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THE BIGGER PICTURE Biological experimental data are increasingly being generated along multiple
different axes, with new and more complex technologies specializing in particular measurements being
developed every year. Measuring a single subject or system with multiple specialized data-collecting tools
creates a natural interest in integrating the results of these individual instruments to form a single unified
view. The model introduced here presents a computational technique designed for this purpose. With
the single-cell multi-modal GAN (scMMGAN), there is an opportunity to measure along many different
omic directions and synthesize the information from each into one larger understanding of the system under
study.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Exciting advances in technologies to measure biological systems are currently at the forefront of research.
The ability to gather data along an increasing number of omic dimensions has created a need for tools to
analyze all of this information together, rather than siloing each technology into separate analysis pipelines.
To advance this goal, we introduce a framework called the single-cell multi-modal generative adversarial
network (scMMGAN) that integrates data frommultiple modalities into a unified representation in the ambient
data space for downstream analysis using a combination of adversarial learning and data geometry tech-
niques. The framework’s key improvement is an additional diffusion geometry loss with a new kernel that
constrains the otherwise over-parameterized GAN. We demonstrate scMMGAN’s ability to produce more
meaningful alignments than alternative methods on a wide variety of data modalities and that its output
can be used to draw conclusions from real-world biological experimental data.
INTRODUCTION

Integrating data gathered from different sources is a critical chal-

lenge in computational genomics. Currently there are several

single-cell technologies including RNA sequencing (RNA-seq),

assay for transposase-accessible chromatin using sequencing

(ATAC-seq), Hi-C, ChIP-seq (chromatin immunoprecipitation
This is an open access article under the CC BY-N
sequencing), and CITE-seq (cellular indexing of transcriptomes

and epitopes by sequencing) as well as proteomic technologies

such as cytometry by time of flight (CyTOF), imaging CyTOF, and

multiplexed ion beam imaging that offer complementary cellular

information.1–7 Of these modalities, only a fraction are available

as simultaneous measurements—often with quality degradation

factors such as reduced gene dimensions, lower throughput,
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and increased noise. The remaining measurements must be

done on distinct cellular subsamples from the same population.

This is the key problem that we tackle in this article: the predic-

tion of missing or non-simultaneous modalities in order to

generate amore complete set of features. Thus, givenmodalities

such as single-cell RNA-seq (scRNA-seq), scATAC-seq, and

spatial transcriptomics measured separately on different cells

(from the same population), our single-cell multi-modal genera-

tive adversarial network (scMMGAN) generates a complete set

of simultaneous measurements for downstream analyses.

Aligning the separately measured data computationally has

many advantages over analyzing the datamodalities individually.

Combining data modalities allows us to leverage the advantages

of each andmitigate the disadvantages. For example, combining

a modality with a higher signal-to-noise ratio such as proteomic

CyTOF measurements with one that has a lower signal-to-noise

ratio such as scRNA-seq gives us the opportunity to resolve cell

populations to a finer degree in the noisier dataset.7 Even more

compellingly, combining modalities allows us to measure vari-

ables only available in one domain combined with variables

only available in another domain, thus simulating jointly

measured technologies.

We base our method on the framework of cycle-consistent

generative adversarial networks (CycleGANs).8–11 In GAN-based

domain adaptation frameworks, a generator network is trained to

map data points of one modality into data points from another

modality. During training, a discriminator is used to ensure that

generated points are sampled from the high-dimensional distri-

bution representing the second modality. In CycleGANs there

are two back-to-back generators, one going from the first mo-

dality to the second modality and another going from the second

modality to the first. A reconstruction error enforces that the

result of two back-to-back domain adaptations results in the

original distribution again, i.e., that the generators are inverses

of each other over the regions of the data spaces where there

are training points.

While CycleGAN frameworks can successfully generate points

in each modality, the mapping they produce is not constrained

enough. For instance in the original CycleGAN paper, images

of zebrasweremapped to images of horses, but nothing ensured

that the background would be unaltered. While this may not be

detrimental for natural image applications, it can be untenable

for scientific applications where the scRNA-seq measurement

must correspond with and corroborate the scATAC-seq mea-

surement. Noting this keyweakness, in earlier workwe proposed

the use of a correspondence loss and gave anecdotal examples

on flow cytometry panels with overlapping measured markers.12

However, here we both extend the application to multi-modal

integration and specify a more powerful, generally applicable

correspondence loss: the geometry-preserving loss. This loss

enforces that the diffusion geometry, performed with a new

kernel designed to pass gradients better than the Gaussian

kernel, is preserved throughout the mapping. We note that this

loss can be utilized even in cases where no measurements

overlap.

We demonstrate the power of aligning data modalities with

scMMGAN on a wide array of data types. We start by validating

it on datasets where simultaneous measurements are available

and use those as ground truth in evaluations. We then use
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scMMGAN to perform a thorough investigation into a novel tri-

ple-negative breast cancer dataset, where we have cells from

the breast cancer culture HCC38 xenografted into mice and al-

lowed to metastasize from the primary to secondary tumor loca-

tions. We show that scMMGAN can infer spatial locations of

cellular structures.
RESULTS

scMMGAN model results
The scMMGAN framework is depicted in Figure 1A. Each pair of

data domains or modalities has a pair of generator networks that

map in either direction between them, forming a diversifiedmulti-

modal mapping. For a generator mapping from Domain i to

Domain j which we denote Gij, it functions as a traditional GAN

guided by a discriminator in Domain j which we denote Dj. The

discriminator tries to distinguish between samples from the

real data for that domain xj and samples from the generator

GijðxiÞ, while the generator tries to fool the discriminator. They

alternate trying to optimize the following minimax objective:

min
Gij

max
Dj

Exj�PðxjÞ logðDjðxjÞÞ+ Exi�Pxi
logð1 � DjðGijðxiÞÞÞ:

(Equation 1)

