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ABSTRACT
In humans, hyperthermia leads to activation of a set of thermoregulatory responses that includes
cutaneous vasodilation and sweating. Hyperthermia also increases ventilation in humans, as is
observed in panting dogs, but the physiological significance and characteristics of the
hyperventilatory response in humans remain unclear. The relative contribution of respiratory heat
loss to total heat loss in a hot environment in humans is small, and this hyperventilation causes a
concomitant reduction in arterial CO2 pressure (hypocapnia), which can cause cerebral
hypoperfusion. Consequently, hyperventilation in humans may not contribute to the maintenance
of physiological homeostasis (i.e., thermoregulation). To gain some insight into the physiological
significance of hyperthermia-induced hyperventilation in humans, in this review, we discuss 1) the
mechanisms underlying hyperthermia-induced hyperventilation, 2) the factors modulating this
response, and 3) the physiological consequences of the response.

KEYWORDS
Hyperpnea; heat loss;
respiratory alkalosis

Introduction

In the evolution of thermoregulation, poikilothermic
animals, whose body temperatures vary with the
ambient temperature, came into existence first. Later,
homeotherms, which can control their heat balance
(i.e., heat production and dissipation) and thus body
temperatures, appeared. The ways in which homoeo-
thermic animals dissipate heat differs greatly among
species. For example, birds and mammals such as
dogs dissipate heat by increasing their ventilation
(panting). Other mammals such as goats, sheep, oxen,
kangaroos and monkeys also pant, but in addition
they possess sweat glands, enabling them to dissipate
heat through evaporative heat loss. Camels living in
the desert neither pant nor sweat until their body tem-
perature becomes critical. Instead, they accumulate
heat in their bodies during the daytime, when the
ambient temperature is high, and dissipate the heat
during the night, when the ambient temperature is
low. Humans exhibit sweat function that is superior to
that of other mammals, but they also increase their
ventilation during heat stress (we will call this hyper-
thermia-induced hyperventilation throughout this

review). This response was first described by Haldane
in 19051 (Fig. 1). He observed that in mines in which
the air temperature (34.4�C) and humidity were high,
hyperpnea became noticeable when the rectal temper-
ature exceeded 38.9�C, and was distinctly noticeable
at 39.4�C. Subsequent studies confirmed this hyper-
thermia-induced hyperventilation.2-8 The proposed
mechanisms and the possible physiological signifi-
cance of hyperthermia-induced hyperventilation in
humans have been reviewed by White.9 However, the
characteristics of the hyperventilatory response in
humans, such as what factors modulate the hyperven-
tilation, remain uncertain.

When exposed to heat stress, panting animals
increase their respiratory frequency to more than 200
breaths/min while minimizing tidal volume.10 This
greatly increases dead space ventilation with little
change in alveolar ventilation, enabling panting ani-
mals to increase respiratory heat loss without chang-
ing blood gas partial pressure (O2 and CO2). However,
greater increases in body temperature alter this pat-
tern such that tidal volume increases with a reduction
in respiratory frequency, resulting in an increase in
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gas exchange in the lung and resultant effects on blood
gas pressure (increases in O2 and decreases in CO2).
Similar to the latter response, hyperthermia-induced
hyperventilation in humans is accompanied by
increases in alveolar ventilation and thus altered blood
gas levels.5,7 No reduction in tidal volume is observed
during heat stress in humans; instead, tidal volume
reportedly changes little11-14 or even increases.2,5,7,15

The resultant reduction in arterial CO2 pressure
(hypocapnia) ultimately causes a reduction in cerebral
perfusion (see “Consequences of hyperthermia-
induced hyperventilation”), the physiological signifi-
cance of which remains unclear. To gain additional
insight into this ventilatory response, we will review
the characteristics of hyperthermia-induced hyperven-
tilation in humans, focusing on 3 aspects of the
response. First, we will discuss possible mechanisms
underlying hyperthermia-induced hyperventilation in
humans. We will then review the factors modulating
hyperthermia-induced hyperventilation. Finally, we
will review how hyperthermia-induced hyperventila-
tion affects other physiological responses.

