extra burden on the healthcare system.

Lay Summary: We developed an intervention policy model that comprised the relative human, imple-

mentation and healthcare costs of non-pharmaceutical epidemic interventions and identified the opti-

mal strategy using a neuroevolution algorithm. Our work emphasizes the importance of imposing

intervention measures early and provides insights into adaptive intervention policies to minimize the

economic impacts of the epidemic without putting an extra burden on the healthcare system.
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INTRODUCTION

On 11 March 2020, the World Health Organization (WHO)

announced that Covid-19, caused by severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) [1], ‘can be characterized

as a pandemic’ [2]. Within a month, most countries around the

world had taken public health measures to contain the spread

of the novel virus [3]. However, the type and severity of imple-

mented measures and their subsequent success in minimizing

the public health impacts of the outbreak varied greatly by coun-

try [4]. This variation in policies and their effectiveness reflects

the complexity of finding the balance between two often com-

peting policy objectives: protecting the public’s health versus

minimizing the economic impact of intervention measures [5].

Initially, without access to pharmaceuticals, studies focused

on two distinct control approaches: mitigation and suppression

[6–8]. The mitigation strategy aims to reduce transmission such

that healthcare systems are not overwhelmed, while aiming to

maintain the chain of transmission in order to achieve herd im-

munity. In contrast, the suppression strategy is aimed at virus

elimination. In hindsight, countries that acted early to suppress

the disease have excelled at minimizing both the public health

and economic impact of the epidemic [9–11]. While early sup-

pression measures appear to outperform the mitigation strategy

both in terms of public health goals and economic costs, such

policies would not necessarily be successful in countries where

citizens are more averse to government-enforced control and sur-

veillance measures [12]. Moreover, suppression measures would

only be successful if implemented in the early stages of the epi-

demic and sufficiently strictly as to curtail transmission effective-

ly. In a number of settings, however, suppression has been

implemented in a piece-meal manner, leading to periods of dras-

tic interventions including lockdowns punctuated by relaxation of

social distancing measures and subsequent uptick in transmis-

sion [13, 14]. This prompted us to examine the optimal mitiga-

tion strategy, which aims to manage or mitigate the healthcare

impacts of the epidemic while population approaches herd

immunity.

Characterizing immediate and long-term economic, social

and human burden of Covid-19 epidemic is challenging and has

led to several research efforts to examine the optimal interven-

tion policy from various perspectives. It is unfeasible to review

comprehensively this body of work, so we confine ourselves to a

number of the key studies. Rowthorn and Maciejowski [15]

investigated the optimal uniform lockdown in a Susceptible-

Infectious-Recovered (SIR) model assuming a variety of param-

eterizations [15]. Their objective function assigned monetary

values to costs arising from infection, lockdown, and value of

life. Their main finding was that in the medium term, a policy

that maintains effective reproduction number value close to 1

provides the best path. Bethune and Korinek [16] contrasted the

decisions made by rational, individual agents with the choices

made by a social planner who is able to coordinate the choices

of individuals [16]. They found that rational agents generate

large externalities because they fail to internalize the effects of

their economic and social activities on others’ risk of infection.

Alvarez et al. formalized the social planner’s dynamic control

using an SIR epidemiological model and a linear economy [17].

The best strategy starts with a severe lockdown two weeks after

the epidemic, covers 60% of the population after a month, and

progressively decreases to 20% of the population after three

months. More recently, a number of studies have broadened

this exploration to identify age-specific optimal control strat-

egies [18, 19].

