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Neuronal communication requires precise connectivity of neurite projections

(axons and dendrites). Developing neurites express cell-surface receptors

that interpret extracellular cues to enable correct guidance toward,

and connection with, target cells. Spatiotemporal regulation of neurite

guidance molecule expression by transcription factors (TFs) is critical

for nervous system development and function. Here, we review how neurite

development is regulated by TFs in the Caenorhabditis elegans nervous

system. By collecting publicly available transcriptome and ChIP-sequencing

data, we reveal gene expression dynamics during neurite development,

providing insight into transcriptional mechanisms governing construction

of the nervous system architecture.
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Introduction

Animals have developed nervous systems to enable the transmission of information
over long distances. Information transfer between neurons relies on neurite projections
called axons and dendrites. Correct neurite development is therefore critical for efficient
signal transduction between neurons within a neuronal circuit. During development,
neurites are guided to their targets by attractive and repulsive cues from surrounding
cells/tissues and the extracellular matrix (ECM) (Adler et al., 2006; Wang et al., 2008;
Dong et al., 2016; Miller and Suter, 2018). Many conserved ligands and receptors
involved in neurite guidance have been identified over the last three decades
(Tables 1, 2). However, diverse neuron sub-types within a nervous system have specific
neurite projection patterns that are guided by distinct gene expression programs. Hence,
neurite development requires precisely controlled spatiotemporal expression of intrinsic
and extrinsic factors.

Transcription Factors (TFs) are key regulators of gene expression that control
multiple processes of neuronal development, including polarization, migration
and neurite guidance (Shirasaki and Pfaff, 2002; Santiago and Bashaw, 2014; Hayashi
et al., 2015; Masserdotti et al., 2016). TFs regulate neurite development by controlling
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signaling, cell-adhesion and junction molecules,
and cytoskeleton modifiers (Nobrega-Pereira and Marin,
2009; Santiago and Bashaw, 2014; Masserdotti et al., 2016). TFs
can regulate neurite development cell-autonomously or regulate
the expression of cues and receptors from surrounding tissues
(Rauthan et al., 2007; Yoshimura et al., 2008). The complexity
and dynamic nature of the nervous system makes in vivo
analysis of regulatory mechanisms governing neurite
development challenging. Animal models have been used
to study neurite development, including mouse (Kuwajima
et al., 2017), rat (Fontanet et al., 2013), zebrafish (Koh et al.,
2020), fruit fly (Contreras et al., 2018), and Caenorhabditis
elegans (Chisholm et al., 2016).

The unparalleled detail of anatomical and molecular maps
available for C. elegans renders it an exceptional model
for studying fundamental requirements of nervous system
development (White et al., 1986; Durbin, 1987; Cao et al.,
2017; Cook et al., 2019; Packer et al., 2019; Taylor et al.,
2021). C. elegans is a free-living nematode, with a short life
span (∼3 weeks) and a transparent body that enables in vivo
visualization of cellular structures at all stages of development.
The C. elegans nervous system is small, containing 302
neurons and 56 glial cells (Figure 1; White et al., 1986).
Importantly, neuronal positions are invariant and the synaptic
connectivity (connectome) of these neurons has been mapped
(Cook et al., 2019). Furthermore, single-cell transcriptomes
of C. elegans neurons at distinct developmental stages are
available (Cao et al., 2017; Packer et al., 2019; Taylor et al.,
2021), enabling the study of how genes, including neurite
development regulators and TFs, are expressed during neuronal
development. Taken together, the depth of knowledge and ease
of experimentation allow complex regulatory mechanisms
required for neurite development to be studied in C. elegans.

Here, we reviewed all published neurite development-
related TFs in C. elegans. In addition, we collected
and integrated bulk and single-cell transcriptome data
to extract expression patterns of ligands, receptors and TFs
involved in neurite development (Cao et al., 2017; Packer et al.,
2019; Papatheodorou et al., 2020; Sun and Hobert, 2021; Taylor
et al., 2021). By analyzing ChIP-seq data we also constructed
a network of potential TFs that bind upstream of genes encoding
ligands and receptors that control neurite development
(Gerstein et al., 2010). Thus, we provide an integrated view
of neurite developmental regulators providing insight into
mechanisms governing nervous system development.

Neurites: The neuronal wiring
system

Neurites are neuronal projections that transmit information
within the nervous system and to non-neuronal cells and tissues
(Cook et al., 2019). Neurites are classified as axons and dendrites

that transfer information from and to the cell body (soma),
respectively (Goaillard et al., 2019). In most vertebrates, axons
are insulated by a protective myelin sheath that enables
rapid electrical conductance, whereas some animals such as
C. elegans lack such structures (Oikonomou and Shaham, 2011).
Depending on the neuron type, dendrites may be a single
projection or highly arborized to receive information from
multiple neurons (Agostinone and Di Polo, 2015). Neurites
directly transmit information to target cells through synapses
that release specific neurotransmitters, or through electrical
junctions that allow ion flow (Pereda, 2014; Sudhof, 2018).

Correct neurite development requires precise regulation
of intrinsic cytoskeleton-driven mechanisms and extrinsic
molecular interactions between cell-surface receptors
and the surrounding environment. In the absence of external
factors, neurite development of mammalian hippocampal cells
in culture is classified into five main stages: (I) membrane
ruffling by protrusion of cell-surface lamellipodia or filopodia,
(II) emergence of short immature neurites, (III) axon
establishment through stochastic growth of one neurite,
(IV) conversion of all other neurites into dendrites, (VI)
generation of dendritic spines and axonal synapses to establish
a neuronal circuit (Dotti et al., 1988; Goslin and Banker, 1989;
Figure 2A). The same scenario is expected to occur in vivo;
however, initiation and growth of axons and dendrites is
directed by gradients of guidance cues in the environment
and by physical barriers (Hutter, 2003; Adler et al., 2006;
Figure 2B).

Neurite development is therefore composed of projection,
polarization and extension of neurites that are controlled by
dedicated signaling pathways and cytoskeletal rearrangement.
Detailed reviews on neurite developmental processes have
recently been published: neurite polarity (Yogev and Shen,
2017; Armakola and Ruvkun, 2019); the cytoskeleton in neurite
formation (Sainath and Gallo, 2015; Miller and Suter, 2018)
and neurite development and repair (Richardson and Shen,
2019). Mechanisms governing axon guidance in C. elegans have
also been reviewed by Chisholm and colleagues (Chisholm et al.,
2016). In general, polarization determines how the cytoskeleton
rearranges to direct projection and neurite formation (Schelski
and Bradke, 2017), whereas, cytoskeletal stability regulates
neurite growth by providing mechanical support, reviewed by
Miller and Suter (2018). For example, neurite initiation, also
known as neuritogenesis, begins with protrusion of lamellipodia
or filopodia on the cell surface and movement of microtubules
and other components into these structures, reviewed by
Flynn (2013). Neurites are consolidated through cytoskeletal
reorganization into a cylindrical structure at their base.
Subsequently, polarization is shaped by the gradient(s) of cues
that determine the direction of axo-dendritic growth (Schelski
and Bradke, 2017; Miller and Suter, 2018).