Mechanisms mediating hyperthermia-induced
hyperventilation in humans

Because hyperthermia causes hyperventilation, tem-
perature input should be an important factor causing

hyperthermia-induced hyperventilation in humans.
The question then is, in what part of the body does
temperature (skin, core or a combination of both)
trigger hyperthermia-induced hyperventilation in
humans? In ox, an increase in skin temperature evoke
thermal tachypnea.16 In resting humans, however,
immersion in hot (41�C) water up to the shoulder rap-
idly increases skin temperature, but this does not
cause a sustained increase in minute ventilation until
esophageal temperature (an index of body core tem-
perature) reaches »38.5�C.15 Subsequent studies also
confirmed that there is an esophageal temperature
threshold for hyperventilation at »37.8 17 to 38.3�C,18

and that this threshold varies substantially among sub-
jects, as reflected by the standard deviation of »0.5�C.
In addition, we found that in exercising humans min-
ute ventilation increased linearly with increases in
esophageal temperature and that this relationship was
unaffected by skin temperatures ranging from 33 to
39�C.19,20 On the other hand, a study by Lucas et al. 21

found that reducing skin temperature from 35.3 to
33.8�C through acute skin cooling decreased the venti-
latory response during passive heating at rest without
changing esophageal temperature. Thus, the effect of
skin temperature on the ventilatory response to rising
body core temperature may differ depending upon
whether one is resting or exercising. More specifically,
although body core temperature is a main factor

Figure 1. Description of Haldane’s experiment.1 Temperatures are presented in degrees Fahrenheit [�C D 5/9 (�F¡32)]. Note the state-
ment describing the increase in ventilation in a hot environment. Reproduced with permission from Cambridge University Press.
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inducing hyperthermia-induced hyperventilation in
both resting and exercising humans, skin temperature
can have an effect on the ventilatory response only
during hyperthermia at rest.

On the other hand, because invasive methods (e.g.,
direct temperature recording from brain) are difficult
to apply to humans in vivo, we do not precisely know
in which part of the body core temperature is impor-
tant for hyperventilation in humans. Based on animal
studies, it appears that brain temperature (i.e., spinal
cord, hypothalamus and medulla oblongata) is impor-
tant for hyperthermia-induced hyperventilation, as
increases in its temperature robustly increase ventila-
tion.22-25 In addition, carotid chemoreceptors are sen-
sitive to temperature26 and contribute to ventilatory
regulation. To tease out the role of carotid chemore-
ceptors in hyperthermia-induced hyperventilation in
humans, we performed hyperoxia tests (so called
Dejours tests) during passive heating at rest, which
demonstrated that hyperoxia reduced hyperthermia-
induced hyperventilation by~30%.27 This suggests that
although changes in carotid body temperature may
contribute to ventilatory responses during heat stress
in resting humans, it may not be a major factor. It has
also been shown that muscle (goats)28 and intra-
abdominal (rabbits)29 temperatures contribute little to
the increase in ventilation. It remains uncertain, how-
ever, how these temperatures affect ventilation in
humans.

Modifying factors

The control of hyperthermia-induced hyperventilation
in humans can be quantitatively characterized by eval-
uating the relationship between minute ventilation as
the output response and body core (esophageal) tem-
perature as thermal input.19,30 Similar analyses have
been used to evaluate control of thermoregulatory
heat loss through sweating and cutaneous vasodila-
tion.31 This approach enables estimation of 1) the
body core temperature threshold for the onset of
hyperthermia-induced hyperventilation and 2) the
sensitivity of the hyperventilation to rising body core
temperature (the slope of body core temperature-min-
ute ventilation relation). For instance, an elevated
threshold would mean a reduction in the ventilatory
response to the same body core temperature, whereas
a lower threshold would mean an increase in the
response. It has been established that the threshold

and sensitivity of 2 heat loss responses, sweating and
cutaneous vasodilation, are influenced by exercise,32,33

exercise intensity,32,34,35 hypohydration,36-38 aerobic
ability/training,39 sex 40-42 and heat acclimation.43,44

We will focus on the ways these factors, which are
well-known modulators of heat loss responses, influ-
ence hyperthermia-induced hyperventilation in
humans. Their effects are summarized in Figure 2.