In addition to this loss of the discriminator guiding the gener-

ator to transform its input modality into the output modality

LGAN, there are two other terms in the loss that ensure the learned

mapping is informative and meaningful. These are depicted in

Figure 1B. The reconstruction loss Lr is the mean-squared error

(MSE) between the original data xi and the composition of the

two paired generators between the domains i and j:

Lr = kxi � GjiðGijðxiÞk2: (Equation 2)

The correspondence loss Lc imposes a constraint on a single

point’s representation in Domain i and Domain j, as opposed to

the reconstruction loss which imposes a constraint on points

within the same domain:

Lc = correspondenceðxi;GijðxiÞÞ: (Equation 3)

The motivation for the correspondence loss comes from the

fact that previous models using cycle consistency for domain

mapping with GANs included only two restrictions: (1) that the

generators be able to reconstruct a point after it moves to the

other domain and back; and (2) that the discriminators not be

able to distinguish batches of true and mapped points. The gen-

erators can accomplish these goals in many different ways,

including by learning arbitrarily complex mappings: as long as

they align the two data manifolds at a distribution level. The fam-

ily of paired inverse functions that can match the target distribu-

tions is large, and with existing frameworks the particular pair

that results from training is determined by the vagaries of random

weight initialization and mysterious biases in gradient descent.

The GAN loss is a probability-distribution matching objec-

tive.13 In previous work it has been proven that under certain

optimality conditions a GAN discriminator provides a Jensen-

Shannon divergence between the true and generated distribu-

tions.14 AWasserstein GAN (WGAN), on the other hand, contains
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Figure 1. scMMGAN architecture and the

correspondence loss

(A) The scMMGAN architecture mapping between

multiple domains, each consisting of a pair of gen-

erators and discriminator.

(B) In addition to the discriminator loss, there are

two additional losses within each domain.

(C) Hypothetical demonstration of the data geom-

etry guiding alignment through the correspondence

loss. In the depicted space, data in the two domains

have been shifted and rotated, but the intrinsic data

geometry is preserved with the values of the diffu-

sion eigenvectors.

(D) Hypothetical illustration of a bad mapping that is

invertible (has low reconstruction loss) but does not

align analogous representations (has high corre-

spondence loss) and a good mapping that is both

invertible and aligns analogous representations. In

the situation where minimally changing the value of

genes is preferred, the mapping on the left unnec-

essarily changes the value of the gene on the x axis.
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modifications that result in a Wasserstein distance being pro-

vided by the discriminator.15

However, simply matching probability distributions can result

in incoherent cell states (Figure 1D). A key insight we bring is that

distributions must only be matched within correspondence con-

straints. These correspondences are essentially invariances in

the underlying system that are reflected in every modality. In

our previous work we used customized correspondence losses

for each dataset. However, herewe note that whenmatching sin-

gle-cell data we can use a nearly universal constraint—that of

manifold geometry preservation.

While ourmodel incorporates signal from a data geometry loss

into a larger framework, the data geometry is too rigid to be used

on its own to guide alignment. It is heavily influenced by the prop-

erties of the domain data space, and thus when the two domains

are very different it does not allow for sufficient flexibility in

changing the shape of the distribution. Methods that use only

the data geometry struggle to align domains that are significantly

different.16 An ideal mapping would have both the flexibility of a
mapping that matches the probability dis-

tribution (as the GAN does) but preserves

the data geometry as much as possible

while doing so. By combining the existing

GAN-based loss and a data geometry

loss, the network can balance the tradeoff

between these goals.

We thus introduce a correspondence

loss that ensures the mappings have

point-wise as well as distributional align-

ment by preserving the data geometry

through the learned mapping. To do this,

we use the diffusion map representation

of the original data.

Here we give a brief overview of diffusion

maps. Diffusion maps are a kernel-based

method frequently used in manifold

learning to produce low-dimensional em-

beddings that preserve intrinsic structure
in the data.17,18 The eigenvectors of the diffusion operator form

an embedding where Euclidean distances correspond to diffu-

sion distance, or the probability of getting from one point to

another via random walk, on the original manifold.19 Because

these new coordinates represented by the diffusion eigenvec-

tors abstract away much of the data-domain specific properties,

they present a way of ensuring the underlying data geometry is

preserved in the mapping.

By calculating the eigenvectors of the diffusion operator for the

points in their original domain 4x1 and the eigenvectors of the

diffusion operator for the points after being mapped to the other

domain 4Gðx1Þk2, we can directly compare the ith eigenvectors to

enforce that intrinsic data geometry, as measured by diffusion,

be preserved by the mapping. For further detail about the calcu-

lation of 4, see experimental procedures.

The correspondence geometry loss then penalizes the L2 dis-

tance between the two representations of each point:

Lc = k4i
x1

� 4i
Gðx1Þk2: (Equation 4)
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Figure 2. Results comparison from the DBIT-

seq experiment

On the DBIT-seq data, shown are corresponding

proteomic and transcriptomic expression for the

gene shown. The x axis and y axis plotted are the

measured spatial coordinates taken directly from

the data. The ground-truth transcriptomic values

are plotted alongside the generated proteomic

values for each model, where we see scMMGAN

best model the data.
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By enforcing this loss in the scMMGAN framework, we ensure

that the intrinsic structure of the data is preserved in the other-

wise underconstrained GAN setting.

Experimental results
Mapping between spatial, scRNA-seq, and

proteomic data

As an initial validation of scMMGAN, we utilize simultaneously

measuredmulti-modal data from the newly developed determin-

istic barcoding in tissue sequencing (DBIT-seq) technology as

ground truth. DBIT-seq uses deterministic barcoding in tissue

for spatially resolved measurements of both transcriptomics

and proteomics.20 Thus, in DBIT-seq, three things are measured

jointly on every cell: an scRNA-seq profile, a protein profile, and

spatial coordinates. The system being studied in these data is

that of mouse embryos, particularly focused on early tissue

development and organogenesis.