Neuron polarization is the result of a combination
of internal and external cues that impact cytoskeletal
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FIGURE 1

Architecture of the Caenorhabditis elegans nervous system. (A) Schematic of the adult C. elegans hermaphrodite nervous system (lateral view).
Examples of major axo-dendritic processes: dorsal/ventral nerve cords, and circumferential commissures (DNC/VNC—green), amphid neurons,
e.g., AFD (red), and the multi-dendritic PVD neurons (yellow) are shown. (B) Schematic of the C. elegans hermaphrodite anterior nervous
system. Axons from the DNC, VNC and amphid neurons enter the nerve ring for integrating information and governing behavior. Amphid
neurons (e.g., AFD) extend dendrites to the nose tip where cilia sense environmental cues. The FLP neurons have extensive dendritic arbors that,
as with the PVD neurons in (A), enable mechano- and thermo-sensation. (C) Schematic cross-section of the C. elegans mid-body showing
longitudinal axon tracts, motor neurons circumferential commissures (DNC/VNC—green), and the location of other major tissues. The
circumferential commissures are placed between the hypodermis and basal lamina.

rearrangement (Miller and Suter, 2018). Internal cues are
inherited from the existing apical-basal polarity of progenitor
cells (Zolessi et al., 2006; Pollarolo et al., 2011), while
extracellular cues can be produced by surrounding neuronal or
non-neuronal tissues. External cues found to regulate neurite
development in C. elegans are listed at Table 1. Polarity-related
signaling molecules, such as UNC-34/Ena/VASP in C. elegans,
and Cdc42 in mammals predominantly function by localizing
at axonal growth cones and rearranging the cytoskeleton (Gitai
et al., 2003; Schwamborn and Puschel, 2004; Fleming et al.,
2010). UNC-34 is a downstream effector of the UNC-6/Netrin
cue and its receptor UNC-40/DCC that are critical conserved
regulators of axon guidance (Adler et al., 2006).

Following axo-dendritic growth, neurons communicate
with each other by forming synaptic connections (Sudhof,
2018). Multiple processes are involved in synapse formation,
including dendrite branching and pruning (Riccomagno
and Kolodkin, 2015). Dendrite branching is a crucial step
for establishing connections between different cells that
also requires cytoskeletal rearrangement and cell surface
molecule interactions, reviewed by Jin and Kim (2020).
Additionally, neurite development requires other important
processes including axon arborization (Gibson and Ma, 2011)
and neurite pruning (Schuldiner and Yaron, 2015). With
the latter, a critical step that removes superfluous neurites
formed during development (Lu and Mizumoto, 2019).

In summary, neurite development is a multi-step process
that can initiate during embryogenesis and continue over

the lifespan of an organism. In C. elegans most neurons
develop during embryogenesis (222 of the 302 neurons
in the hermaphrodites), while others (80 of the 302 neurons)
develop post-embryonically (White et al., 1986; Durbin,
1987). Here, we focus on axo-dendritic development
in C. elegans and describe the mechanisms and TFs that
regulate these processes.

Genetic control of axo-dendritic
development

Correct neurite development is controlled by coordinated
intrinsic and extrinsic molecular mechanisms. In C. elegans,
the majority of molecules identified to regulate neurite
development were found by studying axon guidance.
Multiple factors impact axon development including physical
restrictions imposed by surrounding tissues, cues from
other cells, cell surface molecules and receptors (Durbin,
1987; Baum and Garriga, 1997; Kim and Wadsworth, 2000;
Levy-Strumpf and Culotti, 2014; Figure 2C). Tables 1, 2
lists the cues and membrane proteins shown to control
C. elegans neurite development. In addition to these cues
and receptors, there are multiple intracellular proteins
important for cytoskeletal rearrangement and growth
cone navigation that are not reviewed here (more details
from Chisholm et al., 2016). Instead, we focus on the cues
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FIGURE 2

Neurite development and regulatory mechanisms. (A) Stages of neurite development in vitro in the absence of environmental cues. Neurite
development consists of five stages: (I) lamellipodia or filopodia formation, (II) emergence of short and dynamic neurites, (III) axon
establishment (IV) dendrite formation, and (V) formation of dendritic spines, axonal synapses and neuron circuits. Stage I and II are defined as
neuritogenesis that has three phases: (1) protrusions that form lamellipodia or filopodia on the membrane; (2) engorgement of cytoskeletal
components that enter lamellipodia and filopodia, and (3) consolidation of neurite growth cones by establishing a cylindrical cytoskeletal shaft.
(B) Schematic of signaling events impacting C. elegans neurite development. Axo-dendritic guidance is controlled by signals released from
other cells/tissues, the extracellular matrix (ECM) and physical barriers such as muscle. In addition, pioneer axons guide follower axons along
specific tracks. (C) Schematic of signals and receptors that regulate axon development in C. elegans. Signal molecules (left) are synthesized by
target and surrounding tissues/cells and are released from the cells or localized into the plasma membrane as a component of the ECM.
Gradients of secreted signals guide growing axons. Elongating neurites (right) express receptors that localize at the growth cone to detect and
respond to external signals. Neurons express distinct gene batteries and here we present candidate signals and receptors that may not
expressed in the same cell at a given time.
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TABLE 1 Ligands that control C. elegans neurite development.

Signal type Gene Reference Signal type Gene References

Ephrin vab-2 Torpe and Pocock, 2014 Wnt egl-20 Pan et al., 2006

efn-2 Torpe and Pocock, 2014 cwn-1 Pan et al., 2006

efn-3 Torpe and Pocock, 2014 cwn-2 Kennerdell et al., 2009

efn-4 Dong et al., 2016 lin-44 Hilliard and Bargmann, 2006; Kirszenblat
et al., 2011

TGF unc-129 Colavita and Culotti, 1998;
MacNeil et al., 2009

Semaphorin smp-1 Ginzburg et al., 2002; Dalpe et al., 2004

let-756 Bulow et al., 2004 smp-2

tig-2 Baltaci et al., 2022

tig-3 mab-20 Roy et al., 2000; Dong et al., 2016

Slit slt-1 Hao et al., 2001; Fujisawa et al., 2007 Netrin unc-6 Kulkarni et al., 2008; Hao et al., 2010;
Smith et al., 2012; Levy-Strumpf and
Culotti, 2014

ECM madd-4 Seetharaman et al., 2011 Leukocyte
cell-derived
chemotaxin

lect-2 Díaz-Balzac et al., 2016

TABLE 2 Membrane-bound proteins that control C. elegans neurite development.

Protein type Gene References Protein type Gene References

Receptors cam-1 Forrester et al., 1999; Chien
et al., 2017

Receptors lon-2 Blanchette et al., 2015

cfz-2 Zinovyeva and Forrester,
2005; Song et al., 2010; Wang

and Ding, 2018

mig-1 Pan et al., 2006

daf-11 Coburn et al., 1998 mom-5 Pan et al., 2006;
Levy-Strumpf et al., 2015

daf-1 Unsoeld et al., 2013 pat-3 Poinat et al., 2002

ddr-2 Unsoeld et al., 2013 plx-2 Nakao et al., 2007; Dong
et al., 2016

dma-1 Liu and Shen, 2012 sax-3 Fujisawa et al., 2007

egl-15 Bulow et al., 2004 sma-6 Baltaci et al., 2022

eva-1 Fujisawa et al., 2007; Chan
et al., 2014

unc-5 Hamelin et al., 1993; Norris
et al., 2014

ina-1 Baum and Garriga, 1997 unc-40 Gitai et al., 2003; Norris and
Lundquist, 2011; Xu et al.,
2015; Zhou et al., 2020

lad-2 Wang et al., 2008

lin-17 Kirszenblat et al., 2011 vab-1 George et al., 1998; Zallen
et al., 1999

lin-18 Pan et al., 2006 vem-1 Runko and Kaprielian, 2004

Cadherins hmr-1 Broadbent and Pettitt, 2002 IgCAM
(immunoglobulin
family cell adhesion

molecules)

rig-6 Katidou et al., 2013

cdh-4 Schmitz et al., 2008 sax-7 Wang et al., 2005;
Ramirez-Suarez et al., 2019

fmi-1 Steimel et al., 2010; Najarro
et al., 2012; Unsoeld et al.,

2013

wrk-1 Boulin et al., 2006

Heparan sulfate proteoglycans sdn-1 Rhiner et al., 2005 C-type lectin-like clec-38 Kulkarni et al., 2008
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TABLE 3 TFs that control C. elegans neurite development.