Exercise and its intensity

Although studies have shown that hyperthermia-
induced hyperventilation can occur during both rest
and exercise, the response patterns differ substantially.
For example, Cabanac & White 15 reported that dur-
ing passive heating at rest, hyperthermia-induced
hyperventilation occurs when body core (esophageal)
temperature reaches a critical temperature, around
38.5�C (Fig. 3). Above this body core temperature
threshold, minute ventilation reportedly increases at
»20–30 L/min per 1�C rise in body core tempera-
ture.15,17,18 During incremental exercise from rest to
exhaustion, there is an esophageal temperature thresh-
old for hyperthermia-induced hyperventilation at
»38�C.30,45 Importantly, incremental exercise alters
not only body temperature but also metabolic rate,
both of which can independently influence ventilation.

Figure 2. Modulators of human hyperthermia-induced hyperven-
tilation characterized based on its threshold and sensitivity to
increasing body core temperature. Note that exercise and heat
acclimation reduce the threshold, and that exercise, hypocapnia,
increased aerobic capacity and increased heat loss capacity
reduce the sensitivity. By contrast, exercise intensity does not
affect the threshold, and exercise intensity, hypohydration, heat
acclimation and sex do not affect the sensitivity.
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Therefore, to distinguish the body core temperature
effect on ventilation from metabolic effects, we
employed moderate-intensity constant-workload exer-
cise (50% of peak oxygen uptake) and found that min-
ute ventilation increases linearly with increases in
body core temperature, while oxygen uptake and
blood lactate concentrations remain virtually con-
stant.19 Earlier studies reported that ventilation
increases at »5–12 L/min per 1�C rise in esophageal
temperature
during moderate-intensity constant-workload exer-
cise.17,19,46-48 In a subsequent study, we also found
that during prolonged moderate exercise there is an
esophageal temperature threshold for hyperthermia-
induced hyperventilation at »37�C.20 Because the
threshold during exercise was at normothermia, it was
only detected after the subjects’ core temperature was
lowered by cooling prior to the exercise. Fujii et al. 17

and Tsuji et al. 18 directly compared hyperthermia-
induced hyperventilation between the same subjects at
rest and during exercise. They demonstrated that the
esophageal temperature threshold for hyperventilation
is »1.5�C lower and the sensitivity of hyperventilation
to rising esophageal temperature is approximately
3 times lower during exercise than during rest (Fig. 4).
These findings suggest that the characteristics of
hyperthermia-induced hyperventilation, as reflected
by differences in threshold and sensitivity, differ
between passively heated and exercising subjects.

Thermoregulatory heat loss responses are report-
edly affected by exercise intensity such that changes in
exercise intensity from light to moderate increase the

Figure 3. Body core (esophageal: Tes and tympanic: Tty) tempera-
ture-dependent change in minute ventilation (VI) during passive
heating at rest (41�C bath immersion). Note that VI increased at
Tes of 38.5�C and Tty of 38.1�C. Reprinted from Cabanac &
White,15 with kind permission from Springer ScienceCBusiness
Media.

Figure 4. Body core (esophageal) temperature-dependent
changes in minute ventilation (A), tidal volume (B) and respira-
tory frequency (C) during passive heating at rest (Rest), pro-
longed light exercise (25% of peak oxygen uptake) and moderate
exercise (50% of peak oxygen uptake) in 9 subjects. Symbols
show 30-s averaged data, and the symbols during exercise show
data collected after 5 min of exercise. Arrows indicate the aver-
aged thresholds. Note that the threshold and the sensitivity for
minute ventilation were lower during passive heating than exer-
cise, irrespective of exercise intensity, and that tidal volume has a
threshold during passive heating but not during exercise
(adapted from Tsuji et al. 18).
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sensitivity of the sweating response to rising body
core temperature (esophageal temperature) without
changing the body core temperature threshold.34,35

Similar increases in exercise intensity also elevate the
temperature threshold for cutaneous vasodilation
without changing sensitivity.34,49 On the other hand,
we showed that hyperthermia-induced hyperventila-
tion is unaffected by different exercise intensities, as
neither the body core temperature threshold nor the
sensitivity of hyperventilation to rising body core tem-
perature differed between prolonged light and moder-
ate exercise (25% and 50% of peak oxygen uptake,
respectively).18 Whether exercise intensities outside
that range also do not affect hyperventilatory
responses is not yet known.