Inspired by Salimans et al., Such et al. and Riolo and Rohani

[20–22], we sought to use a neuroevolution strategy to finding

the optimal policy function which would dynamically determine

the minimal required reduction in transmission rates at each

time instant, deemed as ‘control strength’ hereafter. Reductions

in transmission may result from lower contacts (due to isolation-

in-place ordinances, movement restrictions or lockdown poli-

cies), or the adoption of personal protective measures that serve

to curtail transmission upon contact (such as the use of face

masks and personal protective equipment, PPE), with varying so-

cietal impact. The fitness function is expressed such that a strat-

egy is rewarded for allowing the epidemic to remove individuals

from the susceptible pool without overwhelming the healthcare

capacity. The proposed neuroevolution strategy begins by initial-

izing a population of random policy functions. The generated pol-

icy functions are then used to simulate the trajectory of the

epidemic. The fitness of each function is then evaluated based

on the specified reward function. The most elite policy functions

are then perturbed (mutated) to generate the next generation

(offspring). The new population is then evaluated and this pro-

cess is repeated for a pre-defined number of iterations. We also

derived the optimal control solution via Pontryagin’s maximum

principle (PMP) [23] and compared the results with the optimal

neuroevolution policy.

We have chosen the United Kingdom as our target popula-

tion to implement the proposed approach. The choice of the UK

as our target population was largely motivated by the frequent

changes in the government’s strategy to contain the epidemic

[24], as summarized in Fig. 1. The UK’s initial response was a

mitigation policy, majorly inspired by the response to the flu

pandemic, with an emphasis on protecting the most vulnerable

to avoid overburdening the healthcare system in an effort to

achieve herd immunity [9]. This initial policy later changed to a

suppression policy by implementing lockdowns and imposing

face mask-wearing requirements. Looking back at the early days

of the epidemic, this study aims to understand how an effective

mitigation policy could have been implemented (see Ref. [9] for

a comparison of initial responses to Covid-19 by different coun-

tries including United Kingdom).
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Our study explores mechanisms for ‘flattening the curve’—it

is motivated by the Covid-19 pandemic but need not be

restricted to precise courses of action undertaken in the re-

sponse to this pandemic event. Our findings are intended to be

informative for future epidemic control, particularly at the early

stages of an epidemic when there may be no effective pharma-

ceuticals in sight.

We find that the ideal intervention policy results in a rapid in-

crease in control strength early in the epidemic, followed by a

sustained increase over the next 10 weeks as the epidemic

reaches its peak, and ultimately a progressive drop in control

strength as the population achieves herd immunity. We have

also shown how, without having access to the complete history

of the epidemic’s growth in the population, such a model may

give an effective adaptive intervention policy at various stages

of the epidemic. This study highlights the significance of imple-

menting control measures as promptly as possible and offers

insights into adaptive intervention strategies aimed at reducing

the economic effect of epidemics while avoiding undue strain

on the healthcare system.

MATERIALS AND METHODS

Model structure

We used a deterministic, time-varying Susceptible-Exposed-

Infectious-Recovered-Hospitalized in ICU (SEIRH) model [25]

to characterize the transmission dynamics in the UK as

described in equations (1)–(5):

_S ¼ dS

dt
¼ �ð1� cðtÞÞbSI

N
(1)

_E ¼ dE

dt
¼ ð1� cðtÞÞbSI

N
� qE (2)

_I ¼ dI

dt
¼ qE � cI� PDetectionrICUcICU DelayI (3)

_R ¼ dR

dt
¼ cIþ cICU StayH (4)

_H ¼ dH

dt
¼ PDetectionrICUcICU DelayI� cICU StayH (5)

where b is the transmission rate, 1=q and 1=c give the mean la-

tent and infectious periods, respectively and cðtÞ 2 ½0; 1� is the

reduction in transmission (such that c(t)¼ 1 signifies complete

cessation of transmission). The state variable H(t) denotes the

number of occupied ICU beds and is determined by the prob-

ability that an infection is detected (PDetection), the fraction of

cases that require ICU treatment (rICU) and the rate of admis-

sion to the ICU (cICU Delay). The mean duration of stay in the

ICU is determined by 1=cICU Stay. Model parameters and chosen

values are presented in Table 1.