Developmental
process

Gene Domain Superfamily Neuron Type References

Dendrite
development

ahr-1 Myc-type/PAS HLH/PAS S (PVD) Smith et al., 2013

egl-44 TEA/ATTS TEA/ATTS S (PVD) O’Brien et al., 2017

egl-46 ZF ZF C2H2 S (PVD) O’Brien et al., 2017

fkh-2 FHD Winged helix-like S (AWB) Mukhopadhyay et al., 2007

mec-3 HD/ZF Homeobox-like S (PVD) Tsalik et al., 2003; Smith et al., 2013

unc-86 HD/POU Homeobox-like S (PVD, IL2) Smith et al., 2010; Schroeder et al., 2013

Axon
projection/growth

ceh-10 HD Homeobox-like I (ALA) Altun-Gultekin et al., 2001; Van Buskirk
and Sternberg, 2010

ceh-14 HD/ZF Homeobox-like I/S (ALA) Van Buskirk and Sternberg, 2010

ceh-17 HD Homeobox-like I/M (DA, ALA, SIA) Pujol et al., 2000

dmd-3 DMD DM DNA-binding S (PHC) Serrano-Saiz et al., 2017

egl-44 TEA/ATTS TEA/ATTS M (HSN) Desai et al., 1988

egl-46 ZF ZF C2H2 M (HSN) Desai et al., 1988

egl-5 HD Homeobox-like M (HSN, D-type) Hartin et al., 2017

hlh-16 Myc-type HLH I (AIY) Bertrand et al., 2011

hlh-3 Myc-type HLH M (HSN) Doonan et al., 2008

lim-6 HD/ZF Homeobox-like M (AVL, DVB) Hobert et al., 1999

lin-11 HD/ZF Homeobox-like I (AVG, D-type) Hutter, 2003; Schmid et al., 2006

sem-4 ZF ZF C2H2 M (HSN, AVL) Basson and Horvitz, 1996

unc-86 HD/POU Homeobox-like M (HSN) Olsson-Carter and Slack, 2011

zag-1 HD/ZF Homeobox-like/ZF
C2H2

I/M (DA, DB, DD, VC) Wacker et al., 2003

Axon guidance ahr-1 Myc-type/PAS HLH/PAS S (AVM, SDQR) Qin and Powell-Coffman, 2004; Smith
et al., 2013

ast-1 Ets Winged helix-like I (PVP, PVQ) Schmid et al., 2006

ceh-14 HD/ZF Homeobox-like I/S (ALA) Kagoshima et al., 2013

ctbp-1 ZF NAD(P)/ZF M (SMD) Reid et al., 2015

fax-1 NHR/ZF ZF/NHR I (AVK, HSN, PVQ) Wightman et al., 1997; Much et al., 2000

ham-3 SWIB/MDM2 SWIB/MDM2 M (HSN) Weinberg et al., 2013

mab-9 T-box/p53-like T-box/p53-like M (VNC) Pocock et al., 2008b

mig-32 ZF, RING-type Zinc finger, RING-type M, I (HSN, VD, PVQ) Karakuzu et al., 2009

mls-2 HD Homeobox-like S (ADF, AFD, AWC) Yoshimura et al., 2008

mnm-2 ZF ZF C2H2 M (M2) Rauthan et al., 2007

spat-3 ZF E3 ubiquitin-protein
ligase RING1/RING2

HSN Karakuzu et al., 2009

ttx-3 HD/ZF Homeobox-like I (AIY) Altun-Gultekin et al., 2001

unc-130 FHD Winged helix-like M (DA, DB, DV, VD) Nash et al., 2000

unc-3 IPT COE M (HSN, DA, VA, VC) Wightman et al., 1997; Prasad et al., 1998

unc-30 HD Homeobox-like M (DD, VD) Jin et al., 1994

unc-39 HD Homeobox-like Unknown function
(CAN)

Yanowitz et al., 2004

unc-42 HD Homeobox-like S, M, I (ASH, HSN,
PVQ)

Wightman et al., 1997; Brockie et al., 2001;
Berghoff et al., 2021

unc-86 HD/POU Homeobox-like M (HSN) Olsson-Carter and Slack, 2011

vab-3 HD/paired domain Homeobox like/winged
helix-like

S (ADF, AFD, AWC) Yoshimura et al., 2008

vab-7 HD Homeobox-like M (DB) Esmaeili et al., 2002

Neurite development was grouped into dendrite development, axon outgrowth and axon guidance.
S, Sensory neuron; M, Motor neuron; I, Interneuron.
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and receptors involved in the neurite development, with a focus
on axon guidance.

Axon guidance cues can be secreted from surrounding
tissues or presented within the ECM (Table 1). The ECM
is a complex structure containing laminins, collagen
IV and nidogen that provides a substratum for axon
guidance by localizing guidance cues (Forrester and
Garriga, 1997; Kim and Wadsworth, 2000; Huang et al.,
2003; Kao et al., 2006). ECM components are sensed by
receptors such as integrins (Baum and Garriga, 1997),
dystroglycan (Johnson et al., 2006; Lindenmaier et al., 2019)
and Discoidin domain receptors (Unsoeld et al., 2013)
to control axon development. The ECM consists of multiple
distinct proteins (Yue, 2014) and cells/tissues may express
different combinations of ECM molecules. Additionally,
post-translational regulation of ECM proteins impact axon
guidance. For example, the prolyl 4-hydroxylase DPY-18
regulates HSN axon guidance by impacting the folding
of collagen IV proteins encoded by emb-9 and let-2 (Torpe
and Pocock, 2014). Therefore, the specific effects of ECM
regulation on neurite development may be highly context-
and structure-dependent.

Secreted guidance cues may act as axon guidance attractants
or repellents. Most cues in C. elegans were identified
in reverse and forward genetic screens for ventral nerve
cord (VNC) and circumferential axon guidance defects (Kim
and Wadsworth, 2000; Hao et al., 2001; Boulin et al.,
2006). The C. elegans VNC axons are present in fascicles
that extend in the posterior-anterior axis (White et al.,
1986). Some VNC axons, known as pioneer axons, extend
prior to others and provide a platform for follower axons
in the same tract by producing extracellular cues, such as
UNC-6/Netrin and SAX-3/Robo (Klose and Bentley, 1989;
Wadsworth et al., 1996; Hutter, 2003). In contrast, ventral-
dorsal circumferential axons are not guided by pioneer axons
and grow in response to trophic cues that act as attractants
or repellents. Trophic guidance cues are classified in different
groups, including Netrins, Transforming growth factor-β, Wnts,
Slits and Semaphorins. We will briefly discuss each group
in the following sections.