The respiratory patterns of hyperthermia-induced
hyperventilation likely differ between passive heating
at rest and exercise. The respiratory pattern during
passive heating is not consistent among studies, as
hyperthermia-induced hyperventilation sometimes
reflects increases in only respiratory frequency,12,50,51

only tidal volume 5,15,52 or both.1,28,17,18,53 The hyper-
ventilation during hyperthermic exercise at a con-
stant-workload was more consistent and reportedly
due to an increase in respiratory frequency.17-20,47,54-57

By using the same subjects for both tests, we found
that there are esophageal temperature thresholds for
increases in both respiratory frequency and tidal vol-
ume during passive heating at rest, whereas there was
a temperature threshold only for increases in respira-
tory frequency during prolonged light or moderate
exercise; tidal volume decreased gradually with rising
esophageal temperature (Fig. 4).17,18 Thus the respira-
tory pattern of hyperthermia-induced hyperventila-
tion differs between resting and exercising subjects.

Hypohydration

Prolonged exercise or resting in the heat leads to pro-
fuse sweating. This can in turn lead to hypohydration
accompanied with hypovolemia and hyperosmolality,
which in humans may affect hyperthermia-induced
hyperventilation. Senay & Christensen58 investigated
the effect of hypohydration on the ventilatory
response in resting heated humans. In that study, sub-
jects were exposed to 43�C for 12 h during rehydra-
tion and dehydration (body weight was progressively
reduced by 5%). It was observed that both minute ven-
tilation and plasma osmolality were increased in the

dehydration trial, but neither of those was increased
in the rehydration trial. This suggests that increases in
plasma osmolality can lead to increases in ventilation
in resting heated humans. In that study, however, oral
temperature was substantially higher during dehydra-
tion than rehydration (37.7 vs. 37.1�C). Fan et al. 51

demonstrated that in resting humans, mild dehydra-
tion increases minute ventilation slightly. However,
they also showed that baseline ventilation in normo-
thermic conditions (before heating) was elevated,
which means the higher ventilation associated with
mild hypohydration could be simply due to a baseline
shift, not enhanced hyperthermia-induced hyperventi-
lation. Importantly, they did not evaluate the relation-
ship between body core temperature and ventilation.
In exercising humans, we showed that 2.5% dehydra-
tion does not influence the sensitivity of hyperventila-
tion to rising esophageal temperature.46 Whether
hypohydration can affect body core temperature
threshold for hyperventilation during exercise remains
to be determined, however. In addition, it remains to
be seen whether severe hypohydration (i.e., > 4% loss
of body weight), which can reduce mean arterial pres-
sure,59 affects hyperthermia-induced hyperventilation.
It has been shown that reductions in central blood vol-
ume and mean arterial pressure elicited by lower body
negative pressure can increase ventilation under both
normothermic 60,61 and hyperthermic 62,63 conditions.
However, a reduction in mean arterial pressure of
»20 mmHg (induced by lower body negative pres-
sure) is required to cause a noticeable increase in ven-
tilation at presyncope.60,63 Importantly, even severe
hypohydration (4.7% body weight loss) causes only a
minimal reduction in mean arterial pressure during
exercise in the heat (»5 mmHg).59 Furthermore,
another recent study showed that during passive heat-
ing at rest, increases in ventilation did not change,
even when concomitant decreases in mean arterial
pressure (»10 mmHg) were reversed by infusion of
phenylephrine, a vasoconstrictor agent.64 From these
results, it appears that even when hypohydration is
severe enough to reduce mean arterial pressure, it has
little effect on ventilation.