Often, in transcriptomic/proteomic alignment problems, no

‘‘ground truth’’ is available because each technology measures

a distribution of cells in a destructive process. As a result, models

such as scMMGAN that learn to map between two distributions

without needing point-wise pairings are called unsupervised

alignment models. We design an experiment with these data to

show how scMMGAN could have been used to obtain this infor-

mation without needing them to be measured jointly. We treat

the spatially located scRNA-seq data and the spatially located

protein data as two separate measurements and learn to map

between them. We then utilize the fact that they were measured

jointly and that some of the columns in each dataset are related

(corresponding genes and proteins) to evaluate the accuracy of

the learned mapping. We compare against both an autoen-

coder-based alignment method (cross-modal autoencoder

[CMAE]) and a standard CycleGAN without a correspondence

loss.9,21 For detailed descriptions of the model architectures,

see experimental procedures.

Figure 2 shows example results of scMMGAN and baseline

models on these data. Plotted on the given spatial coordinates,

we show the ground-truth transcriptomic value along with

generated proteomic values. There we see scMMGAN best

models the ground-truth data. We further evaluate scMMGAN’s

performance on this application quantitatively. To quantify the

aspect of the generated distributionmatching the target distribu-

tion as a whole, we employ the metric maximum mean discrep-

ancy (MMD), a distance defined on distributions frequently

used in both deep-learning and biological contexts to distinguish

between distributions.22–24 To quantify the aspect of preserving

information about the individual observation through the align-

ment, we use correlation between columns in the transcriptomic
4 Patterns 3, 100577, September 9, 2022
space and the proteomic space known to correspond to the

same gene. Since these values correspond to the same gene,

we would expect there to be a correlation between a point’s

value before mapping and its value after mapping.

These scores confirm quantitatively what we saw graphically

in these experiments (Table 1). All models are able to accurately

match the target distribution (low MMDs), with very similar per-

formance consisting of each model’s one or two SD interval

overlapping. However, when looking at the preserved correla-

tion, we see scMMGAN achieved the best alignment with an

average correlation of r = 0:154 between columns known to

correspond. We note that the absolute value of this correlation

is relatively low compared with other datasets, and this is due

to limited amount of shared correlation in the underlying ‘‘ground

truth’’ pairings of points that are jointly measured.

Unique versus common information in measurement modalities.

The scMMGAN is a generative framework, but when used in non-

standard ways it can become a tool for analysis in addition to

faithful generation. When measuring two aspects of a biological

system with two different technologies, some of the information

might be shared between the twomodalities while other informa-

tion might be unique to one of the modalities. For example, when

mapping between amodality that measures the whole transcrip-

tomic space such as scRNA-seq and one that measures only a

subset of the proteomic space, we would expect for the genes

with corresponding proteins to be more easily modeled than

the genes without them.

We design our experiment as follows to test this on the tran-

scriptomic and proteomic measurements in the DBIT-seq data

(summarized in Figure 3, with further mathematical detail in

experimental procedures). We train the model augmented with

random noise input and then evaluate it on mapping the same

points in proteomic space to the transcriptomic space, except

with different random noise samples. We then calculate the vari-

ance of the different predicted values for each transcript count

and for each given point in proteomic space. The mean across

all points then gives us a measure of the uncertainty associated

with a given transcript measurement. To factor out the influence

themagnitude of counts of a given transcript would have on vari-

ance, we scale by the variance in the raw dataset for each one.

We also filter out lowly expressed genes. We can then compare

the stochasticity as measured in this experiment of the genes

that have a corresponding proteomic measurement and those

that do not.

Just as expected, we find that the average variance of genes

with an analogous proteomic measurement is 0.026 while the

average variance of geneswithout an analogous proteomicmea-

surement is 1.419. This is a logical result, as the relationship



Table 1. Results from the DBIT-seq experiment

DBIT-seq scMMGAN CycleGAN CMAE

MMD ðGðx1Þ;x2Þ 0.072 ± 0.001 0.078 ± 0.006 0.082 ± 0.001

MMD ðx1;Gðx2ÞÞ 0.060 ± 0.001 0.066 ± 0.002 0.079 ± 0.001

Correlation ðGðx1Þ;x2Þ 0.155 ± 0.006 �0.026 ± 0.021 0.003 ± 0.082

Correlation ðx1;Gðx2ÞÞ 0.152 ± 0.014 �0.088 ± 0.074 �0.012 ± 0.066

Evaluation of each model on the DBIT-seq data. While the MMDs are close for each model (meaning the predicted distribution resembles the ground-

truth distribution), scMMGAN is significantly more accurate at preserving correlation between columns known to correspond. The best values are in

boldface.
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between transcript counts with corresponding proteomic mea-

surements is more straightforward to model and can thus be

done with more certainty. This corroborates our understanding

of the process at work in this multi-modal setting.

Furthermore, this analytical process with scMMGAN allows us

to inspect which genes are modeled with the most and least un-

certainty and thus provide the most unique information andmost

common information with respect to the other modality. Unsur-

prisingly, the genes with the least uncertainty are related to early

embryo development in mice, as that is the system being stud-

ied: for example, the three least are Gm5049, Gm37500, and

Gm33051. Meanwhile, the genes with the most uncertainty are

GM37686 and Rp1. It is possible that genes with higher

observed uncertainty could also be of interest to the research,

for example, Rp1, which is involved in the development of the

retina while the study was focused on early tissue develop-

ment.25 The information that these genes had high uncertainty

can help guide future experimental design decisions that would

lead to the selection of proteins to measure, thus allowing for

better alignment of these measurements.

In this way, scMMGAN can help provide insights into the sys-

tem being studied as well as into experimental design and

decisions.

