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Abstract

As anthropogenic changes continue to ecologically stress wildlife, obtaining measures of

gene flow and genetic diversity are crucial for evaluating population trends and considering

management and conservation strategies for small, imperiled populations. In our study, we

conducted a molecular assessment to expand on previous work to elucidate patterns of diver-

sity and connectivity in the remaining disjunct Eastern Massasauga Rattlesnake (Sistrurus

catenatus) hibernacula in Illinois. We assayed genetic data for 327 samples collected during

1999–2015 from the Carlyle Lake study area across 21 microsatellite loci. We found hibernac-

ula formed distinct genetic clusters corresponding to the three main study areas (Dam Recre-

ation Areas, Eldon Hazlet State Park, and South Shore State Park). Genetic structuring and

low estimates of dispersal indicated that connectivity among these study areas is limited and

each is demographically independent. Hibernacula exhibited moderate levels of heterozygos-

ity (0.60–0.73), but estimates of effective population size (5.2–41.0) were low and track cen-

sus sizes generated via long-term mark-recapture data. Hibernacula at Carlyle Lake, which

represent the only Eastern Massasauga remaining in Illinois, are vulnerable to future loss of

genetic diversity through lack of gene flow as well as demographic and environmental sto-

chastic processes. Our work highlights the need to include population-level genetic data in

recovery planning and suggests that recovery efforts should focus on managing the three

major study areas as separate conservation units in order to preserve and maintain long-term

adaptive potential of these populations. Specific management goals should include improving

connectivity among hibernacula, maintaining existing wet grassland habitat, and minimizing

anthropogenic sources of mortality caused by habitat management (e.g., mowing, prescribed

fire) and recreational activities. Our molecular study provides additional details about demo-

graphic parameters and connectivity at Carlyle Lake that can be used to guide recovery of

Eastern Massasauga in Illinois and throughout its range.
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Introduction

In the Anthropocene, growing demands of human populations have altered natural habitats

[1, 2] which exert ecological pressures on wildlife populations. Understanding how such pres-

sures manifest in natural populations, particularly in declining or imperiled species, provides

information essential for developing robust population models, adaptive management pro-

grams, and habitat conservation plans [3, 4]. A primary concern of declining populations is

vulnerability to loss of genetic diversity through lack of gene flow, genetic drift and a subse-

quent reduction in effective population size and increased risk of inbreeding depression [5–7],

which further accelerates populations into extinction vortices [8]. Here, molecular methods

can complement traditional ecological approaches which evaluate population demographic

and habitat use data to yield valuable insights into how anthropogenic pressures affect popula-

tion viability and persistence of species in altered landscapes [9]. Molecular genetic data can

elucidate population demographic parameters, population structure, landscape connectivity

[10], and be used to assess loss of genetic diversity over time [11–13].

The Eastern Massasauga (Sistrurus catenatus) is a small cryptic rattlesnake formerly occu-

pying a broad distributional area across a diversity of habitat types [14]. It ranges north-south

from Ontario Canada to central Illinois and east-west from New York to the Mississippi River

[15, 16]. Three geographic subunits have been identified; one for Iowa, Illinois, and Wisconsin,

one for Indiana, Ohio, southern and central Michigan, and southwestern Ontario, and one for

Pennsylvania, New York, northern Michigan, and other parts of Ontario, consistent with a

northeastward post-Pleistocene range expansion from unglaciated into formerly glaciated

regions ca. 10,000 years ago [17]. Contemporarily, the Eastern Massasauga exists in a frag-

mented landscape with most states having fewer than five extant populations, except for the

Bruce Peninsula, Ontario, Canada, and Michigan which still maintain larger connected popu-

lations [18]. Primary threats include habitat fragmentation, loss, and modification, road mor-

tality, hydrologic alteration, persecution, and habitat management practices such as mowing

and prescribed fire [14]. Thus, isolation and barriers to movement among fragmented popula-

tions of Eastern Massasauga have potentially severed gene flow and increased genetic isolation,

increasing the risk of genetic diversity loss. Consequently, the Eastern Massasauga is afforded

some level of protection in every state or province where it occurs, and was formally listed as

Threatened under the United States Endangered Species Act (ESA) in 2016 [19].

Range-wide molecular studies of Eastern Massasauga have revealed little phylogenetic vari-

ation [20], but notable population genetic structure and demographic independence over rela-

tively small spatial scales, suggesting restricted contemporary gene flow among isolated

populations within a fragmented landscape [21–24]. Further, Ochoa and Gibbs [25] found evi-

dence for recent bottlenecks and increased inbreeding and Sovic et al. [11] predicted signifi-

cant loss of genetic variation due to genetic drift in many populations over the next century.

As anthropogenic threats continue to strengthen and increase dispersal barriers, understand-

ing regional patterns of genetic structure, genetic diversity and connectivity of extant popula-

tions is necessary for evaluating long-term persistence, informing recovery plans, and

identifying conservation units [26]. Given rapid population declines and ESA listing, studies

examining the genetic composition of extant populations are essential to recovering the

species.