Heat acclimation

It is well established that heat acclimation improves
thermoregulatory cutaneous vasodilation and sweating
such that cutaneous blood flow and sweat rate are

150 B. TSUJI ET AL.



higher at a given body core temperature, but there is
little understanding of the effect of heat acclimation on
ventilatory responses during hyperthermia. For
instance, Adam et al. 65 reported that heat acclimation
achieved through hyperthermic exercise training con-
sisting of 2 hours of exercise in a hot environment
(»40–46�C) daily for 13 days resulted in a decrease in
minute ventilation during exercise in the heat as com-
pared to that prior to heat acclimation. This suggests
heat acclimation attenuates hyperventilation during
exercise in the heat. However, because they did not
evaluate the relationship between body core tempera-
ture and minute ventilation, it remained uncertain
whether the hyperventilatory response to rising body
core temperature during exercise was affected by heat
acclimation. Thereafter, Beaudin et al.66 showed that
passive heat acclimation achieved through repeated
heat exposure for 10 days under resting conditions low-
ers body core temperature threshold for hyperventila-
tion during incremental exercise from rest to
exhaustion in parallel with a shift in the temperature
threshold for sweating. The sensitivity of the hyperven-
tilation to rising body core temperature did not change.
Consistent with those findings, we observed that short-
term exercise heat acclimation does not influence the
sensitivity of hyperventilation to rising body core tem-
perature during prolonged moderate exercise in the
heat.55 However, the effect of heat acclimation on body
core temperature threshold for hyperventilation during
the prolonged moderate exercise remains to be deter-
mined. In heated resting humans, we recently reported
that body core temperature threshold for hyperventila-
tion and sensitivity of the response during passive heat-
ing at rest are unaffected by heat acclimation achieved
through short-term exercise training in the heat.67 This
suggests hyperthermia-induced hyperventilation at rest
is unaffected by exercise-heat acclimation.

Concomitant hypocapnia

Hyperthermia-induced hyperventilation involving an
increase in alveolar ventilation reduces arterial CO2

pressure (hypocapnia). Because arterial CO2 has sig-
nificant effects on the control of breathing, it is plausi-
ble that the resultant hypocapnia reduces ventilatory
drive, partially diminishing hyperthermia-induced
hyperventilation. In that regard, earlier studies using
passive heating at rest showed that temporary restora-
tion of end-tidal CO2 pressure to a normocapnic level

did not change,27 increased 52,68 or decreased 69 venti-
lation. There is thus no consensus on the effect of
hypocapnia on hyperthermia-induced hyperventila-
tion at rest. The reason(s) for the inconsistency
remains unclear. By contrast, we reported that during
prolonged moderate exercise in the heat, the sensitiv-
ity of hyperventilation to rising esophageal tempera-
ture was doubled by restoration of arterial CO2

pressure to the normocapnic level, as compared to a
condition in which arterial CO2 pressure decreased
due to hyperthermia-induced hyperventilation
(19.8 vs. 8.9 L/min/�C) 56 (Fig. 5). This is consistent
with results from studies in which hypocapnia attenu-
ated the panting response during exercise in
sheep.70,71 The reason why hypocapnia associated
with hyperthermia-induced hyperventilation sup-
presses ventilation during exercise but not rest
remains to be unknown, but one possible explanation
is that exercise with heat stress lowers the arterial CO2

pressure threshold for increases in ventilation, allow-
ing hypocapnia to reduce ventilation. It is also likely
that the different effects of hypocapnia are involved in
the mechanism underpinning the 3 times lower sensi-
tivity of hyperventilation to rising body core tempera-
ture during prolonged exercise than during rest.

Aerobic capacity

Increasing physical fitness (as reflected by increased
peak oxygen uptake) through exercise training report-
edly improves cutaneous vasodilation and sweating
responses.44,72 Cross-sectional studies also showed
that cutaneous vasodilation and sweating during exer-
cise are greater in highly physically fit subjects than
those who are less fit.73,74 We tested whether the mag-
nitude of hyperthermia-induced hyperventilation dur-
ing exercise is related to aerobic capacity using
physically fit subjects who exhibited peak oxygen
uptakes ranging widely from »33 to 61 ml/kg/min.
We found that the sensitivity of hyperventilation to
rising esophageal temperature during exercise was
negatively related to peak oxygen uptake.47 This indi-
cates that hyperthermia-induced hyperventilation is
related to the aerobic capacity of the subject.

