
DIAGNOSTIC NEURORADIOLOGY

Prediction of pituitary adenoma surgical consistency: radiomic data
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Abstract
Purpose Pituitary macroadenoma consistency can influence the ease of lesion removal during surgery, especially when using a
transsphenoidal approach. Unfortunately, it is not assessable on standard qualitative MRI. Radiomic texture analysis could help
in extracting mineable quantitative tissue characteristics. We aimed to assess the accuracy of texture analysis combined with
machine learning in the preoperative evaluation of pituitary macroadenoma consistency in patients undergoing endoscopic
endonasal surgery.
Methods Data of 89 patients (68 soft and 21 fibrous macroadenomas) who underwent MRI and transsphenoidal surgery at our
institution were retrospectively reviewed. After manual segmentation, radiomic texture features were extracted from original and
filteredMR images. Feature stability analysis and amultistep feature selection were performed. After oversampling to balance the
classes, 80% of the data was used for hyperparameter tuning via stratified 5-fold cross-validation, while a 20% hold-out set was
employed for its final testing, using an Extra Trees ensemble meta-algorithm. The reference standard was based on surgical
findings.
Results A total of 1118 texture features were extracted, of which 741 were stable. After removal of low variance (n = 4) and
highly intercorrelated (n = 625) parameters, recursive feature elimination identified a subset of 14 features. After hyperparameter
tuning, the Extra Trees classifier obtained an accuracy of 93%, sensitivity of 100%, and specificity of 87%. The area under the
receiver operating characteristic and precision-recall curves was 0.99.
Conclusion Preoperative T2-weighted MRI texture analysis and machine learning could predict pituitary macroadenoma
consistency.
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Abbreviations
ML Machine learning

ROI Region of interest
ICC Intraclass correlation coefficient
SMOTE Synthetic Minority Oversampling Technique
RFE Recursive feature elimination
ET Extra Trees Classifier
AUC Area under the receiver operating characteristic

curve

Introduction

Pituitary adenomas are frequent tumors of the pituitary gland.
Although most pituitary macroadenomas have a soft consis-
tency, some are rather fibrous and therefore more challenging
to remove by transsphenoidal adenomectomy. Indeed, tumor
consistency has been reported as one of the principal
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determinants of transsphenoidal surgery success rate [1]. For
this reason, the ability to preoperatively assess adenoma con-
sistency could improve surgical planning and reduce compli-
cation rate and risk of residual tumor presence [2].

Radiomics, consisting of conversion of images into mine-
able data and subsequent analysis for decision support, has
been gaining attention in recent years [3]. In particular, texture
analysis is a post-processing technique allowing for quantita-
tive description of pixel gray-level heterogeneity. More re-
cently, texture analysis-derived features have been used in
association with data mining and machine learning algo-
rithms, aiding in the interpretation of a large amount of infor-
mation produced. Machine learning (ML) is the branch of
artificial intelligence including algorithms capable of model-
ing themselves and improving in accuracy by analyzing
datasets, without prior explicit programming [4]. It leads to
the creation of predictive models that are able, among other
tasks, to solve classification problems. The usefulness of the
radiomic approach is being assessed in different fields of ra-
diology [5–9].

Our aim was to assess the accuracy of a ML model trained
on radiomic data mined from MRI exams to predict pituitary
macroadenoma surgical consistency prior to an endoscopic
endonasal procedure.

Methods and materials

Patient population

This retrospective study was conducted in accordance with the
1964Helsinki Declaration and its later amendments. The local
Institutional Review Board gave its approval and waived the
need for informed consent. We reviewed all patients referred
to our institution for endoscopic endonasal pituitary adenoma
removal (January 2013–December 2017). Those with history
of previous treatment for pituitary adenoma (radiation or med-
ical therapy) at the time of MRI, lesions smaller than 10 mm,
extensively necrotic or hemorrhagic areas, or significant arti-
facts on the images used for the analysis were excluded.