In Illinois, Eastern Massasauga once extended throughout wet prairie habitats in the north-

ern two-thirds of the state [27, 28]. However, populations declined with the conversion of prai-

rie to agriculture; Illinois has lost 99.9% of prairie habitats since the industrial revolution [29].

At present, only one extant population remains, located at Carlyle Lake, Clinton County. Dur-

ing long-term studies of this last population, the top four mortality sources comprised
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automobiles, predation, management-related (e.g. prescribed burns, vegetation control), and

disease [30]. Within this region, most patches of habitat surveyed since 1999 contain fewer

than 20 individuals [12, 31], yet anthropogenic activities continue to increase isolation and

restrict gene flow [32, 33]. Previous molecular work based on microsatellite DNA analyses of

Eastern Massasauga at Carlyle Lake revealed moderate to high levels of heterozygosity, but lim-

ited dispersal among sites [13, 21, 34]. These previous studies provide a foundation to investi-

gate further population genetic structure at Carlyle Lake. However, samples used in these

studies either did not represent the entire study area [13, 21], or used a limited number of loci

[34], providing limited utility to recovery planning.

Our goal was to expand on previous genetic efforts by analyzing a broader temporal span, a

spatial scale representative of the entire study area, and a greater number of microsatellite loci

to provide a comprehensive molecular genetic assessment of Eastern Massasauga at Carlyle

Lake, Illinois, that will be used to inform long-term conservation planning for the species. We

sought to 1) investigate genetic diversity, structure and connectivity, and 2) determine spatial

variation of allelic richness, effective population size, and level of inbreeding among primary

study sites and remaining hibernacula at Carlyle Lake. Given the intense landscape conversion

of the study area and historic and contemporary barriers to movement, we predicted to find

distinct genetic clusters and limited gene flow among the hibernacula. Although previous stud-

ies showed moderate to high genetic diversity, we expected genetic indices to vary among

hibernacula, with smaller and more isolated hibernacula exhibiting lower genetic diversity,

lower effective population size, and higher levels of inbreeding. Our molecular study provides

more in-depth information about population demographic parameters and connectivity at

Carlyle Lake that can be combined with long-term ecological data [31, 35] to develop a com-

prehensive population model to guide recovery of Eastern Massasauga in Illinois. Further, as

fragmentation and isolation are pronounced throughout the range of the Eastern Massasauga,

these data can serve as a proxy for a range-wide perspective on the future of the species in the

Anthropocene.

Methods

Study site

The U.S. Army Corps of Engineers constructed Carlyle Lake in 1961 in response to flooding

issues in the middle Kaskaskia River Valley. The subsequent impoundment flooded much of

the valley, completely submerging an expansive floodplain hardwood forest called Boulder

Bottoms. The new impoundment effectively reduced or eliminated the east-west movements

of many terrestrial organisms (Fig 1). A new channel was cut for the Kaskaskia River to accom-

modate the new spillway effectively separating the floodplain habitat west of the old channel

(Dam East and West Recreation Areas; Fig 1). Much of the remaining natural habitat is con-

centrated along a thin band surrounding the lake in disjunct patches of public land. A map of

the study area was generated from publicly accessible data downloaded from the Illinois Geos-

patial Data Clearinghouse [36] and from I-View [37] and then projected in ARCMAP 10.8.0

[38] (Fig 1). The public land is heavily used for outdoor recreational activities such as camping,

fishing, hiking, and hunting. Beyond the band of more natural habitat lies a complex network

of urbanization (roads and structures) and agriculture. Habitats range from upper terrace

hardwood forests to ecotonal savannas to shrublands and grasslands. Managers use prescribed

fire, mechanical and hand clearing, warm and cold season mowing, and herbicide applications

to maintain habitats by controlling invasives and exotics. Eastern Massasauga occur within dis-

junct habitat patches isolated by roads, trails, and inhospitable habitats [32, 33].
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Fig 1. Map of study site. Sampling localities for 327 Eastern Massasauga collected from nine hibernacula across three study areas at Carlyle

Lake, Illinois, USA. All map data (road layer, municipal boundaries, streams, lakes, and protected lands) were publicly accessible and

downloaded from the Illinois Geospatial Data Clearinghouse [36] and from I-View [37] and then projected in ARCMAP 10.8.0 [38].

https://doi.org/10.1371/journal.pone.0265666.g001
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Sampling

We included 392 samples collected from individuals captured during visual encounter surveys

conducted during spring emergence from 1999–2015. Blood tissue was collected from the cau-

dal vein and stored and -80 ˚C prior to DNA extraction. Samples represented nine hibernacula

from the three major study areas (South Shore State Park, Eldon Hazlet State Park, and Dam

Recreation Area) at Carlyle Lake (Fig 1; Table 1). The primary study areas are separated by dis-

tances of ~3–5 km and hibernacula (contiguous low-lying mesic grasslands with low canopy

cover) within study areas are separated by unsuitable habitat and anthropogenic barriers that

range from a few kilometers to a few hundred meters. Hibernacula locations are withheld and

not provided on the study site map to protect the species from collection and persecution. All

work on this project was conducted in accordance with Illinois Department of Natural

Resources Endangered and Threatened Species Permit #05-11S and UIUC Institutional

IACUC Protocol #14000.