Mapping between scRNA-seq and ATAC-seq data

We next perform an experiment on data consisting of paired

ATAC-seq and RNA-seq measurements on the same cells. As

with the previous experiment, since these two technologies

both measure values related to a particular gene (chromatin

availability for ATAC-seq and transcript expression for RNA-

seq), we can expect there to be some correlation between the

two spaces in their values for that gene, as in the prior case.

The dataset we use comes from a public human blood dataset

of granulocytes removed through cell sorting from peripheral

blood mononuclear cells of a healthy donor.26

A qualitative assessment of the results via plots of the output

are shown in Figure 4, with the ground-truth ATAC value plotted

in the first column and the generated corresponding RNA-seq

values in the subsequent columns. As before, scMMGAN’s

output best matches the ground truth. For the other models,

while they have the appropriate amount of activation for each

gene at a distribution level, they are inaccurate in terms of align-

ment at a point level (some populations have been inverted).

Confirming this quantitatively, as seen in Table 2, while all of

the models perform adequately at matching the ground truth at

a distribution level (as seen by their low MMDs), a significant dif-

ference can be seen when evaluating them at a point-wise level.

scMMGAN’s predictions have an average correlation with the
ground truth of r = 0:336 while the others are all essentially un-

correlated (0 is near the middle of each models’ 1 � s interval).

Integration of triple-negative breast cancer data

Here, we apply scMMGAN to a dataset that comprises a human

xenograft model of triple-negative breast cancer (MDA-MB-231)

with transcriptomic measurements jointly in both a spatial RNA-

seqmodality and a scRNA-seqmodality lacking the spatial infor-

mation. The study consists of theMDA-MB-231 cell line grown in

mouse models, with the measurements taken from primary site

tumors in the tissue from the mammary gland. While the exper-

imental models are replicates, they are different organisms and

thus introduce an additional source of noise for the alignment.

Each of the two measurement modalities produces transcrip-

tomic measurements, but each also has advantages and disad-

vantages. The spatial RNA-seq provides the ability to analyze the

physical structure of the tissue sample and localize behavior to

different regions of it via (x, y) spatial coordinates. As a draw-

back, however, each spatial coordinate is bigger than the size

of a single cell, and as a result the transcriptomics are estimates

of groups of multiple cells. For example, if a cell of one type that

is expressing gene A and a cell of another type that is expressing

gene B are spatially adjacent, this technology would observe

gene A and gene B being expressed together, even if they are

never jointly expressed in a single cell.

In contrast, the scRNA-seq provides the usual single-cell

granularity of measurements that would be able to distinguish

between the expression of each cell. By mapping the spatial

data to the scRNA-seq space, we are in essence imputing it

into single-cell resolution. However, the scRNA-seq does not

have spatial orientation with respect to the original tissue sam-

ple. Thus, to combine the best of each modality (spatial informa-

tion at the single-cell level), we use scMMGAN to integrate them

by mapping a point from the spatial RNA-seq domain to the

scRNA-seq domain while considering its aligned representation

of its original spatial coordinates and its generated scRNA-seq

expression values.

The spatial RNA-seq dataset consists of a tissue sampled

across 1,170 spatial coordinates, each coordinate with mea-

surements on 20,092 genes. Four different scRNA-seq samples

were obtained from cancerous primary site tissue (from different

mice), each measured across the same 20,092 genes, and con-

sisting of 7,606, 5,118, 8,163, and 7,591 cells, respectively.

While the scRNA-seq and spatial RNA-seq data are both tran-

scriptomic technologies measuring gene profiles, and thus their

dimensions have the samemeaning, the two datasets cannot be

analyzed together as is. In Figure 5A, we see that the two data

distributions are completely non-overlapping prior to the use of
Patterns 3, 100577, September 9, 2022 5
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Figure 3. Design of the uncertainty quantification experiment

(A) A depiction of how scMMGAN can be used to quantify how much uncertainty is associated with the mapping to each gene. A particular cell is mapped from

Domain i to Domain j along with various different noise samples. The mapped values of Gene A change significantly with the noise, while the mapped values of

Gene B change little for this cell. We interpret this as a quantification of how much information there is about each gene in Domain i.

(B) The genes identified by scMMGAN to have themost uncertainty associated with themapping, and thus have the least common information with the proteomic

measurements in this dataset.
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scMMGAN. Because the raw data are completely separable in

the joint space, any downstream analysis would only be able

to pick up on the difference between the two modalities and

not the differences between cells within them. For an integrated

analysis using information from both of them, we need the

aligned output from scMMGAN (Figure 5B).

We analyze the scMMGAN alignment by taking the spatial

RNA-seq, mapping it to the scRNA-seq space, and then clus-

tering the generated scRNA-seq data (Figure 5B). We use spec-

tral k-means clustering with a selected parameter of k = 5, and

we then plot the clusters according to their original spatial coor-

dinates. As we see, these scRNA-seq clusters preserve spatial

patterns seen in the coordinates, demonstrating our ability to

make new spatially informed conclusions by analyzing the

generated scRNA-seq data in conjunction with the original

spatial coordinates.

In Figure 5C, we look at the opposite mapping direction of tak-

ing the scRNA-seq data and generating spatial RNA-seq with it.

By mapping scRNA-seq points to these generated coordinates,

we can see spatial organization of particular cell types. For

example, in this figure we plot the generated spatial coordinates

for cells high in SLC2A1 and CDK11A and see spatial differenti-

ation between these two types of cells. We show all of these

clusters plotted in Figure 5D.

Now that we see scMMGAN has learned tomap data between

the two modalities in a way that preserves gene signals, we next

compare this with the alternative alignment models. In Figure 6,

we show the results of the learned mapping from spatial RNA-

seq to scRNA-seq for each model. We first note that each model

was able to generate a distribution that accurately matched the

target distribution, an observation we will demonstrate quantita-

tively later. However, the alternative approaches to scMMGAN

achieved this result by aligning a given spatial RNA-seq gene

profile to an scRNA-seq observation that is very different.