In our analyses, we examine changes in optimal intervention

policy assuming policies are implemented starting at different

points during the epidemic, T0. To identify the appropriate ini-

tial conditions at these different starting points, we used a par-

ticle filter [35] to estimate the effective retrospective daily c(t)

Figure 1. Number of Covid-19 patients in intensive care (ICU) and timeline of lockdowns in the UK
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(where t ¼ 0; . . . ; T0), thus yield the epidemiological state of

the population at different stages of the epidemic. The agree-

ment between our fitted SEIRH model and data is shown in

Supplementary Fig. S2.

The reward function

As discussed by Moore et al. [36], there is precedent for inte-

grating modeling methodologies and health-economic analyses

to inform public health intervention decisions based on a will-

ingness to pay for each Quality-Adjusted Life Year (QALY)

saved [22, 37, 38]. Such an approach allows for allocating expli-

cit monetary values to each term in the reward function [22].

While some cost-benefit analysis via this approach has been

carried out in relation to Covid-19 [36], the pandemic’s enor-

mous scope renders traditional economic measurements large-

ly impractical. As a result, a health-economic approach is not

the main emphasis of this study. Instead, in order to capture

the general societal impacts of pandemic mitigation efforts, we

have employed a simple ‘relative’ economic cost to formulate

the reward function.

We first introduce the following multi-objective reward func-

tion to account for three opposing goals: (i) Sustain viral trans-

mission to achieve herd immunity, (ii) Keep the ICU occupancy

below the maximum capacity and (iii) Impose the minimum

possible control:

r1ðtÞ ¼ a1r1ðtÞHerd Immunity � a2r1ðtÞExceedance � a3cðtÞ2

¼ a1EðtÞ=N� a2ðHðtÞ �HmaxÞ=Hmax � a3 � cðtÞ2:
(6)

We defined r1ðtÞ for the sake of mathematical simplicity in

deriving PMP solution and it is only used to compare the optimal

non-pharmaceutical intervention (NPI) policies obtained from

neuroevolution and PMP methods. For the remainder of this

study, we use a slightly different objective function, r2ðtÞ, defined

as follows:

rðtÞ ¼ a1rHerd ImmunityðtÞ þ a2rExcðtÞ þ a3rControlðtÞ;
¼ a1ðRðtÞ=NÞ � a2ReluððHðtÞ �HmaxÞ=NÞ � a3 � cðtÞ:

(7)

In both reward functions (equations (6) and (7)), the terms

a1, a2 and a3 modulate the relative importance of herd immun-

ity, healthcare burden and societal costs, respectively. The goal,

therefore, is to identify the optimal intervention function c(t)

that maximizes the sum of rewards, J, during the course of the

epidemic:

max
cðtÞ

J ¼
ð

riðtÞdt; i 2 1; 2: (8)

Pontryagin’s maximum principle (PMP)

In this section, we first derive the necessary conditions for opti-

mal control via Pontryagin’s maximum principle, and describe

the iterative numerical algorithm (the forward–backward sweep

method) used to find the optimal solution. First, we form the

following Hamiltonian function:

Hðt; sðtÞ; cðtÞ; ksðtÞÞ ¼ rðtÞ þ kSðtÞ _S þ kEðtÞ _E þ kIðtÞ_I
þ kRðtÞ _R þ kHðtÞ _H: (9)

Here, ksðtÞ are adjoint functions satisfying the adjoin system:

_ksðtÞ ¼ �
@Hðt; s�ðtÞ; c�ðtÞ; k�s ðtÞÞ

@s
; s 2 S; E; I;R;Hf g; (10)

Table 1. Parameters of SEIRH model

Parameter Definition Value Source

N Total population size 66 436 000 [26]

R0 Basic reproduction number 2.3 [27, 28]

1=c Mean infectious period (days) 2.9 [27, 28]

1=q Mean latent period (days) 3.4 [29]

b Mean transmission rate (1/day) 0.793 Estimated

PDetection Ratio of confirmed cases to total

infections

0.3 [30]

rICU Proportion of confirmed cases that

end up in ICU

0.05 [31]