Laboratory protocols, genotype scoring, and data screening

Whole genomic DNA was extracted via Qiagen DNeasy Blood & Tissue Kit (QIAGEN INC.)

and assayed across 24 microsatellite loci [24, 39–43] using optimized PCR protocols [13]. Frag-

ment analysis was carried out on an automated Applied Biosystems (ABI) GeneAnalyzer

3730xl at the W. M. Keck Center, University of Illinois, Champaign. An internal size standard

(Liz 500) was included with each sample. Alleles were scored using GENEMAPPER 5.0 (ABI).

Genotypes were compiled into a database and checked for possible null alleles and scoring

errors using MICRO-CHECKER 2.2.3 [44]. Linkage disequilibrium was tested between all pairs of

loci (Markov Chain parameters: 10000 dememorization steps, 500 batches, 5000 iterations)

and departures from Hardy-Weinberg equilibrium (HWE) were evaluated for each locus

using exact tests as implemented in GENEPOP 4.0 [45]. Levels of significance for multiple com-

parisons were adjusted using sequential Bonferroni correction [46]. Samples representing

known offspring (N = 33) were not included in further analyses.

Table 1. Standard genetic diversity indices for Eastern Massasauga Rattlesnake at Carlyle Lake.

Hibernacula Code N #A #PA #RA AR PAR HO FIS

Dam East Recreation Area DERA 44 4.7 (0.5) 6 33 3.51 (0.29) 0.18 (0.08) 0.63 (0.05) -0.072

Dam West Recreation Area DWRA 25 4.0 (0.3) 1 21 3.43 (0.21) 0.04 (0.02) 0.60 (0.05) -0.033

Eldon Hazlet State Park—A EHAR 12 5.1 (0.5) 0 42 4.53 (0.36) 0.05 (0.05) 0.73 (0.04) -0.016

Eldon Hazlet State Park—B EHBR 18 5.4 (0.6) 1 43 4.42 (0.35) 0.03 (0.02) 0.70 (0.03) 0.002

Eldon Hazlet State Park—C EHFT 53 6.4 (0.6) 3 61 4.41 (0.31) 0.15 (0.06) 0.72 (0.04) -0.054

Eldon Hazlet State Park—D EHMD 8 4.6 (0.4) 0 32 4.44 (0.37) 0.08 (0.05) 0.66 (0.06) -0.011

Eldon Hazlet State Park—E EHPR 17 5.4 (0.5) 2 43 4.44 (0.33) 0.09 (0.06) 0.66 (0.03) 0.069

Eldon Hazlet State Park—F EHRR 7 4.8 (0.5) 0 32 4.76 (0.46) 0.03 (0.02) 0.72 (0.05) -0.038

South Shore State Park SSSP 143 6.7 (0.6) 7 63 4.35 (0.32) 0.23 (0.08) 0.65 (0.04) 0.030

Study Areas

Dam Recreational Area DMRA 69 5.6 (0.5) 7 46 5.6 (0.5) 0.3 (0.2) 0.62 (0.05) -0.028

Eldon Hazlet State Park EHSP 115 7.1 (0.7) 16 73 7.0 (0.6) 0.8 (0.2) 0.70 (0.03) 0.013

South Shore State Park SSSP 143 6.7 (0.6) 7 63 6.3 (0.6) 0.4 (0.1) 0.65 (0.04) 0.030

Provided are mean estimates for number of alleles (#A), number of private alleles (#PA), number of rare alleles (#RA), allelic richness (AR), private allele richness (PAR),

observed heterozygosity (HO), and inbreeding coefficients (FIS) for 327 Eastern Massasauga sampled from nine hibernacula across three study areas as at Carlyle Lake,

Illinois. Numbers in parentheses represent ±1 standard error. Data were derived from 21 microsatellite loci.

https://doi.org/10.1371/journal.pone.0265666.t001
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Population structure and gene flow

Pairwise population structure was assessed using FST analyses as well as the unbiased estimator

G”ST [47] in GENALEX 6.5 [48, 49] to assess patterns of gene flow among hibernacula. Partition-

ing of genetic structure within and among hibernacula was evaluated using a hierarchical anal-

ysis of molecular variance (AMOVA) in ARLEQUIN 3.5 [50]. Numbers of distinct gene pools

(K = 1–9) were assessed using a Bayesian clustering method implemented in program STRUC-

TURE 2.3.4 [51] using admixture ancestry and correlated allele frequency model parameter

options for simulations (burn-in period = 500,000; iterations = 1,000,000; 10 repetitions). To

determine the optimal number of clusters (i.e., gene pools), we employed STRUCTURE SELECTOR

[52] to calculate the ad hoc statistic ΔK [53] as well as the new estimators MedMeanK, Max-

MeanK, MedMedK and MaxMedK which provide more reliable estimates of K when sampling

is uneven [54]. Further, for the new estimators, we varied coefficient membership thresholds

(0.5, 0.6, 0.7, 0.8) to explore how optimal K values changed across estimators [54]. We used

CLUMPAK [55] to combine runs and visualize structure plots. Finally, rates of gene flow among

gene pools over the last several generations were estimated using BAYESASS 3.0 [56].