Consistency assessment

All patients were operated on by two neurosurgeons with over
10 years of experience in a third level referral center in the
field of pituitary surgery [10]. Tumor consistency, classified
as soft or fibrous, was assessed in blinded double-check by the
two surgeons according to the lesions’ inner surgical features.
In detail, adenomas easily removable with conventional ma-
neuvers of curettage and suction were defined as soft. More
resistant ones, difficult to remove and thus requiring more
complex maneuvers such as extracapsular dissection, were
classified as fibrous [11–14]. Surgical features of soft and

fibrous pituitary macroadenomas are depicted in online
Video 1 and 2, respectively.

Image acquisition

All patients underwent MRI exams either on a 1.5 (Gyroscan
Intera, Philips, Eindhoven, the Netherlands) or 3 T MR scan-
ner (Magnetom Trio, Siemens Medical Solutions, Erlangen,
Germany). The imaging protocol always included a coronal
T2-weighted (T2-w) Turbo Spin Echo sequence whose de-
tailed parameters are reported in supplementary Table 1.

Handcrafted radiomics

Adenomas are manually annotated by a neuroradiologist
(8 years of experience) by placing a 2D polygonal region of
interest (ROI) on the coronal slice of maximum lesion exten-
sion on a freely available segmentation software (ITKSnap
v3.8.0) (Fig. 1). Two other readers (both > 5 years’ experi-
ence) also performed lesion segmentation on all patients,
blinded to the first neuroradiologist’s ROI placement, to per-
form radiomic feature stability testing.

A freely available, well-established, and open-source
Python software platform was used for image pre-processing
and radiomic parameter extraction (Pyradiomics, v2.2.0). First
of all, images and ROIs were resampled to a 2 × 2 × 2 mm
isotropic voxel, as required for further pre-processing (i.e.,
correct use of image filters). All voxel intensity values were
also normalized by subtracting the mean intensity and divid-
ing by the standard deviation and discretized by using a fixed
bin width (=3). Filtered images were also employed for feature
extraction in addition to the pre-processed original T2-w ones.
In particular, a Laplacian of Gaussian filter, with sigma values
ranging from 2.0 (most fine texture) to 3.5 (most coarse) in 0.5
increments, and all available combinations of wavelet decom-
position high- and low-pass filtering in the x, y, and z dimen-
sions were applied. While 2D ROIs were drawn, we still
chose to employ a three-dimensional wavelet decomposition
as after resampling the software will detect an ROI z-axis
value > 1. This is not an issue for the analysis as we excluded
shape features, and the following feature selection steps will
remove all redundant parameters that could have been ex-
tracted from similar wavelet decomposition-derived images.

Data mining and machine learning

Initial assessment and processing of the extracted data were
performed on Python in particular using the numpy, pandas,
and scikit-learn packages. First of all, the intraclass correlation
coefficient (ICC) was calculated for each parameter as extract-
ed using ROIs from the three readers. A two-way, absolute
agreement and single rater ICC was employed, and only fea-
tures with values ≥ 0.75 were considered stable. Non-
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informative, low variance (variance ≤ 0.1) features were also
excluded from the dataset. Then, a pairwise correlation matrix
was calculated for these in order to remove all features with an
intercorrelation ≥ 0.8. As we expect an unbalanced dataset due
to the relative rarity of fibrous adenomas compared with soft
ones, the Synthetic Minority Oversampling Technique
(SMOTE) was employed [15]. Then, 80% of the data was
used for hyperparameter tuning via stratified 5-fold cross-val-
idation, while a 20% hold-out set was employed for its testing
on unseen data. In detail, the following steps were exclusively
performed on the first set. A normalization scaler was calcu-
lated to remove biases due to feature scale and was later ap-
plied to the hold-out test set. Finally, recursive feature elimi-
nation (RFE), employing a logistic regression algorithm and
stratified 5-fold cross-validation, was used to select the better
performing feature subset.