Heat dissipation capacity

We also reported that the sensitivity of hyperventila-
tion to rising esophageal temperature during pro-
longed exercise was negatively related to the
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cutaneous vasodilatory response to rising esophageal
temperature.47 This relationship does not necessarily
indicate causality, though one could infer that breath-
ing would tend be augmented to a greater degree in
subjects exhibiting less cutaneous vasodilation. Similar
issues were addressed in studies examining hyperther-
mia-induced hyperventilation in individuals with a
chronic disease impairing thermoregulatory heat loss.
Totel75 reported that quadriplegic and ectodermal
dysplastic men, who have an impaired sweating
response, exhibited hyperventilation while resting in
the heat at a level that did not cause hyperventilation
in able-bodied subjects. Because Totel 75 did not evalu-
ate the relationship between body core temperature
and ventilation, however, we cannot say whether the
hyperventilation in those patient populations was due
to altered sensitivity and/or body core temperature
threshold for hyperthermia-induced hyperventilation,
or simply to a greater increase in body core tempera-
ture resulting in greater ventilation without a change
in threshold or sensitivity. In another study, Wilsmore
et al.76 evaluated hyperthermia-induced hyperventila-
tion in individuals with spinal-cord injuries. They
showed that during passive heating at rest that caused
mean body temperature (calculated based on esoph-
ageal and skin temperatures) to increase by 1.2–1.7�C,
subjects with spinal-cord injuries, who are known to
have impaired thermoregulatory responses, exhibited
a detectable temperature threshold for hyperthermia-
induced hyperventilation. By contrast, this heating
was not enough to reveal the threshold in able-bodied
subjects.76 Thus hyperthermia-induced hyperventila-
tion may be augmented in individuals with spinal-
cord injury.

Sex

Because menstrual cycle modulates chemoreflex con-
trol of breathing, as evaluated based on the hypoxic
and/or hypercapnic ventilatory response,77-79 it may
also modulate hyperthermia-induced hyperventila-
tion. We reported that, consistent with an earlier
report,80,81 esophageal temperature at rest and during
prolonged moderate exercise was higher during the
luteal than follicular phase in young female subjects,
and that minute ventilation was higher during the
luteal phase in parallel with the temperature

Figure 5. Body core (esophageal) temperature-dependent
changes in estimated PaCO2 (PaCO2estimated; A), minute ventila-
tion (B) and middle cerebral artery blood flow velocity (C) during
prolonged moderate exercise (50% of peak oxygen uptake) in
room air (open circles) and CO2-enriched air (filled circles). The
CO2-enriched air was a mixture of room air and 100% CO2. We
manually added 100% CO2 to the inhaled air to maintain PaCO2es-

timated throughout the exercise. Changes in esophageal tempera-
ture (D) were measured from the start of inhalation of CO2-
enriched air. The numbers adjacent to the symbols in A and C
indicate the numbers of subjects still exercising at the corre-
sponding temperature; the numbers in A also apply to B. �P <

0.05, room air vs. CO2-enriched air; yP < 0.05 vs. Desophageal
temperature D 0�C. Note that when hyperthermic hyperventila-
tion-induced hypocapnia was restored to normocapnic level,
minute ventilation was increased and the cerebral blood flow
velocity was largely restored to normocapnic level. Adapted from
Hayashi et al.56
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changes.82 However, when evaluating the relationship
between esophageal temperature and minute ventila-
tion, we found that menstrual cycle phase does not
modulate the sensitivity of hyperventilation to rising
esophageal temperature during exercise.82 Instead,
resting esophageal temperature was at a higher level
during the luteal than follicular phase, and body core
temperature threshold for hyperventilation may also
be shifted to a higher level, though this requires direct
testing.

Aging

Aging reportedly affects chemoreflex control of
breathing such that it decreases the ventilatory
response to hypoxia and hypercapnia at normother-
mia.83-85 On the other hand, there is little understand-
ing of the effect of aging on ventilatory responses
during hyperthermia. For instance, in a study of respi-
ratory and cerebrovascular responses to passive heat-
ing at rest that elevated esophageal temperature by
0.5�C in young (29 years) and older (70 years) males,
the increase in body core temperature induced no
change in end-tidal CO2 pressure in either subjects.86

Furthermore, a preliminary study in which greater
hyperthermia (1.4�C increase in esophageal tempera-
ture) was induced through passive exposure to 50�C
ambient temperature showed that minute ventilation
at the elevated body core temperature was similar
between young (30 years, n D 5) and older (57 years,
n D 5) 87 subjects. But although it appears that aging
does not affect hyperthermia-induced hyperventila-
tion during passive heating at rest in these few studies,
further investigation is needed to clarify the effect of
aging on hyperthermia-induced hyperventilation at
rest and during exercise.