Genetic diversity

We estimated the standard diversity parameters of allele frequencies, rare and private alleles,

and observed heterozygosity (HO) using GENALEX 6.41 [48, 49] to characterize genetic diversity

at each hibernaculum (and for each distinct gene pool). A rarefaction procedure, implemented

in HP-RARE 1.0 [57], was used to correct for variable sample sizes in the calculation of allelic

richness (AR) and private allelic richness (PAR). Inbreeding coefficients (FIS) were calculated

for each hibernaculum using FSTAT 2.9 [58]. Effective population size (Ne) and 95% CIs (jack-

knife option) were estimated for each hibernaculum across three allele frequency exclusion

values (Pcrit = 0.01, 0.02, 0.05) by using the linkage disequilibrium method implemented in

LDNE 1.3 [59].

Results

Of 359 samples, 32 were excluded because they either failed to amplify or could not be confi-

dently genotyped (N = 17), represented duplicates (N = 9), or if mislabeling of field samples

was suspected (N = 6). Of the 24 microsatellite loci, two were monomorphic (SCU-206, Scu-

209), and a third (Scu-200) violated the assumptions of Hardy-Weinberg. In addition, three

pairs of loci exhibited significant linkage disequilibrium for multiple hibernacula, but the

exclusion of linked loci did not change results. Thus, the remaining 327 samples were evalu-

ated across 21 microsatellite loci for the nine hibernacula and three major study areas

(Table 1). Genotypes, locality abbreviation and year of collection are provided for each sample

used in analyses (S1 File).

Population structure and gene flow

Pairwise FST and G”ST analyses were concordant and showed weak divergence among most of

the hibernacula except the most proximate hibernacula within Eldon Hazlet State Park

(Table 2). Patterns of divergence were stronger at a broader spatial evaluation among the three

study areas (Table 3). When hibernacula were grouped by genetic cluster (EHSP, DMRA,

SSSP), an Analysis of Molecular Variance (AMOVA) revealed that most genetic variation

(87%) was partitioned within individuals, whereas only 8.7% and 4.2% were partitioned

among genetic clusters and hibernacula, respectively (Table 4). STRUCTURE analyses indicated

optimal K values ranging from 2–6 (Table 5, Fig 2). The ΔK estimator demonstrated the
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greatest rate of change at K = 2, clustering DMRA with EHSP. However, ΔK also indicated a

high rate of change at K = 3, with the three genetic clusters corresponding to the three study

areas (S1 Fig, S1 Table), though admixture of some individuals suggested dispersal among

study areas. Given the tendency of the ΔK method to recover an inaccurate number of clusters

and demonstrate a bias towards selecting K = 2 [60], particularly when sampling is uneven

[54], we accepted K = 3 to be more biologically informative for our study and for conservation

planning. For the new estimators (MedMeanK, MaxMeanK, MedMedK and MaxMedK) K

values ranged from 3–6 though the number of optimal clusters tended to decrease as the

Table 3. Pairwise estimates of FST (below diagonal) and G”ST (above diagonal) for Eastern Massasauga sampled

from the three main study areas at Carlyle Lake, Illinois.

UNIT DMRA EHSP SSSP

DMRA - - - - 0.345 0.351

EHSP 0.115 - - - - 0.336

SSSP 0.126 0.105 - - - -

Study areas corresponded to three gene pools as defined by Bayesian clustering analyses based on 327 Eastern

Massasauga sampled from nine hibernacula. Estimates were significant (in bold) at Bonferroni adjusted P-values

alpha = 0.01667. Data were derived from 21 microsatellite loci, and full names of sampling locations are provided in

Table 1.

https://doi.org/10.1371/journal.pone.0265666.t003

Table 2. Pairwise estimates of FST (below diagonal) and G”ST (above diagonal) for 327 Eastern Massasauga sampled from nine hibernacula across three study areas

as at Carlyle Lake, Illinois.

UNIT DERA DWRA EHAR EHBR EHFT EHMD EHPR EHRR SSSP

DERA - - - - 0.141 0.365 0.384 0.449 0.441 0.371 0.414 0.366

DWRA 0.058 - - - - 0.309 0.352 0.407 0.346 0.354 0.337 0.386

EHAR 0.134 0.113 - - - - 0.076 0.129 0.092 0.132 -0.029 0.312

EHBR 0.143 0.131 0.025 - - - - 0.106 0.126 0.052 0.104 0.322

EHFT 0.161 0.143 0.037 0.033 - - - - 0.231 0.181 0.151 0.422

EHMD 0.171 0.135 0.028 0.044 0.072 - - - - 0.174 0.076 0.337

EHPR 0.137 0.128 0.039 0.019 0.054 0.055 - - - - 0.138 0.335

EHRR 0.158 0.128 -0.010 0.034 0.044 0.023 0.042 - - - - 0.290

SSSP 0.132 0.139 0.100 0.106 0.137 0.112 0.109 0.095 - - - -

Estimates were significant (in bold) at Bonferroni adjusted P-values alpha = 0.00138. Data were derived from 21 microsatellite loci, and full names of sampling locations

are provided in Table 1.

https://doi.org/10.1371/journal.pone.0265666.t002

Table 4. Analysis of Molecular Variance (AMOVA) for 327 Eastern Massasauga sampled from nine hibernacula across three study areas at Carlyle Lake, Illinois.