The resulting data was used to train an ensemble learning
meta-algorithm, the Extra Trees Classifier (ET). These often
demonstrate good performance on radiomic medical image
data [16]. Its performance for consistency prediction was fi-
nally assessed on the test set.

Accuracy metrics were obtained using the scikit-learn
package and further analyzed on the R software (R for
Unix/Linux, version 3.4.4, the R Foundation for Statistical
Computing, 2014). In particular, DeLong’s test (pROC pack-
age) was used to obtain 95% confidence intervals (95%CI) of
the area under the receiver operating characteristic curve
(AUC) and the confusion matrix function (caret package)
those of the classifier’s accuracy and compare its performance
to the no information rate.

The described radiomics workflow pipeline is illustrated in
Fig. 2.

Results

According to selection’s criteria, 89 patients were included in
this study; 51 were males and 38 females, with mean age
52.17 ± 14.64 years (range 16–80). Average lesion size was

25 ± 8 mm (range 8–46 mm). The pituitary lesions were clas-
sified as soft in 68 patients and fibrous in the remaining 21. In
detail, 19 soft (8 ACTH, 7 GH, 4 PRL) and 6 fibrous (2
ACTH, 2 PRL, 1 GH, 1 TSH) were functioning (25/89, 28%
in total). In none of the cases, there was discordance among

Fig. 2 Radiomic workflow pipeline

Fig. 1 Pituitary macroadenoma
segmentation example on coronal
T2-weighted (a), showing hand-
drawn ROI placement (b)
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the neurosurgeons in lesion classification. Patient population
clinical data are presented in Table 1.

A total of 1118 texture features were extracted, including
first- and higher-order texture features from the original and
filtered images. The correlation cluster map of the extracted
features is shown in Fig. 3. Their detailed description is avail-
able in the online Pyradiomics documentation (https://
pyradiomics.readthedocs.io/en/latest/features.html). After
feature stability analysis, 741 were retained for the
subsequent steps. Of these, 4 had low variance, while 625
were highly intercorrelated. RFE then identified a 14-feature
subset as most accurate (Fig. 4; feature list is available in
supplementary material).

The ET model obtained an overall accuracy, in terms of
correctly classified lesions, of 86% (± 10%) in the training set
cross-validation. The classifier tuned parameters are reported
in the supplementary materials. In the test set, the accuracy
was of 93% (95%CI = 77–99%), sensitivity of 100%, and
specificity of 87%. The AUC is of 0.99 (95%CI = 0.97–
1.00) (Fig. 5), equal to the area under the precision-recall
curve (0.99), often used in binary ML classifications (fig
AUC). The classifier was significantly better (p = 8e−6) than
the no information rate. The confusion matrix and detailed
accuracy metrics are shown in Tables 2 and 3.

Discussion

Preoperative assessment of pituitary macroadenoma consistency
is useful for planning surgical approach and reducing residuals
and recurrence’s rate. For this reason, several studies have inves-
tigated the correlation between preoperative MRI features and
tumor hardness. In particular, there are conflicting studies on
the value of the relative signal on T2-weighted MRI and the
macroadenoma consistency, with some works demonstrating a
positive correlation between low signal and hardness [17–20]
and other concluding that relative signal intensity values do not
correlate [21–24]. Indeed besides collagen amount, which main-
ly correlates with the hardness, other factors such as intratumoral

hematoma, amyloid, iron, calcification, or protein-rich fluid may
affect the T2 signal intensity [25].

