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Abstract: The pathogenesis of acute respiratory distress syndrome (ARDS) is very complex. Patients
with ARDS still suffer high mortality rates. Infiltration and activation of neutrophils in lungs are
critical pathogenic factors in ARDS. In this study, we demonstrate that meso-dihydroguaiaretic acid
(MDGA), a natural lignan, inhibits inflammatory responses in human neutrophils and ameliorates
ARDS in mice. MDGA inhibited superoxide anion generation and elastase release in various G-
protein coupled receptor agonists-induced human neutrophils. However, MDGA did not alter
superoxide anion generation and elastase activity in cell-free systems. These results suggest that the
anti-inflammatory effects of MDGA are mediated by regulating cellular signals in human neutrophils.
In consistent with this, MDGA suppressed phosphorylation of extracellular signal-regulated kinase
and c-Jun N-terminal kinase in activated human neutrophils. Moreover, MDGA inhibited CD11b
expression and adhesion in activated human neutrophils. Interestingly, MDGA reduced reactive
oxygen species (ROS) generation but not superoxide anion generation in protein kinase C (PKC)
activator-induced human neutrophils, suggesting that MDGA may also have ROS scavenging ability.
Indeed, MDGA showed strong free radical scavenging activity in cell-free assays. Significantly,
MDGA suppressed PKC-induced neutrophil extracellular trap formation. Additionally, treatment of
MDGA attenuated neutrophil infiltration and lung damage on lipopolysaccharide-induced ARDS in
mice. In conclusion, our results demonstrate that MDGA has anti-neutrophilic inflammatory effects
and free-radical scavenging activity. We also suggest that MDGA has potential to serve as a lead for
developing new therapeutics to treat ARDS.

Keywords: acute respiratory distress syndrome; meso-dihydroguaiaretic acid; neutrophil; reactive
oxygen species; superoxide anion
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1. Introduction

Acute respiratory distress syndrome (ARDS) is a life-threating disease with a high
mortality rate [1]. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes
coronavirus disease 2019 (COVID-19) pandemic. ARDS is prevalent amongst patients
with COVID-19 [2]. A previous paper reported that 41.8% of COVID-19 patients devel-
oped ARDS, and 52.4% of ARDS patients died [3]. Neutrophil accumulation in lung is a
pathogenic marker of ARDS [4]. Neutrophil counts and activation are definitely correlated
with the severity of ARDS in COVID-19 patients [5,6]. Neutrophils are recruited to the
infected or inflamed lungs, and produce reactive oxygen species (ROS), release granules,
and form neutrophil extracellular traps (NETs) to kill invading pathogens. However, un-
regulated cytotoxins produced by overactivated neutrophils cause tissue damage and lead
to inflammatory lung diseases [7,8]. Excessive ROS produced by neutrophils leads to
oxidative stress in the lungs [9,10]. Neutrophil elastase increases pulmonary permeability
and pro-inflammatory cytokines enrolling more immune cells into the lung [11]. NETs
contain decondensed chromatin fibers and granular proteases can destroy lung epithelium
and endothelium [12]. Therefore, targeting neutrophil is a useful strategy to treat ARDS.
However, limited pharmacologic therapy for ARDS is available [13].

Phytochemicals have gained increasing attention in the treatment of ARDS and
COVID-19 [14]. Many herbal compounds have antiviral, anti-inflammatory, and antioxi-
dant activities and can be used as adjunct therapeutics for virus-infected inflammatory
disorders [15–18]. Lignans, a large group of phytochemicals, consist of propenylphenol
units and demonstrate diverse bioactivities [19]. Antioxidant properties are commonly
observed among lignans [20]. Other pharmacological activities such as anti-viral infection
and anti-inflammatory disorders are also reported [21,22].

meso-Dihydroguaiaretic acid (MDGA), a dibenzylbutane-type lignan from Machilus
philippinensis Merr., has several pharmacological effects, involving anti-inflammatory [23],
anticancer [24], antibacterial [25,26], and neuroprotective effects [27,28]. Treatment with
MDGA decreases mucus production in the respiratory tract to alleviate asthma [29]. MDGA
reduced staurosporine-caused neurotoxic effect in primary mixed cortical cells via inhibit-
ing ROS production [28]. MDGA is also a potential phytochemical for cardiovascular
diseases as it inhibits vascular smooth muscle cell proliferation [30]. Furthermore, it was re-
ported that ultraviolet-induced skin aging could be repaired by MDGA [31]. Nevertheless,
the anti-inflammatory effect of MDGA against neutrophilic inflammation and ARDS is not
reported before. In this study, we investigate the effects of MDGA on superoxide anion
production, ROS generation, elastase release, cell adhesion, and NET formation in activated
human neutrophils. Moreover, the protective effects of MDGA on lipopolysaccharide-
induced ARDS in mice was evaluated.