Source of Variation d.f. S.S. Variance % Variation P-value

Among genetic clusters (study areas) 2 389.6 0.69 8.73 0.004

Among hibernacula within study areas 6 118.1 0.33 4.22 0.000

Among individuals within hibernacula 318 2175.3 0 0 0.714

Within individuals 327 2263 6.92 87.6 0.000

Hibernacula were grouped by study area to test for genetic partitioning. Data were derived from 21 microsatellite loci.

https://doi.org/10.1371/journal.pone.0265666.t004
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threshold for coefficient membership increased (Table 5, S2 File). Visual inspection of the

STRUCTURE plots revealed additional substructuring within the EHSP study area at K = 3 and

K = 4, but structuring became less clear at K>4 (Fig 2). Further analysis of the EHSP study

area supported additional substructure among hibernacula using the ΔK method (K = 2;

Table 6, S2 Table) and the new estimators MedMeanK, MaxMeanK, MedMedK and Max-

MedK (K = 1–3; S2 Fig, S3 File). At K = 2 and 3, the EHFT hibernaculum formed a distinct

genetic cluster relative to the other hibernacula (Fig 3). A third gene pool emerged at K = 3

and consisted of 5–6 individuals from EHBR and EHRP. We note that observed structure is

unlikely the result of temporal discordance among hibernacula or study areas because samples

represented individuals collected throughout the duration of the study (1999–2015) and previ-

ous work found little change in genetic diversity over a 10-year period at SSSP [13].

When evaluating migration for the nine hibernacula with BAYESASS, MCMC for the simula-

tions became trapped at the minimum bound (0.66) of the prior distribution. This is a com-

mon issue when population structure is weak [61]. Instead, as a more objective approach,

proportions of migrants were estimated for the three primary genetic clusters (EHSP, DMRA,

SSSP) delineated in the STRUCTURE analysis. Estimates of migration among clusters were low,

Table 5. Estimates of K values (genetic clusters) across all hibernacula.

Estimator 0.5 0.6 0.7 0.8

MedMedK 5 5 5 4

MedMeanK 5 4 3 3

MaxMedK 6 6 6 6

MaxMeanK 6 6 5 3

ΔK 2

Estimators MedMedK, MedMeanK, MaxMedK and MaxMeanK were calculated at four coefficient membership

threshold values (0.5, 0.6, 0.7, 0.8).

https://doi.org/10.1371/journal.pone.0265666.t005

Fig 2. Bayesian clustering results for 327 Eastern Massasauga sampled from nine hibernacula across three study areas at

Carlyle Lake, Illinois. STRUCTURE analyses revealed K = 3 distinct genetic clusters that corresponded to the three main study

areas; Dam Recreation Area, Eldon Hazlet State Park, and South Shore State Park. Data were derived from 21 microsatellite

loci, and full names of sampling locations are provided in Table 1.

https://doi.org/10.1371/journal.pone.0265666.g002
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and the proportion of non-migrant individuals (>0.97) indicated demographic independence

[62] for each study area (Fig 4).

Genetic diversity

Hibernacula and study areas exhibited moderate levels of heterozygosity and low levels of

inbreeding (Table 1). The Dam West Recreation Area (DWRA) demonstrated the lowest level

of genetic diversity even though the hibernaculum was represented by the third largest sample

size (N = 25). At a larger spatial scale, Eldon Hazlet State Park (EHSP) displayed slightly higher

levels of genetic diversity than the Dam Recreation Area (DMRA) and South Shore State Park

(SSSP). Across the nine hibernacula, 20 private alleles were detected, but this number

increased to 30 when diversity was evaluated at the larger spatial scale (Table 1). Rare alleles

were defined as those existing at�10% over the entire dataset and were detected for nearly all

Table 6. Estimates of K values (genetic clusters) across Eldon Hazlet State Park (EHSP) hibernacula.

Estimator 0.5 0.6 0.7 0.8

MedMedK 3 3 3 2

MedMeanK 3 2 2 1

MaxMedK 3 3 3 3

MaxMeanK 3 3 2 1

ΔK 2

Estimators MedMedK, MedMeanK, MaxMedK and MaxMeanK were calculated at four coefficient membership

threshold values (0.5, 0.6, 0.7, 0.8).

https://doi.org/10.1371/journal.pone.0265666.t006

Fig 3. Bayesian clustering results for 115 Eastern Massasauga sampled from six hibernacula within Eldon Hazlet State Park at

Carlyle Lake, Illinois. STRUCTURE analyses revealed K = 1–3 optimal genetic clusters. Data were derived from 21 microsatellite loci,

and full names of sampling locations are provided in Table 1.

https://doi.org/10.1371/journal.pone.0265666.g003
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loci at every hibernaculum and study area, though numbers varied. Estimates of effective pop-

ulation size (Ne) were low and ranged from 5.2–41.0 among hibernacula and from 19.6–41.0

among the three genetic clusters (Table 7).