Diffusion-weighted imaging ability to predict tumor con-
sistency also showed divergent results, both indicating a sig-
nificant correlation [1, 26] and not [21, 27]. Furthermore, the
lower spatial resolution and the presence of susceptibility ar-
tefacts in the sellar region related to bone and sinus
pneumatization limit the use of this technique. Finally, in
two studies by Romano et al. and Yamamoto et al., contrast-
enhanced MRI showed a strong correlation for tumor consis-
tency [2, 28]. Perfusion imaging parameters have also been
invest igated as possible biomarkers of pi tui tary
macroadenoma consistency, but no added value was found
compared with precontrast T1-weighted images [29]. A more
interesting advanced technique in this setting is represented by
MR elastography. Pituitary adenoma stiffness was found to
correlate with their consistency and, if it became widely avail-
able, could offer additional data to mine with a radiomic ap-
proach [30, 31].

Regarding texture analysis, there are only three studies ex-
ploring this issue, to the best of our knowledge. In the first,
Rui et al. explored the value of MRI texture analysis in
assessing pituitary macroadenoma consistency, obtaining
good accuracy values [32]. However, this study was conduct-
ed using contrast-enhanced 3D-SPACE images and without a
ML approach. Fan and colleagues explored this issue in acro-
megalic patients using ML for radiomic feature selection prior
to building a nomogram obtaining an AUC of 0.81 [33].
Zeynalova et al. also performed an analysis on ML preopera-
tive evaluation of pituitary macroadenoma consistency [34].
Their study presented some similarities with our own. They
also used Pyradiomics for feature extraction from
bidimensional ROIs, although they utilized different sigma
settings (2, 4, and 6 mm) for the LoG filter and obtained a
total of 162 parameters. The lower number of features is prob-
ably due to their exclusive focus on first-order histogram-de-
rived ones. These are more reproducible but convey less in-
formation on tissue texture compared with higher-order pa-
rameters. As their in-plane resolution was higher (0.5 ×
0.8 mm), they were able to use a 1 × 1 mm resampling size

Table 1 Patient population
clinical data Tumor consistency

Total (n = 89) Soft (n = 68) Fibrous (n = 21)

Age (mean) (year) 52.2 ± 14.6 53.2 ± 15.5 54.6 ± 14.6

Sex

Males (n) (%) 51 (57%) 39 (57%) 12 (57%)

Females (n) (%) 38 (43%) 29 (43%) 9 (43%)

Tumor type

Functioning (n) (%) 25 (28%) 19 (28%) 6 (21%)

Non-functioning (n) (%) 64 (72%) 49 (72%) 15 (78%)
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compared with our 2 × 2mm. It is interesting to note the use of
a very narrow bin width value of 0.06, as the number of bins
should not exceed 128, following the developer recommenda-
tions. They also performed a feature robustness assessment
with our same ICC threshold, while their intercorrelation
threshold was lower (0.7 vs 0.8). After data dimensionality
reduction, they identified 6 informative features using the
Weka data mining platform and a wrapper-based selector. In

our study, the entire analysis was conducted using the scikit-
learn Python package. Some other major differences are rep-
resented by the use of cross-validation, without further assess-
ment on a separate test set. Their reported accuracy is 72.5%,
with an AUC of 0.71. Therefore, our algorithm presents a
clearly superior performance. This could be in part explained
by their use of a multilayer perceptron neural network, which
may not be the best suited algorithm for a small dataset

Fig. 3 Hierarchically clustered
heatmap of the feature correlation
matrix. Features with an
intercorrelation above the selected
threshold (≥ 0.8) were removed
from the dataset

Fig. 4 Plot of the feature selection
process by recursive feature
elimination. The x-axis contains
the total number of features, from
which one is removed at each
iteration. The y-axis contains the
average cross-validation score for
each feature total
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obtained from 55 patients. Finally, Zenyalova and colleagues
also used collagen amount within the tumor on histopatholog-
ical examination for their reference standard. As consistency
information is mainly useful for surgical strategy planning, we
believe that intraoperative consistency assessment represents a
more practical and useful reference standard as the final recip-
ient of the information should be a neurosurgeon. As the two
neurosurgeons involved in our study never had disagree-
ments, we also found this assessment to be reproducible.