2. Materials and Methods
2.1. Reagents

Ficoll–Hypaque was purchased from GE Healthcare (Chicago, IL, USA). Dextran
was obtained from MP Biomedicals (Irvine, CA, USA). Extracellular signal-regulated
kinase (ERK), phospho-ERK (Thr202/Tyr204), c-Jun N-terminal kinase (JNK), phospho-
JNK (Thr183/Tyr185), Akt (pan), phospho-Akt (Ser473 & Thr308), p38, phospho-p38
(Thr180/Tyr182), Src, and phospho-Src family kinase (SFK) (Tyr416) antibodies were
purchased from Cell Signaling Technology (Beverly, MA, USA). Leu-Glu-Ser-Ile-Phe-
Arg-Ser-Leu-Leu-Phe-Arg-Val-Met (MMK-1) was obtained from Tocris Bioscience (Bris-
tol, UK). 2,2′-Azobis(2-methylpropionamidine) dihydrochloride (AAPH), 2,2′-azino-bis(3-
ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), bovine serum albumin
(BSA), cytochalasin B (CB), dihydrorhodamine 123 (DHR 123), dimethyl sulfoxide (DMSO),
1,1-diphenyl-2-picrylhydrazyl radical (DPPH), ferricytochrome c, fluorescein, N-Formyl-
Met-Leu-Phe (fMLF), hydrogen peroxide solution, kolliphor EL, lipopolysaccharide (LPS),
o-dianisidine dihydrochloride, phorbol 12-myristate 13-acetate (PMA), platelet-activating
factor (PAF), polyethylene glycol, superoxide dismutase (SOD), vitamin E, Triton X-100,
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xanthine oxidase (XO), and xanthine sodium salt were purchased from Sigma-Aldrich (St.
Louis, MO, USA). 2-(4-Iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium
monosodium salt (WST-1) was obtained from Dojindo (Kumamoto, Japan). Interleukin-8
(IL-8) was obtained from ProSpec (East Brunswick, NJ, USA). Leukotriene B4 (LTB4) was
purchased from Cayman Chemical (Ann Arbor, MI, USA). Elastase substrate and Trolox
were obtained from Calbiochem (San Diego, CA, USA). Fluorescein isothiocyanate (FITC)-
labeled anti-CD11b antibody, Hoechst 33342, horseradish peroxidase (HRP) anti-rabbit
IgG, and SYTOX Green were purchased from Thermo Fisher Scientific (Waltham, MA,
USA). Anti-neutrophil elastase antibody and HRP substrate were purchased from Millipore
(Burlington, MA, USA). Nitrocellulose membranes were obtained from PerkinElmer Inc.
(Boston, MA, USA). Anti-Ly6G antibody was obtained from eBioscience (San Diego, CA,
USA). Antibodies for 4-hydroxynonenal (4-HNE), myeloperoxidase (MPO), and histone
H3 (citH3) were purchased from Abcam (Cambridge, UK). bEnd.3 mouse brain cells were
obtained from the Bioresource Collection and Research Centre (Hsinchu, Taiwan).

2.2. Extraction and Isolation

The dried root (7.6 kg) of M. philippinensis were extracted with methanol at room
temperature. The MeOH extract was partitioned into ethyl acetate-soluble fraction, H2O-
soluble fraction, and precipitate layer. The active ethyl acetate-soluble fraction (100 g)
was chromatographed over silica gel using an n-hexane-ethyl acetate gradient to yield
18 fractions. Fraction 5 (0.74 g) was recrystallized and washed with n-hexane to obtain
MDGA (183 mg). The structure of MDGA was determined by nuclear magnetic resonance
(NMR, Mercuryplus-400/VNMRS-600 spectrometer, Varian, MA, USA), spectroscopic
UV (U5100, Hitachi, Tokyo, Japan), infrared spectroscopy (FT/IR6000 FTIR spectrometer,
Jasco, Kyoto, Japan), and mass spectroscopy (Bruker APEX II mass spectrometer, Burker,
Karlsruhe, Germany).

MDGA presents as colorless needles in MeOH with an m.p. nearly to 80.5 ◦C. The
chemical parameters of MDGA are as follows: [α]24

D ± 0 (c 0.20, CHCl3). UV λmax (MeOH)
(log ε): 228 (4.17), 281 (3.85) nm. UV λmax (MeOH+KOH) (log ε): 214 (4.66), 246 (4.24),
296 (3.91). IR vmax (ATR): 3436 (OH), 1606, 1513 (aromatic ring) cm−1. EIMS m/z (rel.int.
%): 330 [M]+ (31), 137 (100). 1H NMR (CDCl3, 200 MHz) δ: 0.84 (6H, d, J = 6.6 Hz, H-9, 9′),
1.75 (2H, m, H-8, 8′), 2.28 (2H, dd, J = 13.4, 9.1 Hz, H-7b, 7b′), 2.73 (2H, dd, J = 13.4, 5.0 Hz,
H-7a, 7a′), 3.86 (6H, s, OCH3-3, 3′), 5.46 (2H, s, OH-4, 4′, D2O exchangeable), 6.62 (2H, d,
J = 1.6 Hz, H-2, 2′), 6.67 (2H, dd, J = 7.8, 1.6 Hz, H-6, 6′), 6.82 (2H, d, J = 7.8 Hz, H-5, 5′).

2.3. Preparation of Human Neutrophils

This study was approved by the institutional review board of Chang Gung Memorial
Hospital and written informed consent was acquired from all volunteers (aged 20–30 years).
Following dextran sedimentation, neutrophils were isolated from venous blood by centrifu-
gation using the Ficoll–Hypaque gradient technique with hypotonic lysis of red blood cells.
The isolated neutrophils were evaluated using trypan blue assay, and >98% of viable cells
were preserved in Hank’s balanced salt solution in ice-cold conditions until use [32].

2.4. Measurement of Superoxide Anion Production

Superoxide anion generation was assessed using ferricytochrome c reduction, as
described in a previous study [33]. In brief, human neutrophils were incubated with
ferricytochrome c (0.6 mg/mL) and DMSO (0.1%, as control) or MDGA (0.3–10 µM) at
37 ◦C for 5 min before stimulation. After priming with cytochalasin B (CB, 1 µg/mL) for
3 min, neutrophils were activated by adding fMLF (0.1 µM), MMK-1 (0.3 µM) for 10 min.
Neutrophils were stimulated by adding PMA (10 nM) for 15 min without CB. Change in
absorbance indicating ferricytochrome c reduction at 550 nm was continuously monitored
in a spectrophotometer (U-3010, Hitachi, Tokyo, Japan).
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2.5. Cytotoxicity Assay

The cytotoxicity of MDGA on human neutrophils was measured using a lactate
dehydrogenase (LDH) assay kit (Promega, Madison, WI, USA). Human neutrophils were
incubated with DMSO (0.1%; as control) or MDGA for 15 min. Total cellular LDH release
was obtained by incubating Triton X-100 (0.1%) for 30 min. The absorbance at 492 nm were
measured by Multiskan GO spectrophotometer (Thermo Fisher Scientific, Waltham, MA,
USA). The DMSO and MDGA groups were compared with the Triton X-100 group, and the
difference was represented as the total LDH release [34].