1=cICU Delay Median time from symptoms onset

to ICU admission (days)

10 [31]

1=cICU Stay Mean ICU stay period (days) 9 [33]

Hmax Number of ICU beds 4074 [34]

The table presents the parameters of SEIRH model used to model the dynamics of Covid-19 transmission in the population of UK.
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ksðTÞ ¼ 0 ðTransversalityconditionÞ: (11)

Expanding equation (10) yields:

_kSðtÞ ¼ �@H=@SðtÞ ¼ ðkS � kEÞ
ð1� cÞbI

N
(12)

_kEðtÞ ¼ �@H=@EðtÞ ¼ ðkE � kIÞq�
a1

N
(13)

_kIðtÞ ¼ �@H=@IðtÞ ¼ ðkE � kSÞ
ð1� cÞbSI

N
þ ðkI � kRÞcþ

ðkI � kHÞcICU DelayPDetectionrICU (14)

_kRðtÞ ¼ �@H=@RðtÞ ¼ 0 (15)

_kHðtÞ ¼ �@H=@HðtÞ ¼ ðkH � kRÞcICU Stay þ
a2

Hmax
: (16)

The necessary conditions for the optimal control is obtained

by maximizing the Hamiltonian (equation (9)) with respect to

c(t):

@H
@c
¼ 0 at c�t! c�ðtÞ ¼ ðkS � kEÞ

bI

2a3N
; c�ðtÞ 2 ½0; 1� (17)

The state equations (equations (1)–(5)) and adjoint equa-

tions (equations (10)–(16)) together with state initial condi-

tions and transversality conditions (equation (11)) form the

‘Optimality system’. The explicit solution cannot be analytically

derived. Thus we turned to an iterative numerical method,

‘Forward–backward Sweep’, to solve the ‘Optimality system’.

Neuroevolution algorithm

The optimal policy function, ph, is a feed-forward neural net-

work, parameterized by h that takes the state of the system at

current time t, fSðtÞ; EðtÞ; IðtÞ;RðtÞg as input and returns the

control strength, c(t). The neuroevolution strategy aims to find

the optimal policy function, PG
Mostelite, with highest fitness score.

Fitness score of policy function j in generation i, f i
j , is equal to

the sum of rewards, J (equation (8)) and is obtained by running

the SEIRH model with the corresponding policy function. First,

M policy functions (P1
j ) are randomly initialized. For each policy

function, a trajectory is rolled out and fitness score is calculated

at the end of simulation, as shown in Fig. 2. The L policy func-

tions with the highest fitness scores are mutated to generate

the next generation of policy functions. Mutation is imple-

mented by adding a random Gaussian noise, scaled by the mu-

tation rate, r, to h parameters of elite policy functions. The new

offspring policy functions served as the parents of next gener-

ation. This process continues to find a policy function with a

sufficiently high fitness score, PG
Mostelite. We used a fully-

connected feed-forward network with three 16-unit hidden

layers and one tanh output layer to model the policy function.

Pseudocode for the neuroevolution algorithm used in this study

is provided in Algorithm 1.

RESULTS

Which optimization algorithm?

We compared the optimal intervention policies obtained from

PMP and neuroevolution policies (Supplementary Fig. S1). The

policies are obtained using the r1 reward function (equation

(6)) with a2 ¼ 1e� 1; a3 ¼ 5e� 3 and same initial conditions.

We found the optimal policies obtained from both methods to

be very similar. In simpler problems where an analytic solution

can be obtained for the optimality system, the PMP method can

provide more insights about the optimal control solution and

the dynamics of the system. Otherwise, a neuroevolutionary ap-

proach is computationally advantageous since the resulting pol-

icy function provides an optimal strategy for a broad range of

initial conditions at a substantially smaller computations cost.