By analyzing our confusion matrix, it can be seen that the
mistakes made by the classifier were 2 cases of soft lesions
identified as fibrous. Given the clinical setting of our investi-
gation, this kind of error is somewhat more acceptable than a
false negative, as it would be more auspicable to sometimes
overestimate the difficulty of a surgery rather than the
opposite.

In our study, we chose to employ an ET ML algorithm.
This belongs to the decision tree ensemble methods, in partic-
ular constituted by a large number of highly randomized de-
cision trees which are fitted on data subsamples. Each of these
outputs a prediction, and a majority vote determines the final
outcome. Ensemble learning is based on the assumption that a
decision by committee made by a large number of weak clas-
sifiers will perform better than a single algorithm. A sufficient
diversification of the random trees included in the ET is guar-
anteed by random sampling, with replacement, of patients
from the training dataset (bootstrap aggregation or bagging)
and of their available features (n = 3 in our case). This in turn

ensures low correlation of each tree, improving the ET’s over-
all performance [16]. As the dataset lesion classes were im-
balanced, SMOTE was employed. This is a known solution to
address this issue and has demonstrated its value in the setting
of medical imaging radiomic ML analysis [15, 35–37].

We have chosen a handcrafted radiomics approach rather than
a fully automated deep learning one as this gave us better control
on the initial data analysis and followingMLmodel construction.
Both approaches have been object of discussion in current liter-
ature as they possess peculiar merits and limitations. It is our
belief that a handcrafted analysis is more appropriate for relative-
ly smaller datasets as it allows greater involvement of radiologists
and better understanding of the whole pipeline. Only when ex-
tremely large datasets will become available in medical imaging,
as in other fields, the less time-consuming completely neural
network-based approach will be a practical necessity. Until then,
the value of greater involvement of the radiologist and finer
quality control of patient or lesion data outweigh the larger
amount of time needed to extract medical imaging radiomics.
Furthermore, medicine and especially treatments are evolving
in the direction of precision, patient-tailored therapies. Contrary
to the current desire in radiology to aggregate asmany patients as
possible to train ML algorithms, this determines a need to work
with ever smaller patient subgroups within each pathological
entity. Therefore, a future with space for both deep learning
software to apply on large populations and engineered ap-
proaches for more specific tasks can be envisioned.

Our study has some limitations which have to be acknowl-
edged. As is often the case for ML, future studies on larger
populations are necessary to confirm and possibly expand our
results. The need for oversampling given the unbalanced na-
ture of the classes further highlights this necessity but was
expected given epidemiological data. Only T2-weighted im-
ages were used, without investigating the added value of other
sequences. However, obtaining valuable data without contrast
agent administration and streamlining the pipeline to incorpo-
rate a single MRI sequence could also represent an added
value. Furthermore, considering previous works, T2-
weighted MRI alone proved effective to provide data
concerning proliferative index [38], secretory activity [39],
and response prediction to somatostatin analogues in patients
with acromegaly and GH secreting pituitary macroadenoma
[40, 41].

Fig. 5 Receiver operating characteristics curve of the Extra Trees
classifier accuracy

Table 3 Extra Trees classifier accuracy metrics

Class Recall Precision F-
score

AUC AUPRC

Soft 0.87 1.00 0.93 0.99 0.99

Fibrous 1.00 0.87 0.93 0.99 0.99

WAvg 0.94 0.93 0.93 0.99 0.99

WAvg weighted average, AUC area under the receiver operating charac-
teristic curve; AUPRC area under the precision-recall curve

Table 2 Confusion matrix for the test group

Predicted class

Soft Fibrous

Actual class Soft 13 2

Fibrous 0 13

1654 Neuroradiology (2020) 62:1649–1656



Conclusion

The ML model trained on radiomic data extracted from T2-
weighted MRI demonstrated a high accuracy in the classifica-
tion of soft and fibrous pituitary macroadenomas. Therefore,
this tool could prove valuable in the pre-surgical planning of
these patients if further developed and validated on larger
datasets.
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