2.6. Intracellular Reactive Oxygen Species Determination

ROS reacted with DHR 123 to yield fluorescent rhodamine 123, which was detected
to quantify ROS by flow cytometry (BD AccuriTM C6, Biosciences, Cambridge, MA, USA).
Neutrophils were loaded with DHR 123 (2 µM) for 12 min and then incubated with MDGA
(1, 3, and 10 µM). After incubation for 5 min, the cells were activated by adding 0.1 µM
fMLF with 1 µg/mL CB priming for another 5 min or by adding 10 nM PMA [34].

2.7. Total ROS Release Assays

ROS were measured by using luminol enhanced chemiluminescence. Human neu-
trophils (7 × 105 cells/mL) were mixed with 37.5 µM luminol and 6 U/mL horseradish
peroxidase (HRP) for 5 min, and then DMSO or MDGA (0.1–10 µM) were loaded 5 min
before adding fMLF (0.1 µM) or PMA (10 nM). A 96-well chemiluminometer (Tecan, Infinite
F200 Pro; Tecan Group, Männedorf, Switzerland) was applied to detect the chemilumines-
cence response [35].

2.8. 2,2′-Azobis(2-Methylpropionamidine) Dihydrochloride Scavenging Activity

MDGA or Trolox was preincubated with sodium phosphate buffer (75 mM; pH 7.4)
and fluorescein (80 nM) at 37 ◦C. AAPH (25 mM) was loaded next, and changes in the
fluorescence absorbance were measured every 3 min for 120 min by Tecan Infinite 200 PRO
reader (Tecan, Männedorf, Switzerland). The excitation wavelength was 485 nm, and the
emission wavelength was 535 nm [35].

2.9. Superoxide Anion Scavenging Activity

The scavenging extracellular superoxide effect of MDGA was examined in a cell-free
xanthine/xanthine oxidase (XO) system. Neutrophils were incubated with Tris (50 mM;
pH 7.4) assay buffer containing XO (0.02 U/mL) and WST-1 (0.3 mM) for 3 min in the
presence or absence of MDGA (0.3–10 µM); superoxide dismutase (SOD) was used as the
positive control. After adding 0.1 mM xanthine to the buffer, absorbance changes due to
superoxide-induced WST-1 reduction were determined for 10 min at 450 nm at 30 ◦C by
using a spectrophotometer (U-3010, Hitachi, Tokyo, Japan) [36].

2.10. Reactive Nitrogen Species Scavenging Activity

The scavenging effect of MDGA on reactive nitrogen species (RNS) radicals was
demonstrated using DPPH and ABTS assays. In brief, MDGA was incubated with DPPH or
ABTS, and changes in absorbance at 517 and 734 nm were measured by a spectrophotometer
(U-3010, Hitachi, Tokyo, Japan). Vitamin E was used as a positive control for both DPPH
and ABTS assays [35].

2.11. Evaluation of Elastase Release

Human neutrophils were first incubated with 100µM elastase substrate (methoxysuccinyl-
Ala-Ala-Pro-Val-p-nitroanilide) at 37 ◦C and then stimulated via the addition of fMLF,
MMK-1, LTB4, IL-8, and PAF for 10 min in the presence of CB priming (0.5 or 2 µg/mL).
Neutrophils were incubated with DMSO or MDGA for 5 min before stimulation [33].
Changes in absorbance at 405 nm were detected using a spectrophotometer (U-3010, Hi-
tachi, Tokyo, Japan).
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Additionally, human neutrophils were activated by fMLF (0.1 µM) with CB (1.5 µg/mL)
for 15 min at 37 ◦C. After centrifuging at 1000× g for 5 min at 4 ◦C, the elastase supernatant
was obtained. The supernatant was incubated with DMSO or MDGA at 37 ◦C for 5 min,
and then elastase substrate (100 µM) was added. Changes in absorbance at 405 nm were
continuously monitored for 10 min to evaluate elastase activity.

2.12. Assessment of CD11b Expression

Human neutrophils (5 × 106 cells/mL) were preincubated with DMSO or MDGA at
37 ◦C and then stimulated via the addition of fMLF (0.1 µM) together with CB (1 µg/mL)
for 5 min. After centrifugation at 4 ◦C, the cells were stained with FITC-labeled anti-CD11b
antibody in 0.5% BSA for 90 min on ice. The fluorescence intensity was detected using flow
cytometry (BD AccuriTM C6, Biosciences, Cambridge, MA, USA) [33].

2.13. Neutrophil Adhesion Assay

bEnd.3 mouse brain cells were incubated with LPS (2 µg/mL) for 4 h. Human neu-
trophils were stained with Hoechst 33342 for 10 min before preincubation with DMSO or
MDGA and then stimulated by adding fMLF (0.1 µM) together with CB (1 µg/mL) for
5 min. After co-culturing activated neutrophils and bEnd.3 cells for 30 min, non-adherent
neutrophils were removed using HBSS; the remaining adherent neutrophils were counted
manually in 3 randomly selected areas under a microscope (IX81, Olympus, Tokyo, Japan)
with 10X objective [37].

2.14. NET Quantification

Neutrophils were incubated with DMSO or MDGA for 10 min and then activated by
adding PMA (10 nM). After activation for 3 h, DNase (2 U/mL) was added at 37 ◦C for
10 min before stopping the reaction by adding EDTA at 4 ◦C. Afterward, supernatants were
obtained, and SYTOX Green (5 µM) was added. Fluorescence changes were measured
using the Tecan Infinite 200 PRO reader (Tecan, Männedorf, Switzerland) [35].