UNC-6/Netrin and SLT-1/Slit are well-studied
and conserved guidance molecules. UNC-6/Netrin is expressed
by ventral cells and possibly forms a gradient to direct axon
guidance (Kulkarni et al., 2008; Hao et al., 2010; Smith et al.,
2012; Levy-Strumpf and Culotti, 2014). Depending on Netrin
receptor expression, UNC-6/Netrin can be an attractive
or repulsive cue. For example, UNC-40/DCC expression
directs axon attraction toward the UNC-6/Netrin, whereas,
expression of UNC-5, either alone or in combination with
UNC-40/DCC, repels axons from high levels of UNC-6 (Norris
and Lundquist, 2011). SLT-1/Slit, a cue expressed in dorsal
muscle, is interpreted by receptors such as SAX-3/Robo
and EVA-1 that coordinate dorso-ventral guidance of the AVM

axon in parallel with UNC-6/Netrin (Hao et al., 2001; Fujisawa
et al., 2007).

Growth factors, such as TGF-β ligands, are prominent
guidance cues during axon development (Table 1). UNC-
129/TGF-β is secreted by dorsal body wall muscle and directs
axon guidance through unknown non-canonical TGF-β
receptors (MacNeil et al., 2009; Baltaci et al., 2022). Notably,
UNC-129 binds to the Netrin receptor UNC-5 and facilitates
UNC-6/Netrin repulsive guidance by enhancing UNC-5
and UNC-40 signaling (MacNeil et al., 2009). The precise roles
of growth factors in axon guidance have recently been reviewed
by Onesto et al. (2021).

The C. elegans Wnt ligands EGL-20, CWN-1, CWN-2
and LIN-44 also regulate axon development (Hilliard and
Bargmann, 2006; Pan et al., 2006; Kennerdell et al., 2009;
Kirszenblat et al., 2011). EGL-20 and CWN-1 regulate anterior-
posterior axon guidance of the AVM and PVM neurons by
binding to Frizzled receptors MIG-1 and MOM-5 (Pan et al.,
2006). While LIN-44 and the Frizzled receptor LIN-17 regulate
axon and dendrite development of PLM and PQR neurons,
respectively (Hilliard and Bargmann, 2006; Kirszenblat et al.,
2011).

Some members of the Semaphorin family and ECM
components are released from cells to guide axons.
For example, MAB-20/Sema2 is a secreted semaphorin
that interacts with PLX-2/Plexin and LAD-2/L1CAM
to guide axons of the DA, DB and SDQL neurons (Roy
et al., 2000; Wang et al., 2008; Dong et al., 2016). While
ECM components, such as the metalloprotease MADD-
4, are secreted from dorsal and VNC and cooperate
with UNC-6/Netrin and SLT-1/Slit to control both
muscle arm extension and AVM axon guidance
following interaction with the UNC-40/DCC receptor
(Seetharaman et al., 2011).

Neurite guidance proteins, expressed in neurons or
surrounding tissues, must be precisely expressed to enable
correct neurite growth. Such multi-layered regulatory processes
involving multiple tissues require precisely controlled gene
expression to support development of both pan-neuronal
and neuron-specific neurite characteristics. These include fine
navigation of neurites to establish synaptic connections, or
the exit of neurites of specific neurons from nerve fascicles.
The limited number of regulators compared to the diversity
of the nervous system suggest that these regulators work
in combinatorial patterns to regulate neuronal guidance
decisions in a context-dependent manner. For example, SLT-
1/Slit and UNC-6/Netrin cooperate in AVM ventral guidance
such that removing both ligands causes more severe axon
guidance defects compared to each single mutation (Hao
et al., 2001). Notably, in C. elegans most studies of axon
guidance have been performed on the VNC and circumferential
axons and information is limited for more structurally
complex regions such as the nerve ring. In the next section,
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FIGURE 3

Heatmaps showing the temporal, quantitative and pairwise correlation of neurite development regulators. (A,B) Bulk expression of C. elegans
ligands and receptors (A) and TFs (B) during embryogenesis, larval stages and adulthood. (C) Pairwise correlation between guidance receptors
and TFs to identify expression correlations through animal development. Guidance ligands were excluded as they can be expressed in
non-neuronal tissues. Genes are clustered according to Euclidean distance. Data are presented as Log2 TPM (transcripts per million) to
normalize inter-sample differences. Legends show the ligand and receptor families or superfamily of TFs. Two histone modifier proteins,
MIG-32 and SPAT-3, were also included in the TF lists. Gray cells = data not available. Black boxes delineate gene clusters. Gene expression
values were obtained from Expression Atlas (ebi.ac.uk/gxa/home). HSP, heparan sulfate proteoglycans; LCDC, leukocyte cell-derived
chemotaxin; TB, signal transmembrane-bound signal.
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FIGURE 4

Single-cell expression analysis of neurite development regulators throughout development. (A) Four neurons (AFD, CAN, DVA and PVD) were
selected based the availability of single-cell gene expression data and diversity of neuron type. The AFDs are sensory amphid neurons located in
the head that extend anteriorly-directed dendrites and axons into the nerve ring (red). The CANs extend long neurites both anteriorly and
posteriorly from the central cell body (green). DVA is a posterior sensory neuron that extends an anterior axon into the nerve ring (purple). PVDs
are polymodal sensory neurons that extend elaborate dendritic arbors throughout the animal (blue). The AFDs, CANs and DVA develop
embryonically while the PVD develops post-embryonically. (B) Expression of neurite developmental regulator ligands/receptors and TFs in the
PVD (and PVC) neurons at the L2 and the PVDs at the L4 stage of development. The outer and inner heatmaps show the expression of
ligands/receptors and TFs, respectively. (C) Single-cell expression of neurite development regulators in the AFD, CAN and DVA neurons during
embryonic and larval development. Genes are clustered according to Euclidean distance. Data are present as Log2 TPM to normalize
inter-sample differences. Legends show the family of the ligand and receptor proteins or superfamily of the TFs. Gray cells = data not available.
Gene expression values were obtained from multiple studies: AFD, CAN and DVA at embryonic stages (Packer et al., 2019); AFD, CAN, DVA and
PVD at L2 stage (Cao et al., 2017); AFD, CAN, DVA and PVD at L4 stage (Taylor et al., 2021). Clock faces denote time following bleaching of adult
hermaphrodites. HSP, heparan sulfate proteoglycans; LCDC, leukocyte cell-derived chemotaxin; TB, signal Transmembrane-bound signal; gt,
greater or equal to.
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FIGURE 5

Transcriptional regulatory network of ligands and receptors that regulate neurite development.(A) Regulatory network of TFs with a binding
peak upstream of genes that encode ligands and receptors involved in neurite development. The network was manually constructed by
identifying statistically significant peaks (q-value < 0.01) within 2 and 5 kb upstream of the transcription start site (TSS) of each gene. For the
genes with multiple isoforms the longest isoform was analyzed. Data was obtained from modENCODE (Gerstein et al., 2010; Yu et al., 2017; Li
et al., 2020). The network was visualized via Cytoscape 3.7.1 (Shannon et al., 2003). Nodes represent genes in which the rectangles and ellipses
show TFs and ligands/receptors, respectively. Node size relates to number of connections. Nodes in green are TFs with experimentally verified
roles in neurite development. The edges show interactions between two nodes, where the thick and thin lines represent binding peaks at 2 and
5 kb from the TSS, respectively. Arrowheads depict TFs binding upstream of a gene. (B) Expression level of TFs (modENCODE) in the nervous
system (pan-neuronal) or whole body (bulk) during animal development. Genes are not clustered. Gray cells = expression not detected.