That is, the PMP optimal intervention for a given initial condi-

tion is obtained by solving the boundary-value problem formu-

lated in equations (1)–(5) and equations (10)–(16). For a new

boundary condition, the numerical solution must be repeated

Figure 2. Schematic representation of policy function Pg
i , represents the pol-

icy function i of generation g. The L most elite policy functions of each gen-

eration are mutated to generate the M policy functions of next generation

Algorithm 1: Neuroevolution algorithm

Require: Population size M, Number of generations G, Elite population

size L, Mutation rate r

Initialize M policy functions, P1
j , with random initial weights h1

j

for i do¼ 1 to G. # Iterate G generations

for j do¼ 1 to M

fj  Roll out a trajectory by running the model using P i
i #

Fitness score

end for

Sort hi
j by fj in descending order

hi
Elite ¼ fhi

jjj < Lg [ hi�1
Most elite

for j do¼ 1 to M

Draw sample t � Uð1; LÞ # Select a parent

Draw sample � � Nð0; 1Þ # Gaussian noise

hiþ1
j ¼ hi

t þ r� # Mutate

end for

end for

return PG
Mostelite
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to solve the new boundary-value problem. In the remainder of

the paper, our optimal solutions are obtained via the neuroevo-

lutionary approach.

Reward function exploration

The relative economic burden of different objectives in the re-

ward function is determined by the weights, fa1; a2; a3g. Thus,

we examined the effects of variation in these parameters on the

resulting optimal policy (see Supplementary Fig. S3). We con-

strained a1 to be 1 and changed the values of a2 and a3 over a

logarithmic grid. For each parameter set, we trained the neuroe-

volution algorithm for 2000 generations with a population size

of 256. The resulting policy functions (purple lines) and corre-

sponding ICU occupancy trajectories of the 10 best-performing

agents for each parameter set are depicted in Supplementary

Fig. S3. We found the reward function to be consistently robust

to variation in the values of a2. That is, the tested range of a2

values makes the cost of ICU overflow sufficiently prohibitive,

leading to high-fitness strategies ensuring ICU maximum cap-

acity is not exceeded (note that the ICU overflow reward is equal

to 0 while the ICU occupancy is below the maximum capacity

and negative otherwise). Evidently, making a2 smaller would

eventually deprioritize the goal of maintaining the ICU occu-

pancy below the limit. Without loss of generality, we will use

a2 ¼ 1e9 in the remainder of this paper. In contrast, we found

the reward function to be highly sensitive to variation in a3. For

a3 > 10�4, the relative cost (negative reward) of imposing con-

trol becomes prohibitive and leads to one of the extreme inter-

vention strategies: Suppression policy to end the endogenous

transmission at the earliest possible time and avoid imposing

lengthy control measures; or a no-intervention policy that

plainly leads to the minimum relative control cost. In practice,

the inclination for a specific intervention strategy depends on

the policy maker’s priorities. We observed pronounced variation

in the optimal policies and resulting ICU occupancy trajectories

for smaller values of a3 (compare the first and third columns,

Supplementary Fig. S3). In Supplementary Fig. S4, we demon-

strate this variation for each parameter set and across the val-

ues of a3. As shown in Supplementary Fig. S4A, values of a3

smaller than 10�4 result in greater ‘Cumulative herd immunity

reward’. Thus, when the relative cost of control is modest, the

optimal policy function will tend to maximize the reward by

increasing the number of individuals removed from the suscep-

tible pool, which in turn leads to greater ‘Cumulative control re-

ward’ (Supplementary Fig. S4B) and longer epidemic duration

(Supplementary Fig. S4C). Therefore, among the tested values,

a3 ¼ 1e� 4 represents the middle ground between prolonged

intervention and suppression policies, and is the value that we

have used in the rest of this paper.

No-intervention policy, uniform intervention policy and

optimal policy

Figure 3 presents a comparison between the optimal interven-

tion policy identified via our neuroevolution algorithm, a uni-

form intervention policy and no-intervention policy. The

uniform intervention policy is implemented by imposing a con-

stant reduction in transmission throughout the epidemic,

cðtÞ ¼ cu. The value of control strength, cu, is estimated such

that the peak ICU occupancy tangents the maximum capacity.