2.15. Immunofluorescence Staining of NETs

Human neutrophils were incubated on poly-L-lysine-coated glass coverslips for 30 min
at 37 ◦C, and then incubated with DMSO or MDGA for 10 min before activated by adding
PMA for 2 h. Neutrophils were fixed using paraformaldehyde for 15 min and lysed using
Triton X-100 thereafter. The samples were first incubated with goat serum blocking buffer
for 1 h and then with anti-elastase (5 µg/mL) and anti-myeloperoxidase (MPO, 5 µg/mL)
antibodies before treatment with secondary antibodies. After washing with phosphate-
buffered saline (PBS), the neutrophils were stained with Hoechst 33342, and images were
assayed with a Zeiss LSM 510 META confocal microscope (Zeiss, Jena, German) [35].

2.16. Western blot Analysis

The neutrophils were incubated with DMSO or MDGA for 5 min before fMLF (0.1 µM)
together with CB (1 µg/mL) addition. After activation for 30 s, a sample buffer was
added to block the reaction at 100 ◦C for 15 min. Whole-cell lysates were obtained after
centrifugation. Phosphorylation of mitogen-activated protein kinases (MAPKs), Akt, and
Src family kinase (SFKs) was assessed by immunoblotting using corresponding secondary
rabbit antibodies. Immunoreactive bands were visualized using HRP and evaluated using
UVP Biospectrum (UVP, Upland, CA, USA) [37].

2.17. Lipopolysaccharide-Induced ARDS

BALB/c mice (male, 20–25 g, 7–9 weeks old) were purchased from BioLASCO (Taipei,
Taiwan), and all animal experiments were approved by the Institutional Animal Care and
Use Committee of Chang Gung University. The mice were randomly assigned into four
groups: vehicle, MDGA only, LPS only, and MDGA with LPS. MDGA (30 mg/kg) dissolved
in vehicle (10% DMSO, 20% kolliphor EL, and 70% polyethylene glycol) before use. The
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mice were intraperitoneally injected with MDGA or vehicle after anesthesia by isoflurane.
After 1 h, ARDS was induced via intratracheal administration of LPS (2 mg/kg) or normal
saline. The mice were anesthetized and sacrificed for obtaining the lung tissues after 6 h of
LPS induction.

The left lung was immersed in 10% formalin for further histological and immunofluo-
rescence observation. The lung tissues fixed using formalin were dehydrated and embed-
ded in paraffin. The paraffin blocks were cut into 5 µm thick sections and embedded onto
slides for staining with hematoxylin and eosin (HE), Ly6G antibody, or MPO antibody. The
slides were then observed under a light microscope (IX81, Olympus, Tokyo, Japan) [38].
For immunofluorescence staining, tissue sections were incubated with antibodies citH3
(citrulline R2 + R8 + R17), Ly6G, and 4-HNE, respectively. Immunofluorescence images
were acquired through BioTek LioHeart FX microscopy (Winooski, VT, USA).

The right lung was frozen at −80 ◦C to measure MPO activity. The lung tissues were
ground in PBS and centrifuged to obtain a supernatant. The supernatant was diluted
with PBS containing o-dianisidine dihydrochloride (0.167 mg/mL) and H2O2 (0.0005%).
Light absorbance was measured spectrophotometrically at 405 nm by Multiskan GO spec-
trophotometer (Thermo Fisher Scientific, Waltham, MA, USA) and normalized to the
corresponding protein concentration [38].

2.18. Statistical Analysis

Data are presented as box-and-whisker plots (median, min-max) or line plots (mean,
standard error of the mean (SEM)). N values are independent experiments. Statistical
analysis was performed using Student’s t-test (Prism, GraphPad Software 9.0.2, San Diego,
CA, USA). p < 0.05 was considered statistically significant.

3. Results
3.1. MDGA Decreases Superoxide Anion Generation in fMLF- and MMK-1-, but Not
PMA-Activated Human Neutrophils

The chemical structure of MDGA is shown in Figure 1A. The generation of superoxide
anion, a precursor of ROS, was analyzed to evaluate whether MDGA exerted an anti-
inflammatory response. As shown in Figure 1B–D, human neutrophils were significantly
activated by fMLF (0.1 µM), MMK-1 (0.3 µM), or PMA (10 nM). MDGA treatment showed
concentration-dependent inhibitory effects on fMLF- and MMK-1-induced superoxide
anion generation with IC50 values of 0.78 ± 0.17 µM and 1.17 ± 0.64 µM, respectively
(Figure 1B,C). However, MDGA did not inhibit PMA-induced superoxide anion generation
(Figure 1D), ruling out the effect of MDGA on the protein kinase C (PKC)-dependent
pathway. In addition, MDGA treatment did not induce LDH release (Figure 1E) and failed
to alter superoxide anion level in basal human neutrophils, suggesting that MDGA did not
alter the cell viability and basal activity of human neutrophils.