In the first column of Figure 6, we plot the value of five genes

across the original spatial coordinates in the spatial RNA-seq

data. We then plot the generated scRNA-seq value of that

gene for each spatial coordinate for each model in the subse-
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quent columns, starting with scMMGAN. With FAM87b in the

first row, we see that scMMGAN’s generated values largely

match the original spatial pattern, with some minimal changes

that were necessary to match the target distribution as well.

The CycleGAN matches much of the bottom half of the spatial

coordinates, but the top half maps some coordinates that were

low in the gene to scRNA-seq profiles that are high in the

gene, and vice versa. The CMAE has even less correspondence

between the original spatial RNA-seq value of the gene and the

generated scRNA-seq value.

The preservation of signals by scMMGAN and not the other

methods has important consequences for downstream analysis.

In the first row of Figure 6, we show the values of SLC2A1. This

gene encodes the glucose transporter type 1 (GLUT1) protein

that is commonly upregulated in triple-negative breast cancers

and is associated with high-grade tumors, having been previ-

ously shown to be a potential driver of metastasis in a broad

array of breast and other cancers.27–31 Notably, in the spatial

data, SLC2A1 activity has a strong spatial pattern in which areas

in the tissue express it highly. With scMMGAN mapping, the

spatial observations with high SLC2A1 also have high expres-

sion in the generated scRNA-seq data. With the other models,

however, the SLC2A1-high spatial observations are mapped to

SLC2A1-low scRNA-seq cells. This important signal has been

lost, and the downstream analysis that seeks to understand

the differential spatial distribution and function will have lost

this key gene signal. The scMMGAN mapping produces aligned

data that best preserves the original signal.

The bottom row showing RER1 demonstrates another canon-

ical situation motivating scMMGAN’s correspondence loss. This

gene is roughly bimodally distributed with equal numbers of ob-

servations high and low within it. Because flipping two popula-

tions is often as easy as introducing a single negative sign into

a single weight in a neural network layer, CMAE maps all spatial

coordinates high in the gene to scRNA-seq profiles low in the

gene and vice versa. Only with scMMGAN’s correspondence

loss is one of these equally-easy-to-learn mappings specified

as preferable, with the training objective significantly lower for



Figure 4. Results comparison from the

ATAC-seq/RNA-seq experiment

Ground-truth values for held-out cells and the pre-

dictions for each model on the experiment mapping

between ATAC and RNA sequencing. scMMGAN’s

output matches the ground truth most accurately

compared with the other models, which inverted

populations through the mapping. Coordinates

shown are from the first two principal component

analysis (PCA) dimensions.
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the one that does not flip the populations as opposed to it being

equal. This is further corroborated by the results of the quantita-

tive experiments shown in Table 3.

Gene correlations. scMMGAN highlights the differences be-

tween the measurements of the two modalities by investigating

the genes most highly correlated with a particular gene of inter-

est in this system in both the original data and the generated

data. Specifically, as the spatial data is an aggregate measure-

ment of multiple cells in the same proximate area in the tissue

(not a single cell), we can highlight some possibly spurious cor-

relations bymapping them to the scRNA-seq space and recalcu-

lating the correlations.

Consider, for example, the glucose-transporter gene SLC2A1

that we have studied previously. If we look at the n most corre-

lated genes in the original spatial data, any of them that have

low correlation in the generated scRNA-seq data are candidates

for spurious data artifacts. Similarly, any of the nmost correlated

genes in the generated scRNA-seq data that have low correla-

tion in the original scRNA-seq are candidates for novel associa-

tions found by the scMMGAN.

Choosing n = 700 and defining low correlation in the other

space as being less than 0.1, we obtain a list of six genes that

have spurious correlations: FRAT2, CAMK2A, CANX, LRRC66,

ZMIZ1-AS1, and MTRNR2L8. We then have the following five

genes that have been discovered by scMMGAN: AC092115.3,

P2RX7, CCDC93, UTP25, and BBS10.

Among these genes whose correlation to the glucose trans-

mitter SLC2A1 is discovered by scMMGAN, we see P2RX7,

which has been identified in the literature as a precursor to

glucose transporters.32 This provides corroborating support in

favor of the scMMGAN-discovered gene correlations.

DISCUSSION

In this work we demonstrated that scMMGAN can align data

from related experiments but different modalities in a way that

best preserves the properties of the original cells through learned

mapping. The addition of the correspondence loss in

scMMGAN’s architecture resolves the ambiguity created by

only stating a distribution-level loss in learning a mapping. This

holds across a wide array of data types and modalities, distribu-

tion shapes, and other settings that arise in practical biological

experiments.

We have shown how scMMGAN can be used to measure un-

certainty in the mapping and use injected stochasticity to gauge

which information is unique to one of the modalities and which

information is common between them. This can be used to not

only answer questions about the cellular samples in an experi-
ment but also to answer questions about the technologies and

modalities themselves in terms of their strengths and

weaknesses.

Furthermore, we have shown how scMMGAN can be used to

identify spurious correlations found in one modality as artifactual

results, as opposed to real findings. Similarly, we demonstrated

scMMGAN’s ability to identify novel correlations that are not

visible in an individual modality but become apparent when the

data are mapped to another modality. In these ways, scMMGAN

can be added to traditional analysis pipelines to uncover further

insights from complicated, multi-modal experimental data.
Limitations
There are limitations to the proposed approach that bear

mentioning. Although GANs have been useful in mapping distri-

butions, they suffer from key drawbacks. First, they are difficult

to train because of the adversarial losses, which can lead to

instability.33 This instability means that themodel can deteriorate

from effective to ineffective quickly across training iterations.