Discussion

Our work expanded on previous genetic evaluations conducted across the range of the Eastern

Massasauga, including Illinois [11, 21–24] and supported previous findings that habitat frag-

mentation and landscape barriers limit gene flow among remnant populations. However, our

study at Carlyle Lake further demonstrated genetic structuring and lack of gene flow can occur

not only among the primary study sites separated by ~3–5 km, but also among hibernacula

separated only by a few hundred meters within the three primary study sites. We found sup-

port for at least three, but potentially four distinct gene pools at Carlyle Lake. South Shore

State Park, Eldon Hazlet State Park, and the Dam Recreation Area all formed distinct genetic

clusters, with further structuring within EHSP. Although we found moderate levels of genetic

diversity across the hibernacula and little evidence for inbreeding, estimates of effective popu-

lation size were low. These results are important for evaluating management of Eastern Massa-

sauga at Carlyle Lake and recovery of the species in Illinois.

Fig 4. Migration estimates for 327 Eastern Massasauga sampled from nine hibernacula across three study areas at Carlyle Lake, Illinois.

STRUCTURE analyses revealed K = 3 distinct genetic clusters that corresponded to the three main study areas; Dam Recreation Area (DMRA),

Eldon Hazlet State Park (EHSP), and South Shore State Park (SSSP). Arrows represent estimates of asymmetric migration rates (±standard error)

among the three genetic clusters, and circles represent estimates of the proportion of non-migrant individuals in each cluster. Data were derived

from 21 microsatellite loci, and full names of sampling locations are provided in Table 1.

https://doi.org/10.1371/journal.pone.0265666.g004
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Population structure and gene flow

Genetic structuring and limited connectivity among hibernacula at Carlyle Lake is likely attrib-

uted to both historical and anthropogenic disturbances [this study, 21, 25, 34] as well as high

site fidelity and ecological requirements exhibited by the species [31]. The three main study

areas (SSSP, EHSP, and DMRA) are all separated by natural and human-made landscape fea-

tures including the Kaskaskia River, Carlyle Lake, paved roads, agriculture, and urbanization

which impose barriers to dispersal [32, 33]. In our study, SSSP and EHSP, separated by 3.5 km

of open water, showed strong genetic divergence, indicating populations on the east and west

sides of the lake are genetically distinct [21]. Water bodies and roads had significant effects on

gene flow in genetic simulations of regional Eastern Massasauga populations, but coexistence

of natural and anthropogenic landscape features may confound inferences of contemporary

effects on gene flow [63]. A number of effective migrants between SSSP and EHSP were low

when evaluated within a historical and contemporary framework [21], suggesting population

subdivision might predate construction of Carlyle Lake (i.e., contemporary fragmentation),

with the Kaskaskia River representing a historical barrier to dispersal and population

Table 7. Estimates of effective population size (Ne) for Eastern Massasauga sampled from Carlyle Lake, Illinois.

Critical Value

Hibernaculum 0.05 0.02 0.01

DERA 21.1 30.6 25.2

(13.9–33.6) (21.5–46.4) (18.6–35.6)

DWRA 7.4 7.8 7.8

(5.3–10.1) (5.9–10.3) (5.9–10.3)

EHAR 17.3 32.9 32.9

(12.3–26.7) (22.9–54.9) (22.9–54.9)

EHBR 6.8 11.3 11.3

(5.4–8.3) (9.7–13.2) (9.7–13.2)

EHFT 18.4 21.8 23.8

(14.5–23.6) (18.0–26.8) (19.8–28.9)

EHMD 8.6 8.6 8.6

(6.3–12.0) (6.3–12.0) (6.3–12.0)

EHPR 5.2 7.9 7.9

(3.9–6.4) (6.6–9.4) (6.6–9.4)

EHRR - - - - - -

SSSP 32.1 38.4 41.0

(22.0–47.3) (28.2–52.9) (30.5–56.0)

Study Area

DMRA 19.6 22 23.6

(15.0–25.7) (17.6–27.7) (19.3–28.9)

EHSP 28.4 30.9 36.5

(23.9–33.8) (26.0–37.0) (31.1–43.1)

SSSP 32.1 38.4 41.0

(22.0–47.3) (28.2–52.9) (30.5–56.0)

Estimates of Ne and 95% CIs evaluated at three allele frequency exclusion values (Pcrit = 0.01, 0.02, 0.05) for 327

Eastern Massasauga sampled from nine hibernacula across three study areas at Carlyle Lake, Illinois. Data were

derived from 21 microsatellite loci, and full names of sampling locations are provided in Table 1.