(Continued)
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FIGURE 5 (Continued)

Pan-neuronal gene expression was obtained from Sun and Hobert (2021) and bulk gene expression was fetched from Expression Atlas
(ebi.ac.uk/gxa/home). (C) Stacked bar plot showing target families for each TF and the superfamily of TFs binding upstream of neurite regulatory
genes. TFs may have binding peaks upstream of multiple genes and a gene promoter can be occupied by multiple types of TFs. The left stacked
bar plot shows the family of genes occupied by the TFs. The right bar plot represents which superfamily of TFs binding upstream of each
ligand/receptor gene. In both plots, TFs and genes with more than 5 TF-gene interactions were visualized. The number next to the gene names
shows the interaction counts. Interaction data were extracted from the network (A) and visualized using R language programming. HSP, heparan
sulfate proteoglycans; LCDC, leukocyte cell-derived chemotaxin; TB, signal Transmembrane-bound signal.

we discuss how specific TFs regulate neurite development
in C. elegans.

Transcriptional regulation
of neurite development

TF function in neurite development has been examined
for both dendritic and axonal development. Here, we review
the TFs with experimentally validated roles in neurite
development in C. elegans. All TFs shown to regulate neurite
development are listed in Table 3 but due to space limitations
we only discuss the role of some key TFs below.

Dendrite development

In C. elegans, most mechanistic information for dendrite
development originates from studies of the PVD sensory
neurons that develop post embryonically, and exhibit extensive
and clearly visible dendritic branches (Figure 1A; Smith et al.,
2010, 2013; O’Brien et al., 2017). PVD dendrites are classified
into two groups: (i) pioneer dendrites that attach the epidermis,
and (ii) commissural dendrites that fasciculate with motor
neurons (White et al., 1986; Halevi et al., 2002; Tsalik et al.,
2003). Several TFs regulate development of these dendritic
structures. Among them, MEC-3, a LIM homeodomain TF, is
a central regulator of PVD function and dendrite development
(Tsalik et al., 2003; Smith et al., 2010). MEC-3 function is
dose-dependent—with low levels driving dendritic branching
of the PVDs, and high levels correlated with the simple
dendritic morphology of the AVM mechanosensory neurons
(Smith et al., 2013). AVM dendritic morphology is regulated
by the aryl hydrocarbon receptor TF AHR-1, which elevates
MEC-3 expression and suppresses MEC-3 target genes such as
the HPO-30/Claudin protein (Smith et al., 2013). MEC-3 is also
regulated by the POU TF UNC-86 and its loss phenocopies
the mec-3 mutant dendrite developmental defects (Xue et al.,
1992; Smith et al., 2010). Additionally, UNC-86 is required
for IL2Q dendrite arborization (Schroeder et al., 2013). In
contrast, PVD commissural dendrite development is regulated
by EGL-46, a zinc-finger TF, and its binding partner, EGL-44,
a TEA/YAP domain TF (O’Brien et al., 2017). Interestingly,
EGL-46 is itself a target of MEC-3 (O’Brien et al., 2017).

Therefore, MEC-3 regulates dendrite development of the PVDs
through two parallel pathways: HPO-30/Claudin for pioneer
dendrites and EGL-46/EGL-44 for commissural dendrites.

Axons can also regulate dendrite development of other
neurons. For example, the ALA axon regulates PVD dendrite
development in a contact-dependent manner. Here, MIG-
6/Papilin, an ECM protein, UNC-6/Netrin and UNC-40/DCC
regulate ALA axon development in early developmental stages
and this axon controls PVD dendrite development in the later
stages (Ramirez-Suarez et al., 2019).

Axon development

Most C. elegans studies of axon development were
conducted on neurons with easily observable axons to facilitate
mutant isolation (Figure 1, a general view of the C. elegans
nervous system). These neurons include the ventral motor
neurons (DA, DB, DD, and VD), VNC interneurons (AVG,
PVQ, and PVP) and the HSN motor neurons (Jin et al., 1994;
Pujol et al., 2000; Wacker et al., 2003; Doonan et al., 2008;
Pocock et al., 2008b; Weinberg et al., 2013; Table 3).

TFs can regulate axon development both cell-autonomously
and non-autonomously. TFs may also indirectly regulate
axon guidance of some neurons by regulating pioneer axon
development. For example, LIN-11 and UNC-30 affect VNC
axon patterning by regulating AVG and PVP pioneer axon
development, respectively (Hutter, 2003). TFs can also regulate
development of a particular neuron when expressed in another
neuron. For example, MNM-2, a zinc finger domain TF, controls
axon guidance of the M2 neurons while its expression occurs
in the M3, sister neuron of M2. Apparently, MNM-2 regulates
axon guidance by functioning alongside genes involved
in cytoskeleton or membrane dynamics, and Netrin/TGF-β
signaling pathways (Rauthan et al., 2007). Glial cells also
regulate axon development. Yoshimura and colleagues showed
that CEPsh glial cells control AWC and AFD axon guidance
within the nerve ring, dendrite development and nerve ring
assembly (Yoshimura et al., 2008). Further, the MLS-2 and VAB-
3 TFs, non-autonomously regulate axon guidance by regulating
CEPsh development (Yoshimura et al., 2008).

TFs also regulate neurite developmental factors such
as ligands, receptors and plasma membrane components
in neuronal and non-neuronal cells. For example, UNC-130,
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FIGURE 6

TFs binding peaks within 2 kb upstream of neurite development regulators. Genes encoding guidance cues (A) SLT-1, (B) UNC-6, and the
guidance receptors (C) SAX-7, (D) UNC-40 were chosen to analyze ChIP-peak density. The heatmap below each group of peaks represent
stages in which peaks were detected. Only a few TFs occupy 2 kb upstream region of unc-6 and slt-1, however, the number of TFs that bind at 5
kb region is larger (Figure 5). Multiple TFs occupy the sax-7 promoter. This gene has two short and long isoforms with the promoter region of
short isoform occupied by 38 TFs (not shown). In contrast to the other genes, the unc-40 promoter is occupied with several dozen TFs.
Interestingly, the promoter region of unc-40 overlaps npp-7 promoter and as such some TFs may regulate the expression of both or either
gene. All peaks are statistically significant (q-value < 0.01). The numbers on the peaks represent the scale of data within that region that shows
the lowest and highest levels of the detected peaks within the region. Input levels are not shown or subtracted from the treatment peaks. The
dashed lines show the location of TSSs. In the heatmaps, gray cells = no peak identified. Due to large number of peaks for unc-40 and space
limitation only some of the candidates are presented. The heatmap for unc-40 includes genes with peaks at multiple stages. The peaks were
visualized using Integrative Genomics Viewer 2.12.0 (Robinson et al., 2011). The data was obtained from modENCODE (Gerstein et al., 2010).
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a Forkhead TF, regulates motor neuron axon development
through the dorso-ventral axis in parallel to the Netrin signaling
pathway (Nash et al., 2000). UNC-130 represses expression
of the UNC-129 TGF-β ligand in ventral, but not dorsal
muscles, leading to a dorso-ventral biased gradient of UNC-
129 and resulting in dorsal axon guidance (Nash et al.,
2000). Further, UNC-42, a homeodomain TF expressed in 15
classes of neurons, regulates axon outgrowth and guidance
of multiple neurons including ASH, AVH, AVA, AVD,
and HSN (Wightman et al., 1997; Brockie et al., 2001;
Berghoff et al., 2021). UNC-42 regulates axon guidance
molecules such as UNC-6/Netrin in command interneurons,
and LAD-2/L1CAM, RIG-6/IGCAM and NCAM-1 in a
subset of UNC-42 expressing neurons (Berghoff et al., 2021).
Further, the CTBP-1 transcriptional corepressor regulates
multiple features of SMD axonal development, including
outgrowth, guidance and termination (Reid et al., 2015; Sherry
et al., 2020). CTBP-1 represses expression of SAX-7/L1CAM,
a fibronectin type-III protein critical for neuronal development
and maintenance (Wang et al., 2005; Ramirez-Suarez et al.,
2019). It was revealed that ectopic overexpression of SAX-
7 in neurons causes defects in the SMD axon development,
revealing the importance of precisely controlling the expression
of axon guidance molecules (Sherry et al., 2020).