Consequences of hyperthermia-induced
hyperventilation

Cerebral blood flow

It is generally accepted that cerebral blood flow is
tightly regulated by arterial CO2 pressure.

88-90 It there-
fore seems plausible that hypocapnia associated with
hyperthermia-induced hyperventilation causes a
reduction in cerebral blood flow. In line with that,
Nybo & Nielsen 48 found that hyperthermia occurring
during prolonged exercise in the heat leads to
decreases in middle cerebral artery blood flow velocity

(an index of anterior cerebral blood flow) with con-
comitant hyperventilation and hypocapnia. Moreover,
Rasmussen et al. 91 demonstrated that during pro-
longed exercise in the heat, relieving hypocapnia
induced by hyperthermia-induced hyperventilation
fully restored middle cerebral artery blood flow veloc-
ity, confirming the role of arterial CO2 pressure in
cerebral hypoperfusion that occurs during exercise in
the heat. Similar results have also been reported by
more recent studies involving exercise in the heat 56,92

(Fig. 5).
Cerebral hypoperfusion also occurs during passive

heating at rest.62,93 Examining changes in cerebral
blood flow during hyperthermia and the underlying
mechanisms is important because cerebral hypoperfu-
sion during hyperthermia may be partially responsible
for impaired orthostatic tolerance during hyperther-
mia,62 and could reportedly lead to increases in brain
temperature,94 as we will discuss later (see “Brain cool-
ing effect?”). We found that by restoring arterial CO2

pressure to the eucapnic level, middle cerebral artery
blood flow velocity could be partially restored
(~30%).27 This means although CO2 contributes to
cerebral hypoperfusion during passive heating at rest,
a large portion of the reduction in flow is not attribut-
able to CO2-dependent mechanisms. Consistent with
that idea, in a subsequent study, Brothers et al. 95

showed that CO2 accounts for~50% of cerebral hypo-
perfusion during passive heating at rest. This reduc-
tion in flow may reflect sympathetic nerve-mediated
cerebral vasoconstriction. Indeed, the role of cerebral
sympathetic nerve activity in the modulation of cere-
bral blood flow was demonstrated in a human study
showing that unilateral trigeminal ganglion stimula-
tion reduced mean blood velocity in the middle cere-
bral artery at rest.96 Moreover, hyperthermia is a
potent activator of sympathetic nerve activity.97 How-
ever, other studies found that arterial CO2 pressure
fully explains cerebral hypoperfusion during passive
heating at rest.52,68 The reason underlying the
between-study difference remains unclear.

Thermoregulatory heat loss response

Albert 98 and Robinson & King 99 found that volun-
tary hyperventilation-induced hypocapnia at rest in a
hot environment reduced sweating and hand blood
flow and increased rectal temperature as compared to
normocapnia accompanied with hyperventilation.
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Based on those findings, they suggested that hypocap-
nia induced by hyperthermia-induced hyperventila-
tion could potentially affect thermoregulatory
responses. A subsequent study found that increases in
forearm skin blood flow during passive heating were
diminished by voluntary hyperventilation-induced
hypocapnia with a 0.6�C elevation in esophageal tem-
perature, but not with a 1.0�C elevation.100 Fujii et al.
101 also reported that during exercise, hypocapnia
induced by voluntary hyperventilation increased
esophageal temperature threshold for cutaneous vaso-
dilation and decreased sensitivity to rising esophageal
temperature, whereas hypocapnia did not affect the
sweating response, suggesting the cutaneous vasodila-
tory response to rising body core temperature during
exercise is attenuated by hypocapnia. Whether hyper-
thermia-induced hyperventilation and the resultant
hypocapnia diminish thermoregulatory heat loss
responses during both resting and exercise remains to
be determined, however.