Figure 3A depicts the ICU occupancy trajectories of these three

policies. As expected, the no-intervention policy leads to ICU

burdens well beyond the threshold capacity for more than two

months (67 days). The other notable observation is the differ-

ence between the optimal and uniform policies in managing the

ICU burden: the optimal policy maintains the ICU occupancy

near the maximum capacity throughout the epidemic, but not

beyond it. Figure 3B depicts the implemented control strength

in time for optimal and uniform policies. Except for a period of

time less than 10 weeks at the onset of the epidemic, the control

strength of the optimal policy is below the uniform intervention

policy. The difference in the imposed control between two poli-

cies is better illustrated by Fig. 3C, where a widening gap be-

tween the cumulative imposed control of the two policies

emerges after day 200. In Fig. 3D, we present the recovered

individuals for each policy. Unlike the optimal policy, the final

fraction of recovered individuals in the uniform intervention pol-

icy case is well below the theoretical herd immunity threshold.

This suggests that any reduction in the control strength could

lead to another epidemic wave given the large fraction of sus-

ceptible individuals.

The sooner the better

We have estimated the optimal intervention policy initiated at

different stages of the epidemic, as shown in Fig. 4. Each scen-

ario corresponds to a particular start date for the roll out of the

optimal intervention policy. Figure 4A depicts the scenario in

which optimal intervention policy starts on 1 March, which coin-

cides with a surge in cases in the UK. The optimal intervention

policy starts with cðtÞ ¼ 0:33 (a 33% reduction in transmission

rates) and is gradually increased to cðtÞ ¼ 0:54 by mid-May. The

control strength tapers off to 0 by June 2021. This scenario

leads to two peaks in ICU occupancy, in November 2020 and

June 2021. Figure 4B–E depict the optimal intervention policy

starting at intermediate stages of the epidemic. As mentioned

above, we estimated the initial conditions for each scenario by

fitting our SIER model to fatality data using particle filtering, a

Monte Carlo likelihood estimation algorithm for hidden state-

space dynamical systems [39]. Comparing the optimal interven-

tion policy curves in different scenarios depicts how implement-

ing transmission reduction measures at earlier stages of the

64 | Saeidpour and Rohani Evolution, Medicine, and Public Health

https://academic.oup.com/emph/article-lookup/doi/10.1093/emph/eoac002#supplementary-data
https://academic.oup.com/emph/article-lookup/doi/10.1093/emph/eoac002#supplementary-data
https://academic.oup.com/emph/article-lookup/doi/10.1093/emph/eoac002#supplementary-data
https://academic.oup.com/emph/article-lookup/doi/10.1093/emph/eoac002#supplementary-data
https://academic.oup.com/emph/article-lookup/doi/10.1093/emph/eoac002#supplementary-data
https://academic.oup.com/emph/article-lookup/doi/10.1093/emph/eoac002#supplementary-data
https://academic.oup.com/emph/article-lookup/doi/10.1093/emph/eoac002#supplementary-data
https://academic.oup.com/emph/article-lookup/doi/10.1093/emph/eoac002#supplementary-data


epidemic will eventually shorten the epidemic: The termination

of optimal intervention policy is delayed from June 2021 (in

Fig. 4A) to February 2022 (in Fig. 4D). The only exception is

Fig. 4E, in which the optimal intervention policy terminates

slightly sooner than in Fig. 4D. This is most likely due to the

emergence of new variants with higher transmissibility [40],

which gave rise to a faster depletion of the susceptible pool

than accounted for in our model.