3.2. MDGA Decreases ROS Production in fMLF- and PMA-Activated Neutrophils

Effects of MDGA on ROS production were further analyzed in human neutrophils.
MDGA not only inhibited fMLF-induced intracellular ROS generation but also that in-
duced by PMA in human neutrophils in concentration-dependent manners with IC50
values of 0.79 ± 0.26 µM and 3.57 ± 3.93 µM, respectively (Figure 2A–D). Similar results,
MDGA inhibited total ROS generation in both fMLF- and PMA-induced human neutrophils
(Figure 2E–H). Since MDGA did not inhibit PMA-induced superoxide anion generation
(Figure 1D), we suppose that MDGA has a radical scavenging effect.
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Val-Met (MMK-1, 0.3 μM) + CB (1 μg/mL) for 10 min, or (D) phorbol 12-myristate 13-acetate (PMA, 
10 nM) for 15 min, (n = 5 or 6). (E) Human neutrophils were incubated with DMSO (0.1%, as control) 
or MDGA (0.1, 1, and 10 μM) for 15 min. MDGA had no cytotoxicity in human neutrophils as re-
vealed by LDH assay, (n = 3). The values are shown as the mean ± S.E.M. * p < 0.05 vs. stimulated 
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Figure 1. Effects of meso-dihydroguaiaretic acid (MDGA) on superoxide anion generation in human
neutrophils. (A) Chemical structure of MDGA. (B–D) Superoxide anion generation was monitored
using ferricytochrome c reduction. Visualization was carried out using a spectrophotometer at 550 nm
after human neutrophils were incubated with dimethyl sulfoxide (DMSO, 0.1%, as control) or MDGA
(0.3–10 µM) for 5 min, and thereafter stimulated by (B) N-formyl-Met-Leu-Phe (fMLF, 0.1 µM) +
cytochalasin B (CB, 1 µg/mL) for 10 min, (C) Leu-Glu-Ser-Ile-Phe-Arg-Ser-Leu-Leu-Phe-Arg-Val-Met
(MMK-1, 0.3 µM) + CB (1 µg/mL) for 10 min, or (D) phorbol 12-myristate 13-acetate (PMA, 10 nM)
for 15 min, (n = 5 or 6). (E) Human neutrophils were incubated with DMSO (0.1%, as control) or
MDGA (0.1, 1, and 10 µM) for 15 min. MDGA had no cytotoxicity in human neutrophils as revealed
by LDH assay, (n = 3). The values are shown as the mean ± S.E.M. * p < 0.05 vs. stimulated control.
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Figure 2. meso-Dihydroguaiaretic acid (MDGA) reduces reactive oxygen species (ROS) generation in
activated human neutrophils. Dihydrorhodamine 123 (DHR123)- or luminol-incubated neutrophils
were incubated with DMSO (0.1%, as control) or MDGA (0.1–10 µM), and activated by fMLF (0.1 µM)
or PMA (10 nM). ROS production was detected by flow cytometry or chemiluminometer. The mean
fluorescence intensity of (A,B) was quantified and shown in (C,D), respectively. The AUC value of
(E,F) was quantified and shown in (G,H), respectively. The values are shown as the mean ± S.E.M.
(n = 6). # p < 0.05 vs. non-stimulated control; * p < 0.05 vs. stimulated control.
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3.3. MDGA Exhibits a Free Radical Scavenging Effect

Oxygen radical absorbance capacity assay was used to evaluate the ROS scavenging
ability of MDGA (Figure 3A). MDGA exhibited ROS scavenging ability, as evidenced by
comparing fluorescence decay against the background (Figure 3A, upper panel). Trolox, a
water-soluble analog of vitamin E, was used as a positive control (Figure 3A, middle). The
quantitative boxplot was shown in Figure 3A (lower). The cell-free xanthine/XO system
was used to investigate whether MDGA had a direct O2

•− scavenging effect. Figure 3B
shows that MDGA (0.3–10 µM) did not affect O2

•− produced by WST-1 reduction, where
SOD was used as the positive control with a 95.9% reduction compared with the untreated
control group. Moreover, MDGA exhibited RNS scavenging activity, as shown by DPPH
and ABTS assays, which used vitamin E as the positive control (Figure 3C,D).
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Figure 3. Radical scavenging effects of meso-dihydroguaiaretic acid (MDGA). (A) The change in
absorbance of fluorescence curves of 2,2′-azobis(2-methylpropionamidine) dihydrochloride (AAPH)
represented the decay of MDGA and Trolox (n = 6). The lower panel demonstrated quantitative
fluorescence levels of MDGA and Trolox. (B) Reduction in WST-1 by xanthine/xanthine oxidase was
measured spectrophotometrically at 450 nm. Superoxide dismutase (SOD) was used as a positive
control (n = 4). (C) 1,1-Diphenyl-2-picrylhydrazyl radical (DPPH), was incubated with DMSO (0.1%,
as control), MDGA (1, 3, and 10 µM), or vitamin E (Vit E; 3, 15, and 30 µM). Reduction in DPPH
was calculated spectrophotometrically at 517 nm (n = 6). (D) 2,2′-Azino-bis(3-ethylbenzothiazoline-
6-sulfonic acid) diammonium salt (ABTS) was incubated with DMSO (0.1%), MDGA (1, 3, and
10 µM), or Vit E (3, 15, and 30 µM). Reduction in ABTS was measured spectrophotometrically at
734 nm (n = 6). All data are expressed as mean ± S.E.M. * p < 0.05 vs. control.
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3.4. MDGA Reduces Elastase Release in Activated Human Neutrophils

We used different reagents to activate neutrophils and determine whether MDGA in-
hibited elastase release. Elastase release was dose-dependently decreased by MDGA
treatment upon fMLF, MMK-1, LTB4, IL-8, and PAF stimulation with IC50 values of
3.95 ± 1.31 µM, 1.32 ± 0.53 µM, 2.27 ± 0.6 µM, 3.91 ± 1.5 µM, and 2.22 ± 1.64 µM, respec-
tively (Figure 4A–E). MDGA did not alter elastase release in resting human neutrophils.
Additionally, MDGA did not directly inhibit elastase activity (Figure 4F). Based on these
results, we suggest that the anti-inflammatory effects of MDGA in human neutrophils aim
to inhibit the common downstream pathways of G protein-coupled receptors (GPCRs).
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(C) leukotriene B4 (LTB4, 0.1 µM) + CB (0.5 µg/mL), (D) interleukin-8 (IL-8, 100 ng/mL) + CB
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* p < 0.05 vs. stimulated control. (F) Human neutrophils were incubated with fMLF (0.1 µM) + CB
(1.5 µg/mL) for 15 min. The elastase supernatant was obtained and then incubated with DMSO
(0.1%) or MDGA (0.3–10 µM) for 2 min before the addition of substrate (100 µM). Elastase activity
was measured spectrophotometrically at 405 nm. All data are shown as the mean ± S.E.M. (n = 4).
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3.5. MDGA Suppresses CD11b Expression and Neutrophil Adhesion

The level of cell surface integrin plays a critical role in neutrophil adhesion during
inflammation. Human neutrophils activated with fMLF resulted in the upregulation of cell
surface CD11b integrin expression (Figure 5A). Similar to CD11b expression, cell adherent
to endothelium was considerably increased in fMLF-activated neutrophils (Figure 5B).
Furthermore, MDGA treatment significantly inhibited the fMLF-induced CD11b expression
and cell adhesion (Figure 5).