TFs also regulate asymmetric and sex-specific axon
development (Bertrand et al., 2011; Serrano-Saiz et al., 2017).
In C. elegans, some neurons show asymmetric gene expression
in either the left or right member of a bilaterally symmetric
neuron pair (Johnston and Hobert, 2003; Bertrand et al., 2011;
Cochella et al., 2014). Bertrand and colleagues found that
the HLH-16 TF exhibits higher expression in some neurons on
the left side compared to those on the right. The authors showed
that HLH-16 controls axon projection of both left and right
AIY interneurons, but the left AIY is more dependent on
HLH-16 expression (Bertrand et al., 2011). This suggests a role
for TFs in determining the asymmetric development of axon
projections. Furthermore, specific TFs might also be responsible
for sex-specific neurite development. Among neurons that are
present in both hermaphrodites and males, some exhibit sex-
specific connectivity and differential gene expression (Oren-
Suissa et al., 2016; Serrano-Saiz et al., 2017). For example,
sexual dimorphic development of neurites has been documented
for the PHC sensory neurons where male axons are longer,
and dendrites are retracted. This phenotype depends on sexual
maturity, as both sexes show similar PHC anatomy in immature
larval stages. DMD-3, a member of Doublesex TFs family, cell-
autonomously regulates PHC neurite morphology (Serrano-Saiz
et al., 2017). In turn, DMD-3 expression is itself regulated by
the sex-determination pathway, through the TRA-1 TF that
represses DMD-3 expression in hermaphrodites (Goodwin and
Ellis, 2002; Serrano-Saiz et al., 2017).

In addition to TFs, other types of gene regulatory proteins,
including chromatin remodeling and histone modifying

enzymes, regulate neurite development. Polycomb Group
proteins (PcG) are histone modifiers that control gene
expression (Di Croce and Helin, 2013). In C. elegans, SOP-2,
a polycomb protein, and SOR-3, a protein containing histone-
binding domain MBT, show PcG-like function and repress
the expression of homeotic genes (Zhang et al., 2003; Yang et al.,
2007). Both SOP-2 and SOR-3 are required for the development
of dopaminergic and serotonergic neurons and also control
axon guidance of B-type ray neurons in the C. elegans male tail
(Yang et al., 2007). MIG-32 and SPAT-3, members of RING-
type domain-containing proteins, regulate HSN migration
and axon development. In addition, MIG-32, a PRC1-like
protein, controls axon guidance in the VD and PVQ neurons
(Karakuzu et al., 2009). Another example is ham-3 that encodes
a subunit of the SWI/SNF chromatin-remodeling complex.
HAM-3 controls serotonergic identity, migration and axon
guidance of the HSN neurons (Weinberg et al., 2013). Therefore,
epigenetic regulators and TFs control neurite development,
likely by regulating the expression of specific genes.

The bias in study of neurite development toward those
with clearly observable axons raises the question of how
neurite development is regulated in the neurons within densely
packed fascicles, such as those located in the C. elegans nerve
ring. Another important question is whether pan-neuronal
or neuron-specific gene regulatory systems control neurite
development in all and specific neurons, respectively. As neurite
development is controlled by multiple tissues, the existence
of coordinated gene expression programs is likely. Therefore,
TFs must orchestrate gene batteries in different cells to achieve
this goal. To address these questions, analyzing the expression
of the neurite development regulators (ligands, receptors
and TFs) at a cell/tissue level throughout development would
be a useful discovery tool for neurite specific developmental
mechanisms. Here, we analyzed the expression of neurite
development regulators through C. elegans development. Using
bulk and single-neuron level transcriptomic datasets we
examined how the expression of these genes change during
neurite development.

Expression patterns of neurite
development regulators

The availability of single-cell and whole animal
transcriptome data throughout C. elegans development enables
tracking of neuronal developmental regulator expression
dynamics (Papatheodorou et al., 2020). Bulk expression
of ligands (19), receptors (31 including other cell-surface
molecules) and neurite development-related TFs (35) shows
the majority of these genes are expressed in the elongating
and 3-fold embryonic stages, which is consistent with the timing
of neurite development (Durbin, 1987; Figure 3A). Generally,
most neurite regulatory genes show higher expression during
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TABLE 4 Human orthologs of C. elegans TFs that control neurite development.

TF gene Human ortholog (rank) Disease-causing human
gene

Disease description Source

High Moderate

ahr-1 AHR AHRR

ast-1 FLI1 FEV FLI1 Amyotrophic lateral sclerosis GWAS

ceh-10 VSX2 VSX1 VSX1, VSX2 Microphthalmia with coloboma OMIM

ceh-14 LHX4 LHX3 –

ceh-17 PHOX2A PHOX2B PHOX2A, PHOX2B Fibrosis of extraocular muscles,
neuroblastoma

OMIM

ctbp-1 CTBP2, CTBP1

dmd-3 DMRTA1, DMRTA2,
DMRT1, DMRTC1

DMRT1 Major depressive disorder GWAS

egl-44 TEAD1, TEAD2,
TEAD3

TEAD4 Narcolepsy with cataplexy GWAS

egl-46 INSM1, INSM2

egl-5 HOXC6, HOXB5,
HOXA6

fax-1 NR2E3 NR2E3 Enhanced S-cone syndrome OMIM

fkh-2 FOXG1 FOXD3, FOXS1,
FOXE3, FOXD2

FOXS1, FOXE3, FOXC1 Oppositional defiant disorder
dimensions in attention-deficit
hyperactivity disorder; Anterior

segment dysgenesis

GWAS

ham-3 SMARCD1,
SMARCD2,
SMARCD3

hlh-16 OLIG1, OLIG3

hlh-3 ASCL1 ASCL2, ASCL4 ASCL1 Central hypoventilation
syndrome

OMIM

lim-6 LMX1B LMX1A

lin-11 LHX1, LHX5

mab-9 TBX10, TBX15

mec-3 LHX1

mig-32 PCGF3 PCGF5, PCGF1,
PCGF6

PCGF6 Schizophrenia GWAS

mls-2 HMX1, HMX2 HMX1 Oculoauricular syndrome OMIM

sem-4 SALL1, SALL3 SALL2, SALL4 SALL3 Attention function in attention
deficit hyperactive disorder