Second, they often suffer from mode collapse because they

are not penalized by distribution-level losses to match the entire

distribution.34 The additional correspondence loss does not

worsen these issues. We informally observe that early stopping,

as a regularization, as well as our geometric loss helps mitigate

these effects, but these effects may still be present in some con-

texts. Additionally, with our framework based on pairwise gener-

ators in each mapping direction, the number of generators

necessary grows quadratically. This means that for a large num-

ber of input modalities to align, the networks would have to be

made small or would have to be trained separately. Finally, our

geometry-based loss is not completely ‘‘plug-and-play’’ in the

sense that we still require a choice of distance between data

points. In cellular data, we used Euclidean distance to compute

the manifold. However, in other contexts, such as two image

types, more complicated measures such as the structural simi-

larity index may be used.35,36

For this reason, we encourage continued evaluation of aligned

results through external verification measures. For example, in

this work we verified that known signals across genes and

across cells are still preserved in the aligned data. Moreover,

we point out that the novel gene correlations found by

scMMGAN are potential discoveries that should be further inves-

tigated with experiments specifically designed for this aim.
EXPERIMENTAL PROCEDURES

In this section we further expand on the model, experimental regimes, and im-

plementations used in this work.
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Table 2. Results from the ATAC-seq/RNA-seq experiment

ATAC-seq scMMGAN CycleGAN CMAE

MMD ðx1;Gðx2ÞÞ 0.033 ± 0.001 0.033 ± 0.000 0.038 ± 0.000

MMD ðGðx1Þ;x2Þ 0.031 ± 0.000 0.032 ± 0.000 0.051 ± 0.003

Correlation ðx1;Gðx2ÞÞ 0.313 ± 0.025 0.024 ± 0.140 �0.014 ± 0.108

Correlation ðGðx1Þ;x2Þ 0.358 ± 0.016 0.034 ± 0.225 0.020 ± 0.111

Evaluation of each model on the ATAC-seq/RNA-seq data. The MMDs for each model are close, as each models the ground truth at a whole-distri-

bution level. scMMGAN is the only model whose predictions preserve the known correlation, however, because its alignment is also accurate point-

wise. The best or tied-for-best values are in boldface.
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Resource availability

Lead contact

The lead contact is Smita Krishnaswamy (smita.krishnaswamy@yale.edu).

Materials availability

There are no newly generated materials.

Data and code availability

An implementation of the scMMGAN model written in Python and Tensorflow,

which can be run on any user-loaded datasets, is available at https://github.

com/KrishnaswamyLab/scMMGAN. Direct further data availability inquiries

to the lead contact.

Biological methods

This section describes the methods used to acquire the dataset of triple-nega-

tive breast cancer investigated in this paper.

Animal studies

All experiments were approved by and conducted in accordance with the Na-

tional Health and Medical Research Council Statement on Animal Experimen-

tation, the requirements of New South Wales State Government legislation,

and the rules for animal experimentation of the Biological Testing Facility of

the Garvan Institute and the Victor Chang Cardiac Research Institute (protocol

#18/12).

Ten NOD/SCID mice at 6–8 weeks of age were purchased from Austra-

lian Bioresources (ABR). Mice were 8–9 weeks of age at time of injec-

tions. MDA-MB-231-GFP cells (1 3 106 cells) were prepared in 25 mL

20% Matrigel (BD Matrigel Matrix Growth Factor Reduced)/serum-free

medium and injected orthotopically into the inguinal mammary fat pads.

After 9.5 weeks, animals underwent survival surgery to remove the pri-

mary tumors (700–1,000 mm3), which were subsequently split into three

parts: one chunk was used for scRNA-seq, one chunk was formalin fixed

and embedded in paraffin for future analysis, and one chunk was frozen

in optimal cutting temperature compound for spatial transcriptomics anal-

ysis. Animals were housed for 2 more weeks, after which the liver, lymph

nodes, and lungs were harvested for analysis of metastatic cells in those

tissues.

scRNA-seq preparation and analysis

Primary tumors, lungs, livers, and lymph nodes were chopped into small

pieces, then incubated at 37�C for 40 min on a rotary shaker in DMEM/F12

containing collagenase A (300 U) and hyaluronidase (100 U). Following diges-

tion, cell suspensions were pelleted, the DMEM removed, washed with PBS

2% (v/v) fetal bovine serum (FBS), and resuspended in 0.15% + 10% DNaseI

trypsin for 1 min. Trypsin was quenched with 2% FBS/DMEM. Cells were re-

suspended in FACS buffer (2% [v/v] FBS in PBS). GFP+ alive tumor cells

were sorted and collected, and scRNA-seq was performed using Chromium

10X technology.

Spatial transcriptomics

Spatial transcriptomics was performed according to the published protocol.37

Training objectives

Here we elaborate on the training objectives used in the scMMGAN frame-

work learning. We define the formulation considering a pair of domains,

with the definitions extending to multiple domains accordingly. It is

composed of distinct GAN networks, each with a generator network G

with input X and output X0. We call each generator a mapping from the input

domain to the output, or target, domain. Each generator attempts to make its
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output GðXÞ indistinguishable by D from X0. Denote the two datasets X1 and

X2. Let the generator mapping from X1 to X2 be G12 and the generator map-

ping from X2 to X1 be G21. The discriminator that tries to separate true sam-

ples from X1 from the generated output of G21ðX2Þ is D1, and the discrimi-

nator that tries to separate true samples from X2 from generated samples

from G12ðX1Þ is D2.

The loss for G1 on minibatches x1 and x2 is

x12 = G12ðx1Þ
x121 = G21ðx12Þ

Lr = Lreconstruction = MSEðx1; x121Þ
Ld = Ldiscriminator = � Ex1�PX1

½log D2ðx12Þ�;
Lc = Lcorrespondence = Lðx1; x12Þ

LG1
= lrLr + ldLd + lcLc

where MSE is the mean-squared error and L is the correspondence loss dis-

cussed previously. The hyperparameters lr , ld, and lc are chosen to balance

the reconstruction, discriminator, and correspondence losses. These can be

chosen by default to be lr = ld = lc = 1, but lc increased if the observed

correspondences are low and lr increased if the observed reconstructions

are not accurate.