Antioxidants 2022, 11, x FOR PEER REVIEW 11 of 20 
 

Figure 4. meso-Dihydroguaiaretic acid (MDGA) suppresses elastase release from stimulated human 
neutrophils. Human neutrophils were prepared with DMSO (0.1%) or MDGA (1, 3, and 10 μM) and 
then activated by (A) fMLF (0.1 μM) + CB (0.5 μg/mL), (B) MMK-1 (0.3 μM) + CB (0.5 μg/mL), (C) 
leukotriene B4 (LTB4, 0.1 μM) + CB (0.5 μg/mL), (D) interleukin-8 (IL-8, 100 ng/mL) + CB (0.5 μg/mL), 
or (E) platelet-activating factor (PAF, 1 μM) + CB (0.5 μg/mL). Elastase release was measured spec-
trophotometrically at 405 nm. All data are shown as the mean ± S.E.M. (n = 4–7). * p < 0.05 vs. stim-
ulated control. (F) Human neutrophils were incubated with fMLF (0.1 μM) + CB (1.5 μg/mL) for 15 
min. The elastase supernatant was obtained and then incubated with DMSO (0.1%) or MDGA (0.3–
10 μM) for 2 min before the addition of substrate (100 μM). Elastase activity was measured spectro-
photometrically at 405 nm. All data are shown as the mean ± S.E.M. (n = 4). 

3.5. MDGA Suppresses CD11b Expression and Neutrophil Adhesion 
The level of cell surface integrin plays a critical role in neutrophil adhesion during 

inflammation. Human neutrophils activated with fMLF resulted in the upregulation of 
cell surface CD11b integrin expression (Figure 5A). Similar to CD11b expression, cell ad-
herent to endothelium was considerably increased in fMLF-activated neutrophils (Figure 
5B). Furthermore, MDGA treatment significantly inhibited the fMLF-induced CD11b ex-
pression and cell adhesion (Figure 5). 

 
Figure 5. meso-Dihydroguaiaretic acid (MDGA) inhibits human neutrophil CD11b expression and 
adhesion. (A) After incubation with DMSO (0.1%, black line) or MDGA (1, 3, and 10 μM, red line), 
human neutrophils were stimulated by fMLF (green line). The mean fluorescence intensity was 
quantified and shown in the right panel. (n = 5). (B) Neutrophils were first stained with Hoechst 
33342 and then incubated with DMSO (0.1%, as control) or MDGA (1, 3, and 10 μM) before fMLF 
activation. Stimulated neutrophils were co-cultured with bEnd.3 cells and the numbers of adherent 
neutrophils were calculated using microscopy. Bar, 100 μm. Adherent neutrophils were measured 
in the right panel. (n = 6). All data are shown as the mean ± S.E.M. * p < 0.05 vs. activated control. 

3.6. MDGA Inhibits NET Formation 

Figure 5. meso-Dihydroguaiaretic acid (MDGA) inhibits human neutrophil CD11b expression and
adhesion. (A) After incubation with DMSO (0.1%, black line) or MDGA (1, 3, and 10 µM, red line),
human neutrophils were stimulated by fMLF (green line). The mean fluorescence intensity was
quantified and shown in the right panel. (n = 5). (B) Neutrophils were first stained with Hoechst
33342 and then incubated with DMSO (0.1%, as control) or MDGA (1, 3, and 10 µM) before fMLF
activation. Stimulated neutrophils were co-cultured with bEnd.3 cells and the numbers of adherent
neutrophils were calculated using microscopy. Bar, 100 µm. Adherent neutrophils were measured in
the right panel. (n = 6). All data are shown as the mean ± S.E.M. * p < 0.05 vs. activated control.

3.6. MDGA Inhibits NET Formation

NETs are formed by de-condensed chromatin fibers with granular proteins such as
elastase and MPO. Recent clinical and basic studies demonstrate that NETs play a signifi-
cant pathogenic role in various inflammatory diseases and autoimmune disorders [39,40].
Human neutrophils were incubated with PMA, a protein C activator, for 2 h to induce
NET formation, and the colocalization of extracellular DNA, MPO, and elastase was ob-
served (Figure 6A). Figure 6A showed that MDGA inhibited PMA-induced formation of
extracellular DNA, MPO, and elastase. Furthermore, NET formation quantification was
assayed using a cell membrane-impermeable nucleic acid dye SYTOX Green [41]. The
assays showed that MDGA inhibited NET formation in PMA-induced human neutrophils
in a dose-dependent manner (Figure 6B).
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Figure 6. meso-Dihydroguaiaretic acid (MDGA) reduces NET formation. (A) Neutrophils incubated
with DMSO (0.1%) or MDGA (10 µM) and stimulated with PMA (10 nM) were stained with anti-
elastase (red) and anti-myeloperoxidase (MPO, green) antibodies. Hoechst 33342 (blue) demonstrated
DNA. Scale bars are 50 µm (n = 3). Scar bar: 50 µm. (B) Neutrophils were incubated with DMSO
(0.1%) or MDGA (1, 3, and 10 µM) and then stimulated with PMA. The amount of free DNA was
measured by SYTOX Green. All data are shown as the mean ± S.E.M.* p < 0.05 vs. activated control
(n = 5).