To better illustrate the importance of implementing early con-

trol measures, we have demonstrated the ‘Total duration of

intervention policy implementation’ and ‘Cumulative imposed

control’ for different scenarios in Fig. 5. The ‘Total duration of

intervention policy implementation’ represents the time period

between 1 March 2020 and the termination date of intervention

policy for each scenario. The ‘Cumulative imposed control’ is

obtained by summing the daily implemented control strength

(c(t)), divided by total number of days with c(t)> 0 for each

scenario. As shown in Fig. 5A, the ‘Total duration of interven-

tion policy implementation’ increases from 442 days in the first

columns to 700 days in the last one. Figure 5B also confirms the

fact that implementing the optimal intervention policy from ear-

lier stages of epidemic would reduce the overall required con-

trol measures. Note that depicted ‘Cumulative imposed

control’ values do not include the actual imposed control

strength (c(t)) before the start of optimal intervention policy

and adding those values would only widen their differences.

Also, the ‘Cumulative imposed control’ is a linear measure of

overall imposed control; however, the actual economic cost

would not necessarily change linearly with duration and

strength of imposed intervention policy.

A B

C D

Figure 3. No-intervention policy, uniform intervention policy and optimal policy. The figure presents the (A) ICU occupancy, (B) control strength, (C) cumula-

tive imposed control and (D) recovered individuals for three different policies: No-intervention policy, uniform intervention policy and optimal policy
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Figure 4. Optimal intervention policy at different stages of epidemic. The figure depicts the optimal intervention policy starting at different stages of epidemic.

For each scenario, the number of susceptible, exposed, infectious and recovered individuals is estimated from a SEIRH model fitted to the UK fatality data

and used as initial condition to derive the optimal intervention policy
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Finding the balance

Figure 6 paints an overall picture of how the optimal policy fine

tunes the transmission rates to sustain endogenous transmis-

sion in the population without overburdening the ICU capacity.

Figure 6A demonstrates the variation of effective reproductive

ratio (Reff) throughout the epidemic (black line), the control

strength is also shown (blue dashed line). At the onset of the

epidemic, Reff is instantly reduced to 1.52 from 2.3 by imposing

a 0.33 reduction in contact rates
�

cðtÞ ¼ 0:33
�

and further

decreased to Reff � 1 by mid-May (point i) to stall the epidemic

growth. From point i to point ii, The Reff is maintained close to

1 to maintain the ICU occupancy close to the maximum cap-

acity. At this point, c(t) is slightly increased that leads to a sharp

decrease of Reff to 0.89 in point iii. This is followed by a steep

decrease in c(t) to bring the Reff above 1 to sustain the transmis-

sion. To summarize, the optimal mitigation policy is achieved

by finding the balance between two extreme scenarios:

Suppression policy which aims to stall the endogenous

transmission in the population, and ‘No-intervention’ which

leads to exponential epidemic growth and the overburdening of

healthcare capacity.

DISCUSSION

More than 18 months into the SARS-CoV-2 pandemic, it is

becoming increasingly clear that countries that implemented

suppression strategies early on experienced greater success in

managing both the public health and economic burden of the

epidemic [9–11]. However, such strategies work best when

employed early in the epidemic, when number of cases is rela-

tively small. Moreover, in countries where government-imposed

restrictions are not well received by the public, implementation

of such policies will be challenging. Looking back at the early

stages of the epidemic, our work provides a dynamic mitigation

strategy that sustains the community transmission without

overwhelming the healthcare capacity.

Figure 5. Implementing the optimal intervention policy will reduce the overall impact of control measures. The Total duration of intervention policy implementa-

tion and Cumulative imposed control for different scenarios. The Total duration of intervention policy implementation represents the time period between 1