Brain cooling effect?

Although heat loss from respiratory evaporation is rel-
atively small in comparison to evaporative heat loss
through sweating, if this respiratory evaporation selec-
tively removed heat from the brain, the hyperthermia-
induced hyperventilation could contribute to main-
taining homeostasis through selective brain cooling.102

This notion was first proposed by Cabanac et al., who
demonstrating that in heated resting 103 and exercising
104 humans, face fanning reduced tympanic tempera-
ture, which is thought to be an index of brain temper-
ature. In addition, in postoperative neurosurgical
patients, intense breathing through nose during mild
passive warming reduced the temperature of the crib-
riform plate, near the base of the brain.105 This sug-
gests that increasing ventilation can reduce brain
temperature. On the other hand, hyperthermia-
induced hyperventilation can reduce cerebral perfu-
sion, as mentioned above, which can in turn diminish
heat removal and thus increase brain temperature.94 It
therefore remains debatable whether hyperthermia-
induced hyperventilation is functionally important for
controlling brain temperature during heat stress.
More discussion of human cerebral brain cooling is
found elsewhere 102.

Summary and conclusion

Schematic overview of hyperthermia-induced hyper-
ventilation in humans and its effect on physiological
responses is presented in Figure 6. In summary, dur-
ing passive heating at rest and prolonged exercise in
the heat, elevation of body core temperature leads to
increased ventilation independently of metabolic
factors, resulting in a reduction in arterial CO2

pressure (hypocapnia). The hyperthermia-induced

Figure 6. Schematic representation of the effects of hyperthermia-induced hyperventilation on physiological responses in humans.
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hyperventilation is induced mainly by an increase in
body core temperature in both resting and exercising
humans. Increased temperatures in the hypothalamus,
medulla oblongata and spinal cord are likely key fac-
tors driving hyperthermia-induced hyperventilation,
though increasing the temperature of the carotid body
chemoreceptors also contributes. The effects of
increased muscle and intra-abdominal temperatures
on ventilatory responses remain unknown in humans.

Hyperthermia-induced hyperventilation differs
depending upon whether the subject is at rest or
exercising. During passive heating at rest, hyperventi-
lation is initiated when body core (esophageal) tem-
perature reaches a critical threshold of »38.5�C,
whereas the temperature threshold during prolonged
submaximal exercise is »37�C. In addition, the degree
to which hyperthermia-induced hyperventilation is
reflected by the sensitivity of hyperventilation to rising
body core temperature is 3 times smaller during exer-
cise than at rest (»10 vs. »30 L/min/�C), irrespective
of whether the exercise intensity is light or moderate.
The lower sensitivity of hyperventilation during exer-
cise is attributable to the finding that hyperventila-
tion-induced hypocapnia reduces sensitivity via
central chemoreceptors during exercise. The sensitiv-
ity of hyperventilation to rising body core temperature
during exercise is unaffected by hypohydration, men-
strual cycle or heat acclimation achieved through exer-
cise training in the heat. This means the control of
hyperthermia-induced hyperventilation during exer-
cise is likely robust, and differs from the control of
sweating and cutaneous vasodilation. On the other
hand, the sensitivity of ventilation is likely related to
aerobic capacity, as there is a negative relationship
between the sensitivity of hyperventilation to rising
body core temperature and peak oxygen uptake.

It has been suggested that hyperthermia-induced
hyperventilation contributes to cooling the brain in
humans as in animals, but hyperventilation-induced
hypocapnia reportedly leads to cerebral hypoperfu-
sion, which can reduce heat removal from the brain,
leading to increases in brain temperature. The physio-
logical significance of hyperthermia-induced hyper-
ventilation for selective cooling of brain in humans
remains unclear. It also remains unclear whether
hyperventilation-induced changes in arterial CO2

pressure fully accounts for the cerebral hypoperfusion
during passive heating, though it appears that hypo-
perfusion is mainly due to hyperventilation-induced

hypocapnia during prolonged exercise in the heat.
Finally, hyperthermia-induced hyperventilation may
affect other thermoregulatory heat loss responses,
most notably cutaneous vasodilation, through hyper-
ventilation-induced hypocapnia.
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