3.7. MDGA Decreases Phosphorylation of ERK, JNK, and Akt Signaling

MAPKs, Src family kinase (SFK), and Akt Phosphorylation play a significant role in
GPCR agonist-induced human neutrophil activations [37,42]. fMLF significantly induced
phosphorylation of ERK, JNK, p38, SFK, and Akt (Figure 7). MDGA treatment showed
inhibitory effects on the phosphorylation of ERK as well as JNK and Akt in fMLF-induced
human neutrophils (Figure 7A–D). However, fMLF-induced phosphorylation levels of p38
and SFKs were not altered by MDGA (Figure 7E,F).
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Figure 7. meso-Dihydroguaiaretic acid (MDGA) inhibits phosphorylation of ERK, JNK, and Akt,
but not p38, SFKs in activated neutrophils. DMSO (0.1%) or MDGA (10 µM)-treated neutrophils
were activated with or without fMLF. Phosphorylation of (A) ERK, (B) JNK, (C) Akt S473, (D)
Akt T308, (E) p38, and (F) SFKs Y416 was assessed with immunoblotting using antibodies against
the phosphorylated and native (total) forms of each protein. Blotted bands were analyzed with a
densitometer, and the quantitative ratios of all samples were normalized to the corresponding total
protein. All data are expressed as the mean ± S.E.M; (n = 5). * p < 0.05 vs. stimulated control.
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3.8. MDGA Ameliorates LPS-Induced ARDS in BALB/c Mice

Endotracheal LPS administration (2 mg/kg) directly induced mouse ARDS. As shown
in Figure 8A, pathological features such as hemorrhage and interstitial thickening were
observed in the LPS-administered group by HE stains. MDGA treatment significantly
improved these pathological changes in the lung. LPS induced increasing MPO level,
which was reduced by MDGA (Figure 8B). Consistent with these results, Ly6G and MPO
immunohistochemistry staining revealed that neutrophil infiltration was increased in
LPS-administered groups, which was subsequently ameliorated by MDGA treatment
(Figure 8C). Furthermore, MDGA treatment effectively reduced LPS-induced NET forma-
tion (Ly6G+citH3+ cell accumulation), elastase accumulation, and oxidative stress (4-HNE)
(Figure 8D–F).
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Figure 8. meso-Dihydroguaiaretic acid (MDGA) attenuates lipopolysaccharide (LPS)-induced neu-
trophilic lung inflammation. BALB/c mice were intraperitoneally treated with DMSO or MDGA
(30 mg/kg) for 1 h, and LPS was administered intratracheally for 6 h. Mice were divided into four
groups: vehicle, MDGA only, LPS only, and LPS with MDGA groups. (A) HE stains of the lung. (B)
An assay to evaluate lung MPO activity. (C) Images of Ly6G and MPO in lung sections. Immunofluo-
rescence staining of 4’,6-diamidino-2-phenylindole (DAPI), lymphocyte antigen 6 complex locus G6D
(Ly6G), histone H3 (citH3) (D), elastase (E), and 4-HNE (F) in lung sections. Data are illustrated as
the mean ± S.E.M. (n = 6). * p < 0.05 vs. the LPS group.
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4. Discussion

ARDS is a high mortality systemic syndrome characterized by the acute onset of
respiratory failure and hypoxemia. Neutrophils are most abundant in white blood cells and
are the primary effectors in the innate immune system. Accumulating evidence indicates
that ARDS is a key example of neutrophil-mediated tissue injury. Excessive neutrophil
infiltration may cause lung injury due to increased superoxide anion generation, neutrophil
elastase, MPO release, and NET formation [4,6,10]. Neutrophil counts reportedly signifi-
cantly correlate with the disease severity of patients with ARDS associated with coronavirus
disease 2019 (COVID-19) [43]. Clinically, no routine and effective pharmacological therapy
exists for ARDS. Many scientists suggest that neutrophils can be a drug target for COVID-19
associated ARDS [6,44,45]. To the best of our knowledge, this is the first study to show that
MDGA decreases neutrophilic lung inflammation by attenuating Akt/MAPK signaling
(Figure 9). Taken together, MDGA could be a potential compound for ARDS treatment,
which acts by inhibition of neutrophilic lung inflammation.
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Figure 9. meso-Dihydroguaiaretic acid (MDGA) suppresses neutrophil respiratory burst, protease
degranulation, cell adhesion, and NETs by inhibiting ERK, JNK, and Akt signaling and direct ROS
scavenging effects. Furthermore, MDGA ameliorates ARDS in the LPS-induced mouse model.

One of the functional characteristics of neutrophils is the activation of a powerful
respiratory burst with ROS generation. In neutrophils, ROS exhibits antimicrobial activity
and modulate immune response; however, in excess, ROS can lead to lung injury [7,46].
Hence, maintaining redox balance in the lung is important and could be a therapeutic
strategy for ARDS. MDGA effectively inhibited the formation of superoxide anion in
activated human neutrophils, but not in the cell-free xanthine/xanthine oxidase system,
suggesting that MDGA inhibits neutrophil respiratory burst. MDGA did not inhibit
PMA-induced superoxide anion generation in human neutrophils, therefore ruling out
the effects of MDGA on the PKC-dependent downstream pathway. Phosphorylation of
MAPKs and Akt plays a significant role in mediating GPCR-activators-induced neutrophil
activations [33,47]. Our results showed that MDGA suppressed the phosphorylation of ERK,
JNK, and Akt in fMLF-activated human neutrophils. Interestingly, MDGA inhibited PMA-
induced ROS production in neutrophils, indicating that MDGA has a ROS scavenging effect.
This effect may attribute to the high electron resonance property of phenoxyl substructure
in MDGA [19,20]. In line with this result, MDGA showed direct ROS and RNS scavenging
effects in cell-free systems. Taken together, MDGA can reduce oxidative stress by regulating
neutrophil respiratory burst and direct scavenging ability.