March 2020 and termination date of intervention policy for each scenario. The Cumulative imposed control is obtained by adding up the implemented control

strength (c(t)) in each day, divided by total number of days with c(t) > 0 for each scenario
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A number of previous studies on optimal non-

pharmaceutical interventions have used quadratic cost expres-

sions for the control term in the cost function [19, 41, 42]. This

is mainly because when the cost function is quadratic with re-

spect to the control, the differential equations arising from the

necessary conditions for an optimal control have a known solu-

tion. Other functional forms frequently provide difficult-to-solve

systems of differential equations. To circumvent this, we

employed a neuroevolution algorithm which enabled us also to

explore non-quadratic functions. The neuroevolution algorithm

was used to train a policy function that takes the epidemiologic-

al state of population (the numbers of susceptible, exposed, in-

fectious and recovered individuals) on each time day and

provides the corresponding control strength. We defined a

multi-objective reward function to account for three conflicting

goals: Sustain the transmission to achieve herd immunity when

suppression is not feasible, maintaining the ICU occupancy

below the maximum capacity and imposing minimum possible

control measures to reduce the contact rates. A relative weight-

ing parameter was assigned to corresponding terms of each of

these objectives in the reward function. The sensitivity analysis

indicated that the resulting policy function is highly sensitive

relative weighting of the control term and found a optimal range

of values for it. We chose United Kingdom as our target popula-

tion and fitted an SEIRH model to fatality data to estimate the

initial conditions at different stages of the epidemic.

The optimal intervention policy confirmed the importance of

early interventions to reduce the contact rates in the population,

as highlighted in the previous studies [15, 42]. An initial 34% re-

duction in transmission at the onset of the epidemic, gradually

increasing to 50% in the next 10 weeks is required to bring the

Reff near 1. After that, the restrictions are constantly decreased

as the size of susceptible pool diminishes. The association be-

tween the control strength and the size of the susceptible pool

(except the first initial 10 weeks) highlights the importance of re-

liable and widespread serosurveys in order to inform policy de-

cision making.

Our study highlights the neuroevolution algorithm, a

gradient-free approach, as an efficient alternative to traditional

PMP method for finding the optimal non-pharmaceutical inter-

vention policy in dynamical disease transmission system. Past

studies have demonstrated that in many challenging

Figure 6. The optimal intervention policy maintains the effective reproductive ratio (Reff) close to 1: The figure displays the changes in effective reproductive

ratio when implementing the optimal intervention policy. The control strength (c(t)) is sharply increased at early stages of epidemic to stall the epidemic

growth and keep healthcare capacity from being overwhelmed. The Reff is maintained close to 1 by gradually reducing the c(t) as the size of susceptible pool

shrinks. Once the value of Reff reaches below 0.9, c(t) is increased to sustain the transmission in the population, while keeping the occupied ICU beds below

the maximum capacity
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reinforcement learning tasks, neuroevolution algorithm rivals

(or even outperforms in some domains) state-of-the art

gradient-based methods such as Q-learning and A3C [21].

Interestingly, the forward–backward sweep technique that we

used to obtain the optimal solution via PMP closely resembles

the backpropagation, the algorithm used to train the gradient-

based reinforcement learning methods [43]. Ultimately, we

found the neuroevolution algorithm to be computationally ad-

vantageous to the PMP method as the former algorithm pro-

vides the optimal intervention policy for a broad range of initial

values after initial training (as shown in Fig. 4), while the nu-

merical solution to obtain the optimal control via PMP must be

repeated for a new initial condition.

A key component of our neuroevolution algorithm is the as-

sumption that the full epidemiological state of the population is

observable at each time step. In reality, however, the observable

data provide an incomplete and potentially biased picture of

epidemiology since they are based on reported incidence, hos-

pitalization and fatality data in addition to seroprevalence sur-

veys. Besides assuming complete epidemiological information,

our approach also assumed that the optimal intervention policy

is implemented in deterministically; that is, the output action is

perfectly implemented at each time instant and the resulting

new state given the corresponding action is always the same—

something that is not practical. An important next step in this

area would be to extend our novel framework to identify the op-

timal intervention strategies with hidden states in a stochastic

setting. Furthermore, while this study addresses the optimal re-

duction in the contact rates over time, the economic cost and

effectiveness of various non-pharmaceutical intervention mech-

anisms [44, 45] to achieve the optimal policy reduction require-

ments must also be examined.
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