https://doi.org/10.1371/journal.pone.0265666.t007
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connectivity. Further, Ochoa and Gibbs [25] found that genomes of Eastern Massasauga

(including SSSP) showed historically (~10,000 ybp) small Ne estimates when compared to an

outbred and non-threatened population of Western Massasauga (S. tergeminus), thus it could

be argued that we would expect to find substantial genetic divergence among Eastern Massa-

sauga populations that have been historically isolated. However, Ochoa and Gibbs [25] also

found that Eastern Massasauga showed signals of recent (last 250 years) bottleneck events that

correspond with anthropogenic fragmentation. Although we cannot directly measure histori-

cal levels of connectivity within the Carlyle Lake region or make reliable comparisons to undis-

turbed Eastern Massasauga populations using microsatellite DNA markers, recent genomic

work highlights that anthropogenic landscape alteration and activities have significantly

impacted population structure and gene flow of Eastern Massasauga throughout the species’

range [25].

Genetic clustering and lack of connectivity are not unusual in studies of rattlesnakes [21,

64], and have shown genetic structuring among hibernacula in altered landscapes [65]. Rattle-

snake populations occurring in anthropogenically disturbed habitats tend to display smaller

home range sizes and higher site fidelity than those in undisturbed habitats which may be tied

to availability of important habitats [66]. Ecological studies of Eastern Massasauga in the Mid-

west have shown similar patterns [67–69]. Eastern Massasauga exhibit high site fidelity and

may be restricted by availability of hibernation sites [70]. Long-term telemetry and capture-

mark-recapture studies at Carlyle Lake have shown little dispersal or movement among hiber-

nacula [31]. Individuals monitored across several years maintained home ranges that averaged

4.3 ha (MCP) with maximum movements averaging ~160 m and the total length of movement

paths averaging less than 2 km [35]. Additionally, most movements were localized with only

males making larger forays during the breeding season and post-gravid females foraying for

resources post-parturition [31, 71]. Overall, Eastern Massasauga at Carlyle slowly diffuse from

and anchor movements around their overwintering sites [31]. Further, mark-recapture during

visual encounter surveys showed little contemporary movement among hibernacula within

sites and never between sites [31]. Like in other portions of their range, Eastern Massasauga at

Carlyle Lake require crayfish burrows as overwintering refugia [31]. Thus, critical habitat

needs may also explain high site fidelity at Carlyle Lake. These factors, in addition to landscape

barriers, likely contribute to genetic structuring and lack of gene flow observed among the

hibernacula at Carlyle Lake.

Genetic diversity

Molecular approaches are important for understanding the impacts of anthropogenic distur-

bance on contemporary levels of genetic diversity, particularly in small, isolated populations

that may be at risk of loss of genetic diversity, reduced effective population size and inbreeding

effects [72]. Eastern Massasauga populations typically exhibit high to moderate levels of het-

erozygosity, even in small populations [73]. Previous microsatellite DNA studies at Carlyle

Lake showed moderate to high levels of heterozygosity [21, 34] but no evidence of a long- or

short-term genetic bottleneck at SSSP or EHSP [13, 21]. Further, in an evaluation of genetic

diversity at the largest site, SSSP, observed heterozygosity (Ho) remained stable over the

10-year span, albeit a small, non-significant decrease in allelic diversity was noted [13]. Levels

of inbreeding were non-significant, and there was no evidence of a recent population bottle-

neck. Genetic effective population size (Ne) ranged from 24–45 and was similar to the esti-

mated census size (Nc) of 26–54 [13]. Range-wide analysis of genomic data also suggested low

effective population sizes across the range of Eastern Massasauga for both, historical and con-

temporary time scales [25]. However, in contrast to studies using microsatellite DNA markers,
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the recent genomic study of Ochoa and Gibbs [25] noted increased levels of inbreeding

(FROH; fraction of genome covered by runs of homozygosity) in populations of Eastern Mas-

sasauga when compared to Western Massasauga. Historically low Ne may have allowed Eastern

Massasauga to purge highly deleterious mutations and exist in isolated populations while

maintaining a moderate genetic load. Increased levels inbreeding in extant populations may

reflect the relationship between the negative impacts of genetic drift in small populations and

lack in selection against moderately deleterious mutations [25]. Moderate levels of inbreeding,

even if the result of historical processes, are likely to threaten long-term persistence of Eastern

Massasauga under the pressures of contemporary fragmentation. We also note that contempo-

rary estimates of genetic diversity derived from microsatellite markers should be interpreted

with caution, as it may take several generations for the loss of genetic diversity to be detected

or manifest in small populations [11, 12]. Lack of inbreeding in our study suggests that micro-

satellite DNA markers offer limited utility in detection of inbreeding when Ne is historically

low and anthropogenic impacts are relatively recent. Nevertheless, small, disjunct populations

often retain high levels of heterozygosity amid anthropogenic disturbances but may be at risk

of loss of rare alleles, inbreeding and a decrease in effective population size in the future [74].