Neutrophil elastase is one of the serine proteases protecting the host from pathogen
invasion by fusing with phagolysosome inside neutrophils or releasing it to extracellular
spaces [48]. However, neutrophil elastase also plays a role in tissue damage or remod-
eling [49] and is a key factor for the pathological development of pulmonary diseases.
Pulmonary diseases, such as pneumonia [50], ARDS [51], and cystic fibrosis [52], are highly
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correlated with the expression of neutrophil elastase. Several animal studies indicate that
the use of neutrophil elastase inhibitors can reverse the damage caused by neutrophil-
mediated lung injury. Nevertheless, the role of neutrophil elastase inhibitors in ARDS
treatment remains controversial [49]. Sivelestat, a neutrophil elastase inhibitor, together
with a free radical scavenger, protects the lung tissue from neutrophilic damage in an
LPS-induced ARDS model [53]. Our investigation indicates that MDGA can inhibit elastase
release from neutrophils under different stimuli. Together with its oxidative stress-reducing
effect, MDGA might be considered as a useful therapeutic agent for ARDS.

NETs, comprising de-condensed chromatin fibers with proteins such as histones,
elastase, and MPO, contribute to various human diseases [54]. Excessive NET formation
influences pulmonary microcirculation and induces disseminated lung injury, such as
cystic fibrosis, asthma, chronic obstructive pulmonary disease, and ARDS [55]. Many
studies indicate that NET formation is a therapeutic target for treating ARDS [6,44,45].
Within neutrophils, ROS and proteases can mediate NET formation. The inhibition of ROS
formation, myeloperoxidase, and elastase activity is a useful strategy to attenuate NET
formation [56,57]. MDGA effectively inhibits superoxide anion formation, ROS generation,
and elastase release, as well as NET formation.

Neutrophil infiltration into the lung is a critical step in ARDS pathophysiology. When
lung injury occurs, the circulating neutrophils migrate to the impaired lung via adhesion to
the endothelium of lung vessels and then transmigrate to the alveolar space. CD11b/CD18,
known as MAC1, is one of the integrins that facilitates neutrophil binding to endothe-
lial cell surface molecules [58]. A sepsis-induced ARDS study has shown that MAC1
(CD11b/CD18) upregulation leads to neutrophil aggregation. Aggregated neutrophils
create dead space in the pulmonary microcirculation, which could be ameliorated using a
MAC1 inhibitor [59]. Our data indicate that MDGA ameliorates LPS-induced ARDS may be,
in part, because of CD11b reduction with decreased neutrophil adhesion and recruitment.

Lignans are common second metabolites in vascular plants. Their structures are con-
structed with phenylpropane units and majorly classified into furofuran, furan, dibenzylbu-
tane, and arylnaphthalene groups [18,20]. Our previous works showed the anti-neutrophilic
activities of furofuran, furan, and arylnaphthalene lignans [60–64]. Here, we found MDGA,
a dibenzylbutane-type lignan, not only exhibited greater anti-neutrophilic ability than
previous lignans but also attenuated various neutrophilic functions induced by GPCR
agonists. More importantly, MDGA inhibit NET formation. To our knowledge, no lignan
was reported to inhibit NET formation before. These results indicate that MDGA contains
a core bioactive fragment and serves as a lead for subsequent structural optimization.

ARDS is a critical illness caused by multiple pathological factors, such as sepsis,
severe injury or burn, viral pneumonia, problems from inhaling substances like smoke or
chemicals, and other serious illnesses. However, the severity of ARDS is associated with
multisystem organ failure, leading to poor prognoses with high mortality rates. Neutrophil
influx into the lungs plays a pathogenic role in ARDS through ROS production, elastase
and myeloperoxidase release, and NET formation. A targeted approach to inhibit the
function of neutrophils could theoretically mitigate neutrophil-dependent lung damage in
ARDS patients. In conclusion, our findings that MDGA treatment attenuates the neutrophil
inflammatory responses and an LPS-induced ARDS murine model suggest new therapeutic
interventions for neutrophil-mediated diseases. Herein, MDGA might also be considered
an adjunctive therapeutic agent to attenuate other viral inflammatory responses, such as
influenza virus and coronavirus infection, causing severe ARDS complications.

5. Conclusions

MDGA, a natural lignan, significantly inhibited neutrophil respiratory burst, degranu-
lation, adhesion, and NET formation as well as scavenged free radicals. MDGA effectively
ameliorated neutrophil-associated ARDS in LPS-induced mice. Therefore, MDGA can act
as a lead compound for developing new therapeutics to treat ARDS.
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bovine serum albumin; CB, cytochalasin B; DAPI, 4’,6-diamidino-2-phenylindole; DHR 123, dihy-
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extracellular signal-regulated kinase; fMLF, N-Formyl-Met-Leu-Phe; HBSS, Hank’s balanced salts
solution; HE, hematoxylin and eosin; 4-HNE, 4-hydroxynonenal; HRP, horseradish peroxidase; IL-8,
Interleukin-8; JNK, c-Jun N-terminal kinase; LDH, lactate dehydrogenase; LPS, lipopolysaccharide;
LTB4, leukotriene B4; Ly6G, lymphocyte antigen 6 complex locus G6D; MAPK, mitogen-activated pro-
tein kinase; MDGA, meso-dihydroguaiaretic acid; MMK-1, Leu-Glu-Ser-Ile-Phe-Arg-Ser-Leu-Leu-Phe-
Arg-Val-Met; MPO, myeloperoxidase; NETs, neutrophil extracellular traps; PAF, platelet-activating
factor; PBS, phosphate-buffered saline; PMA, phorbol 12-myristate 13-acetate; RNS, reactive nitrogen
species; ROS, reactive oxygen species; SFK, Src family kinase; SOD, superoxide dismutase; WST-1,
2-(4-Iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium monosodium salt; XO, xan-
thine oxidase.
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