Similarly, the loss for G2 is

x21 = G21ðx2Þ
x212 = G12ðx21Þ

Lr = MSEðx2; x212Þ
Ld = � Ex2�PX2

½log D1ðx21Þ�:
Lc = Lðx2; x21Þ

LG2
= lrLr + ldLd + lcLc

The losses for D1 and D2 are

LD1
= � Ex1�PX1

½logD1ðx1Þ+ logD1ðx121Þ�
�Ex2�PX2

½logð1 � D1ðx21ÞÞ�
LD2

= � Ex2�PX2
½logD2ðx2Þ+ logD2ðx212Þ�:

�Ex1�PX1
½logð1 � D2ðx12ÞÞ�

Calculation of correspondence loss

For the following notation, consider one of the datasets x1 and its representa-

tion after being mapped to the other domain, Gðx1Þ. First, matrices of pairwise

distances Dx1 and DGðx1Þ are constructed.

These are then transformed into matrices of pairwise affinities with an in-

verse-distance kernel kðxi ; xjÞ = maxð0; 1 � ����xi � xj
����1 =siÞ, where si is a

k-nearest neighbor adaptive bandwidth. This kernel was necessary, as the

standard Gaussian kernel suffered from gradients that saturated and sup-

pressed learning. With this kernel, we are able to effectively perform diffusion

geometry learning through gradient descent.

These affinity matrices are transformed into transition probability matrices

Px1 and PGðx1Þ through row normalization. Powering these matrices t times

then represents taking t steps forward in the Markov chain. Let the eigenvec-

tors of these twomatrices be 4x1 and 4Gðx1Þ, respectively. The i
th row of 4x1 and

4Gðx1Þ represents the diffusion coordinates of the point x1i in the original space

and Gðx1iÞ in the generated space, respectively. Because we are only seeking

to match low-frequency structure of the data, we use only the first ne

mailto:smita.krishnaswamy@yale.edu
https://github.com/KrishnaswamyLab/scMMGAN
https://github.com/KrishnaswamyLab/scMMGAN
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Figure 5. Analysis of scMMGAN alignment and clusters on the triple-negative breast cancer dataset

(A) Plotted are the PCA coordinates of the gene expression values from the two distributions. In the raw data, the spatial RNA-seq and scRNA-seq are not directly

comparable, as they are entirely separable. After mapping with scMMGAN, they are aligned and comparable with downstream analysis.

(B) Mapping spatial RNA-seq to scRNA-seq, clustering the generated scRNA-seq values, and then plotting the cluster by the measured spatial coordinate on the

x axis an y axis.

(C) Generated spatial RNA-seq data from scRNA-seq, including generated spatial coordinates. Same coordinates as previous plot.

(D) All generated clusters mapped to the spatial RNA-seq space. Same coordinates as previous plots.
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Figure 6. Generated scMMGAN expression value results plotted on the spatial coordinates

The x axis and y axis plotted are the raw measured spatial coordinates from the spatial RNA-seq. The color is expression value, where we compare the original

spatial RNA-seq of a genewith each generated scRNA-seq value of that gene for eachmethod, showing scMMGANbest aligns the original and generated values.
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eigenvectors of the data as an approximation. The eigenvectors are then re-

scaled to be between �1 and 1.

We also perform a check before comparing the eigenvectors of the original

data 4x and those of the generated data 4GðxÞ. Because the direction of the ei-

genvectors can be switched, two datasets with equivalent intrinsic geometry

could have eigenvectors that are either highly correlated or highly anticorre-

lated. To combat this, we calculate the correlation of each pair of eigenvectors

before computing the loss and whether the correlation is below a threshold

εr = � 0:5, then we multiply the values of 4GðxÞ by � 1 before computing

the loss. We then also compare the eigenvectors at different scales by sum-
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ming adjacent vectors and comparing the new combined representations

that have half the number of vectors.

Noise-augmented model

Here we detail the noise-augmented model used in the section about distin-

guishing unique and common information. The core idea is that by providing

additional noise as input, the model will be able to use the stochasticity

when necessary or ignore it if not. In other words, some generated values

will have more certainty behind them in the model and others greater uncer-

tainty. We experiment with this notion by introducing a slight modification of



Table 3. Results from the triple-negative breast cancer experiment

scRNA-seq –> Spatial scMMGAN CycleGAN CMAE

MMD ðGðx1Þ;x2Þ
Sample 1 0.072 ± 0.003 0.072 ± 0.001 0.076 ± 0.002

Sample 2 0.071 ± 0.001 0.072 ± 0.002 0.075 ± 0.002

Sample 3 0.072 ± 0.002 0.072 ± 0.001 0.075 ± 0.002

Sample 4 0.071 ± 0.002 0.072 ± 0.004 0.076 ± 0.002

MMD ðx1;Gðx2ÞÞ
Sample 1 0.076 ± 0.002 0.080 ± 0.003 0.075 ± 0.001

Sample 2 0.085 ± 0.002 0.074 ± 0.002 0.078 ± 0.003

Sample 3 0.081 ± 0.002 0.082 ± 0.001 0.087 ± 0.004

Sample 4 0.079 ± 0.001 0.076 ± 0.001 0.086 ± 0.006

MSE ðx1;Gðx2ÞÞ
Sample 1 0.987 ± 0.128 2.001 ± 0.525 2.021 ± 0.323

Sample 2 0.995 ± 0.126 1.934 ± 0.235 1.771 ± 0.521

Sample 3 0.887 ± 0.026 2.097 ± 0.548 1.591 ± 0.728

Sample 4 1.029 ± 0.017 1.932 ± 0.353 1.823 ± 0.288

MSE ðGðx1Þ;x2Þ
Sample 1 0.931 ± 0.101 1.972 ± 0.515 2.031 ± 0.275

Sample 2 0.970 ± 0.108 1.931 ± 0.195 1.843 ± 0.536

Sample 3 0.878 ± 0.024 2.068 ± 0.556 1.609 ± 0.756

Sample 4 0.985 ± 0.010 1.905 ± 0.366 1.872 ± 0.287

Quantitative measurement of how well the generated distributions match the target distribution (MMD) and how well they preserve correspondence

with the original input distribution (MSE).While all methodsmatch the target distribution reasonably (top two sections), only scMMGANminimally alters

the points in the alignment (bottom two sections). Statistics reported on both mapping directions and across five independent trials. The best or tied-

for-best values are in boldface.