GWAS

spat-3 RING1, RNF2

ttx-3 LHX2, LHX9

unc-130 FOXD3, FOXD4 FOXD2, FOXD4L3

unc-3 EBF1, EBF3 EBF2, EBF4 EBF3 Hypotonia, ataxia OMIM

unc-30 PITX2 PITX3, PITX1 PITX2, PITX3, PITX1 Anterior segment dysgenesis,
Bulimia nervosa

OMIM

unc-39 SIX4

unc-42 PROP1 PROP1 Pituitary hormone deficiency OMIM

unc-86 POU4F1, POU4F2,
POU4F3

POU6F2, POU2F2

vab-3 PAX6 PAX4 PAX6 Aniridia OMIM

vab-7 EVX1, EVX2

zag-1 ZEB1, ZEB2 ZEB1 Corneal dystrophy OMIM

The orthologous genes and disease related to each gene was obtained from (fgr.hms.harvard.edu/diopt-dist) (Hu et al., 2011). High and moderate ranks are based on the score from
integration of the results provided by individual ortholog tools. The high rank means the score is the best for comparing the gene of interest in the species A against B, and also reverse
comparing of the species B against A. The moderate rank is obtained when the score is the highest in one of the comparisons of species. More details can be obtained from Hu et al. (2011,
2017).
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embryogenesis and lower levels at the final larval stage
(L4) and adult stages (Figures 3A,B). However, only a few
genes show a positive pairwise correlation with synchronous
expression patterns during development (Figure 3C). For
example, CEH-14, SEM-4 TFs and LIN-18 Wnt receptor show
a high correlation of expression (Figure 3C). The other cluster
of co-expressed genes includes the TFs HAM-3, HLH-3, HLH-
16, MIG-32, MNM-2, UNC-39, and VAB-7, and the receptors
LON-2 and MOM-5 (Figure 3C). To the best of our knowledge,
there is no study showing a regulatory relationship between
the receptors and TFs in these clusters. Therefore, it would
be interesting to investigate possible biological connections
between them. Bulk gene expression from whole animals does
not however, represent neuron-specific expression patterns. To
obtain a more precise view, we tracked the expression of neurite
development regulators in single neurons.

Single-cell C. elegans transcriptomes have been obtained
from different stages of development, from embryonic
through to larval stages (Cao et al., 2017; Packer et al., 2019;
Sun and Hobert, 2021; Taylor et al., 2021). We focused on
four neurons that extend neurites either in the embryonic
(AFDs, DVA and CANs) or post-embryonic (PVDs) periods
(Sundararajan et al., 2019; Figure 4A). More than half of the
genes involved in neurite development are expressed at high
levels during embryonic development of these neurons.
The gene expression patterns of the AFDs, DVA and CANs
are similar, though some genes exhibit a neuron-specific
expression pattern. For example, the FAX-1 and CEH-10
TFs are highly expressed in DVA and CAN, respectively
(Figure 4B). Interestingly, the MLS-2 and VAB-3 TFs, which
control axon guidance of several neurons including the AFDs,
are highly expressed in these neurons during embryonic
development. However, these TFs regulate AFD axon guidance
by functioning in cephalic sheath glia (Yoshimura et al.,
2008). MAB-20/Sema2 semaphorin, which is a secreted cue,
is expressed in all four neurons throughout development,
suggesting that semaphorin may act as a common signal
for neuron-neuron interactions. Likewise, the expression
of many guidance receptor-encoding genes is detected
in these neurons during embryogenesis, suggesting a role
in neuron/neurite development. The PVD neurons, which
extend dendrites post-embryonically (Sundararajan et al.,
2019), express many of TFs including MEC-3, EGL-44, EGL-46,
and UNC-86 that regulate PVD dendrite development (Smith
et al., 2010, 2013; O’Brien et al., 2017; Figure 4C). Similarly,
many guidance receptors are expressed in the PVD neurons
at the L2 and L4 stages, highlighting their potential importance
for dendrite development. For example, DMA-1 (a leucine-rich
repeat protein), FMI-1/Flamingo, and SAX-3/Robo are required
for PVD development (Liu and Shen, 2012; Hsu et al., 2020).
SAX-7/L1CAM expression in hypodermal cells and the ALA
neuron is also required for PVD development (Dong et al.,
2013; Chen et al., 2019). However, this gene is also expressed

in the PVDs, suggesting cell-autonomous and non-autonomous
modes of action.

Taken together, many neurite development regulators are
expressed during embryogenesis, when the majority of neurons
develop. Interestingly, individual developing neurons show high
expression of multiple neurite development regulators revealing
the potential occurrence of combinatorial regulatory systems
in each neuron. This hypothesis is supported by observations
that removing individual neurite guidance regulators causes
partially penetrant defects (Hao et al., 2001). Thus, our analysis
of single-neuron transcriptome data through development
reveals potential multifactor-controlled processes that requires
regulatory tuning.

Potential transcription factors
involved in regulation of neurite
development

Although genetic screens have identified several TFs
(Table 3) that regulate neurite development, there are likely
other potential regulators controlling this process. Analysis
of ChIP-seq data enables the identification of putative TF
target genes (Furey, 2012). Using this approach, we identified
binding sites for TFs within the regulatory regions of neurite
development regulators. The availability of ChIP-seq data
(modENCODE) for multiple C. elegans TFs (74) enabled us
to generate a regulatory network of TFs that bind upstream
of genes encoding ligands and receptors involved in neurite
development (Gerstein et al., 2010; Figure 5A). Among these
TFs, EGL-5, ZAG-1, and UNC-3 are known to regulate neurite
development (Wightman et al., 1997; Prasad et al., 1998;
Wacker et al., 2003; Hartin et al., 2017). As one would predict,
we found that multiple TFs can bind within 5kb upstream
of genes encoding ligands and receptors (Figure 5A). Notably,
the number of targets that are regulated by these TFs vary.
Some TFs such as UNC-62, HLH-1, and BLMP-1 may bind
to the upstream region of several ligand and receptor encoding
genes, while others bind to specific regions, such as AHA-1,
NHR-67 which have only one target gene each (Figures 5A,C).
In addition, the upstream regions of genes encoding ligands
and receptors are occupied with different TFs (Figure 5C).
The expression of about half of these TFs is enriched in neurons
throughout larval and adult stages (Figure 5B). However,
expression level analysis shows no direct correlation between
the expression of TFs and their targets. For example, despite
the fact that HLH-1 and BLMP-1 bind to the upstream region
of numerous target genes (Figure 5A), they do not show pan-
neuronal expression (Figure 5B), however, low-level expression
in specific neurons is possible. In contrast, DAF-16, a FOXO TF
that binds to the upstream region of 30 ligand/receptor encoding
genes, shows high neuronal expression during development
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(Figure 5B). This TF regulates multiple biological processes
such as lifespan, metabolism, and axon regeneration (Lee
et al., 2003; Murphy et al., 2003; Basu et al., 2021). Similarly,
TFs with known functions in neurite development (Table 3),
such as EGL-5, ZAG-1, UNC-3, and SEM-4, also have
binding sites within the upstream regions of genes encoding
ligands and receptors.

Promoters of ligand and receptor encoding genes may
be occupied by multiple TFs. For example, pat-3, tig-
2 and unc-40 promoters are occupied by over 50 TFs,
however, the binding of these TFs could be cell-specific,
or at particular developmental stages (Van Buskirk and
Sternberg, 2010; Smith et al., 2013; Serrano-Saiz et al.,
2017). In addition, some neurite development regulators
function in non-neuronal tissues. For example, VAB-
1/Eph receptor is required for epidermal morphogenesis
(George et al., 1998). Therefore, coordinated cell/tissue
transcriptional regulation of ligands/receptors by multiple
TFs can orchestrate the function of these genes in distinct
cellular contexts.