Implications for recovery of Eastern Massasauga

Anthropogenic fragmentation can erode genetic diversity in vulnerable Eastern Massasauga

populations as contemporary barriers to dispersal prevent gene flow, increase inbreeding

depression, reduce adaptive variation, thereby accelerating populations into an extinction vor-

tex [5, 7, 8]. Molecular genetic approaches provide insights into population-level processes in

contemporary landscapes and thus promote recovery planning [75, 76]. Genetic data are

essential for delimiting conservation units and understanding how anthropogenic factors,

such as landscape changes or habitat management practices impede or facilitate gene flow [10,

77, 78]. The draft recovery plan [26] for Eastern Massasauga in the U.S. currently designates

three conservation units (eastern, central, and western) based on haplotypes of a single mito-

chondrial DNA gene (ND2; [17]). While Ray et al. [17] considered samples across the range of

Eastern Massasauga, providing valuable insight to the evolutionary history of the species, we

argue that these conservation units are geographically broad, and do not address contempo-

rary population-level processes or adaptive potential.

In addition to taxonomic distinctiveness, prioritization of recovery actions may need to

vary across the species’ geographic distribution depending on population-level genetic diver-

sity and site-specific risks. There may be variation in stressors across the range, and within the

three mtDNA-derived conservation units, that differentially affect survivorship and gene flow.

For example, adult survivorship increases latitudinally in Eastern Massasauga [79]. Higher sur-

vivorship has been attributed to habitat management practices where anthropogenic influ-

ences are minimal [79, 80], though human-caused mortality including those caused by

management practices often drive variation in survivorship patterns [79]. Eastern Massasauga

at Carlyle Lake had the lowest annual adult survival (0.35) when compared to other popula-

tions across the latitudinal gradient, including those within the same conservation subunit

[79], which could increase the risk of loss of future genetic diversity and rates of genetic drift

compared to other populations. Further, recent work has shown evidence for differences in

drift effects among populations for functional genetic variation that could impact adaptive var-

iation in future generations [81, 82].

Eastern Massasauga at Carlyle Lake represent the remaining populations in Illinois and are

located>500 km from the nearest extant populations (IA and WI) within the western conser-

vation subunit [17]. In our study, we identified at least three distinct demographic units at
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Carlyle Lake, with gene flow impeded among the larger study areas by major landscape barri-

ers. Although contemporary genetic diversity remains high, these small populations are vul-

nerable to stochastic demographic and environmental processes that could decrease diversity,

effective population size and adaptive potential in future generations [11]. Our work to evalu-

ate genetic diversity and connectivity among hibernacula at Carlyle Lake highlights the need

for recovery efforts to be tailored to a more regional, or local approach, when possible. Several

conservation recommendations have been proposed to reduce ecological threats including sea-

sonal closure of roads, mesopredator removal, and modifications to prescribed burn and mow-

ing schedules to reduce incidental mortality [30, 32]. Steps to reduce mortality along with

efforts to protect and restore habitat will be necessary to mitigate future population declines

and preserve genetic diversity. Though evidence suggests that Eastern Massasauga has per-

sisted historically at low effective population sizes and moderate genetic load [25], impacts of

contemporary fragmentation and habitat loss warrant consideration of genetic rescue [83]. As

inbreeding and genetic drift have been detected and predicted in current and future Eastern

Massasauga populations, respectively [11, 25, 82], we also recommend, as part of a comprehen-

sive recovery plan, consideration of genetic rescue efforts such as captive rearing and translo-

cation to offset the impacts of contemporary fragmentation such as genetic drift, inbreeding

and loss of adaptive potential [84]. Preliminary work on translocations of Eastern Massasauga

have shown that short-distance (200 m) translocations can be successful, but that low over-

winter survival is a challenge for long-distance translocation or augmentation from captive

rearing [70, 85]. However, enrichment during captive rearing has been shown to improve rein-

troduction success in other snake species [86, 87]. In Illinois, individuals could potentially be

moved among the primary study areas at Carlyle Lake to restore regional gene flow disrupted

by contemporary fragmentation, though monitoring via radio-telemetry would be required to

evaluate movement, body condition and survival of translocated individuals. Genetic rescue

efforts should also consider donor individuals from populations with large Ne that have mini-

mal risk of introducing deleterious alleles while also maximizing adaptive potential [25, 83].

Though success of long-distance translocations are more challenging, for Eastern Massasauga

at Carlyle Lake, genetic rescue may necessitate the admixture of individuals from a different

conservation unit, such as those from larger, more intact populations found in Michigan and

Canada.

Finally, genetic data is useful for incorporation into ecological data sets to aid in under-

standing the relationship between population trends, movement, habitat use and genetic drift

and developing comprehensive population models to inform management decisions and

recovery planning [88, 89]. Eastern Massasauga at Carlyle Lake have been consistently moni-

tored since 1999 using visual encounter surveys, mark-recapture and radio-telemetry to esti-

mate demographic parameters and characterize habitat use [31, 90]. The genetic data from this

study can be combined with existing demographic estimates from long-term monitoring to

develop quantitative population models that can help inform management of Eastern Massa-

sauga at Carlyle Lake and guide recovery actions and criteria of the species across its range

[91].
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