ll
OPEN ACCESSArticle
the scMMGAN framework: additional random input. We calculate the genera-

tor’s output asGðxi ; zÞ, where z � Nð0;1Þ˛ IRD, concatenating a draw from an

isotropic normal distribution with the original input. The reconstruction and

correspondence losses are then calculated as usual with just xi . This allows

the model to create more stochasticity around regions of the space where

there is not enough information to pin down precisely the correct alignment,

while it can ignore the noise and create a deterministic mapping in regions

of the space where there is enough information.

Invariance and risk

In this section we connect our model in the domain alignment setting to

existing literature on invariance and risk minimization.38 Consider the

domain alignment task as drawing a dataset de
i � De from a distribution

PðDeÞ where the environment e determines how observations manifest

di in De. The domains X1 and X2 in our setting are drawn from PðDeÞ,
then the datasets xi1; i = 1.n1 and xi2; i = 1.n2 are drawn from the distri-

butions X1 and X2. Thus, we have two sources of randomness from sam-

pling to consider in learning the desired mappings G, one from the points

sampled from the distribution and the other from the distribution sampled

from the distribution over settings. We want to minimize the risk of

alignment:

EPEX1 ;X2
= L

�
G12

�
xi1
�
; xi2
�
+ L
�
xi2;G21

�
xi1
��
:

The inadequacy of solely a cycle-consistency loss should be obvious

from this formation. While minimizing the cycle-consistency loss can opti-

mize performance with respect to the expectation over X1 and X2, the

formulation is equivalent for all datasets drawn from P. Thus, it is incapable

of resolving correlations that are structurally related to the datasets versus

those arising spuriously from sampling. These ideas are key to the exten-

sion beyond just using cycle consistency in the construction of domain

mapping networks.
Diffusion maps

Diffusion maps define a process of Markovian diffusion over a dataset,

whereby a set of local affinities capture the intrinsic data geometry as quanti-

fied by diffusion distances.18 They operate on a matrix of pairwise distances

that is transformed into a matrix of pairwise affinities, here via the commonly

used Gaussian kernel kðxi ; xjÞ = expf� kxi � xjk2 =εg. A Markov chain transi-

tion matrix over the dataset P is constructed from the pairwise affinity matrix A

via P =

 P
j

Aij

!� 1

A. Powering thematrix Pt represents taking t forward steps

in theMarkov chain. Diffusionmaps are then defined asJtðxÞ = ðlt1j1;.; ltljlÞ
where li and ji are the i

th eigenvalue and eigenvector ofP, and l is a hyperpara-

meter of the number of top eigenvectors to use. The diffusion map coordinates

form a space where the Euclidean distance between points approximates the

diffusion distance between those points.

In previous work, diffusion operators have been used in the context of multi-

modal data integration.39 This has been done for the related tasks of visualizing

and denoising, rather than mapping between, the datasets. The approach

there differs from ours in that it relies on combining diffusion operators from

different modalities through algebraic operations as opposed to our method,

which integrates them into a broader deep-learning framework.

The diffusion maps are a key foundational notion used in the construction of

the data geometry loss.

Geometry-preserving correspondence loss

We now further elaborate on a few points about the geometry-preserving

correspondence loss introduced in this paper. We only enforce the cor-

respondence loss on the first eigenvectors because this ensures that

basic low-frequency signals are largely aligned while still allowing the

flexibility of changing high-frequency signals that are more likely to be

idiosyncratic to each domain. In practice we find using 10–20 eigenvec-

tors works best.
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We note that any changes to the data geometry would cause a mismatch

here, and thus the ideal alignment would not drive this term in the objective

all the way to zero unless the two datasets being aligned have identical geom-

etry. Despite the goal not being zero correspondence loss, there are many

different mappings that achieve comparably low GAN losses, and among

them the ones with lower correspondence losses are preferable. This is why

using it as a regularization to lightly guide the transformation in addition to

the GAN loss can achieve the best performance overall.

Architecture and baselines

We compare scMMGAN with alternative baseline deep-learning models used

for alignment of this type: a CycleGAN, to motivate the need for the correspon-

dence loss by showing the improper alignments obtained without it;9 and

CMAE, an autoencoder-based model that uses separate encoders/decoders

that learn to map into a shared space and then generates by crossing the

encoder of one domain with the decoder of another.21 These alternative

methods use distribution-level losses to ensure the generated distribution

matches the target distribution, but do not impose any loss on the representa-

tion of a point and its representation in the aligned domain. As a result, they can

produce alignments that unnecessarily invert signals and change values of in-

dividual points.

With scMMGAN, we use a generator consisting of three internal layers of

128, 256, and 512 neurons with batch norm and leaky rectified linear unit ac-

tivations after each layer, and a discriminator consisting of three internal layers

with 1,024, 512, and 256 neurons with the same batch norm and activations

except with minibatching after the first layer.33,40 We use a correspondence

loss coefficient of 10, cycle-loss coefficient of 1, learning rate of 0.0001, and

batch size of 256. As preprocessing steps prior to running each model on

this dataset, we correct for dropout with the manifold smoothing method

MAGIC,41 zero-center and unit scale each dimension, and reduce to 50 prin-

cipal components.We use these architectures and hyperparameters in all sub-

sequent experiments except where otherwise stated.
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