We found that some parts of the genome are hot
spots for TF binding (Figure 6) (Araya et al., 2014;
Joshi, 2014). However, linking these hot spots with gene
expression and functionality need to be studied in more
detail to identify how multiple TFs can cooperate with, or
compensate for each other (Stefanakis et al., 2015; Leyva-
Diaz and Hobert, 2022). In addition, promoter regions
of some genes overlap. For example, the unc-40 and npp-
7 promoters overlap with over 50 TFs binding within this
region (Figure 6D). In this case, as both genes could be
simultaneously expressed, it is challenging to identify which
gene is the real target of each TF. Gene-specific regulation
by each TF may require additional independent regulatory
proteins, such as co-repressors and co-activators (O’Brien
et al., 2018). Finally, some genes encode multiple isoforms
that are controlled by alternative Transcription Start Sites
(TSSs) (Rojas-Duran and Gilbert, 2012; Craig et al., 2013;
Reyes and Huber, 2018). For example, sax-7 encodes two
short and long isoforms that regulate neuronal development
and maintenance (Sasakura et al., 2005; Pocock et al., 2008a;
Sherry et al., 2020). The upstream region of each isoform
is occupied by different sets of TFs with several to dozens
for longer and shorter isoforms, respectively (data not shown).
This highlights the potential importance for transcriptional
regulation of isoform-specific expression through binding
of specific TFs.

Although the detection of TF binding upstream of a
gene does not necessarily mean that the TF is a regulator
of that gene, there is a possibility of regulation. To determine
direct regulation, the expression of target genes in TF mutant
backgrounds, TF-promoter binding assays and mutation
of endogenous TF binding sites followed by ChIP-PCR
would be necessary (Van Nostrand and Kim, 2013; Angelini

and Costa, 2014; Pai and Gilad, 2014). Additionally,
the difference in the number of regulators for different
genes and its impact on the development and physiology
must be investigated. Taken together, ligands and receptors
involved in neurite development are potentially regulated by
multiple factors.

Evolutionary conserved
transcription factors and potential
connections to disease

Many TFs have DNA binding domains, such as zinc-
finger and homeodomains, that are highly conserved
across species (Narasimhan et al., 2015; Nitta et al.,
2015). The majority of TFs involved in C. elegans neurite
development have orthologs in other animal models such
as fruit flies and mice. However, genes have different
levels of conservation among species or may have multiple
orthologs in other animals (Table 4). Interestingly, many
C. elegans TF orthologs in mice are also required for nervous
system development. For example, axon guidance is
regulated by mouse Pax6 and Lhx2 TFs that are orthologs
of worm neurite development regulators VAB-3 and TTX-
3, respectively (Altun-Gultekin et al., 2001; Hevner et al.,
2002; Lakhina et al., 2007; Yoshimura et al., 2008). This
high level of evolutionary and functional conservation
shows the importance of neurite development-related TFs.
However, increasing complexity of the mammalian tissues may
have caused alterations in specific TF functions from those
observed in worms.

Similarly, many of the neurite development TFs in C. elegans
have human orthologs, with ∼50% of them associated
with mental or neurodegenerative disorders (Table 4).
Developmental defects in human neurons, particularly
those related to eye disorders, such as Fuchs endothelial
dystrophy, aniridia, and microphthalmia are linked to multiple
TFs with a worm ortholog (Verma and Fitzpatrick, 2007;
Nanda and Alone, 2019; Landsend et al., 2021; Table 4).
Further, central hypoventilation syndrome and pituitary
hormone deficiency are due to defects in the nervous system
development caused by mutations in human orthologs
of HLH-3 and UNC-42 (Correa et al., 2019; Trang et al.,
2020; Table 4). In addition to developmental defects,
neurodegenerative and psychological disorders also show
association to orthologs of worm neurite development
regulators. For example, amyotrophic lateral sclerosis
and schizophrenia are associated to FLI1 (AST-1) and PCGF6
(MIG-32), respectively (Weinberger, 2019). However, the roles
of these genes in human neuronal development are unknown.
Psychological disorders, such as major depressive disorder
and attention-deficit/hyperactivity disorder are caused by
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a combination of genetic and environmental factors (Otte et al.,
2016; Posner et al., 2020; Table 4). These diseases may be caused
by neurodegeneration or defects during development, including
neurite guidance.

Conservation of TFs involved in neurite development
across evolution suggest common regulatory mechanisms
in the compact C. elegans and complex mammalian nervous
systems. This similarity provides an opportunity to decipher
fundamental mechanisms of neurite and nervous system
development in model organisms, and to extend the knowledge
to higher animals for potential therapeutic applications.

Perspective

The nervous system contains complex neuronal circuits
comprised of highly regulated neurite architecture. Correct
nervous system development depends on precisely controlled
gene expression patterns, and interactions of gene products
in the surrounding environment. TFs are key regulators
of gene expression that perform critical roles in neurite
development. Most neurite regulators we examined show
similarities in their expression patterns during embryonic
and early larval stages in C. elegans (Figures 3A,B). Individual
signaling pathways are shown to control neurite development
(Hao et al., 2001, 2010; Fujisawa et al., 2007; MacNeil et al.,
2009; Smith et al., 2012), however, multiple pathways also
combine to provide robustness. For example, double mutants
for slt-1 (Slit) and unc-6 (Netrin) exhibit increased defects
in axon guidance compared to single mutation of these genes
(Hao et al., 2001). We found that individual neurons express
many neurite regulators at each developmental stage (Figure 4),
suggesting the existence of multiple redundant mechanisms
controlling neurite development. This hypothesis is highlighted
in complicated axon growth behaviors. For example, axon
guidance toward intermediate targets is controlled by precise
expression of the Netrin signaling components UNC-5,
UNC-6, and UNC-40 (Hedgecock et al., 1990; Wadsworth
et al., 1996; Dickson and Zou, 2010). Another less explored
example is the guidance of individual axons in a compact
axon fascicle, such as nerve ring (Figure 1), where neuron-
specific development of axons must be precisely controlled
to enable synapse establishment. Hence, combinatorial signaling
mechanisms seem to be inevitable, due to the existence of a
limited number of the signal molecules and receptors that
control neurite development.

Combinatorial interactions require highly regulated pan-
neuronal and also neuron specific signaling mechanisms that
are controlled by TFs. Neuron-specific regulatory mechanisms
have been widely studied for neuron fate determination
in C. elegans (Hobert, 2008; Stefanakis et al., 2015). Some
TFs have been identified as “terminal selectors” that are
essential for neuron fate determination throughout animal

life (Hobert, 2008). Because of the neuron-specific features
of neurites, such as growth to specific targets, there is
a possibility that terminal regulator concepts for neurite
development can be applied. Here, the limitation is that
neurite development is a multi-tissue regulated process
and, as such, requires co-regulation of genes in multiple
tissues (Hao et al., 2001; Fujisawa et al., 2007; Norris and
Lundquist, 2011). Further, the timing of TF and target
expression is essential for proper neurite development.
For example, the correct timing of UNC-86 expression is
critical for axon initiation and activation of ventral guidance
responses (Olsson-Carter and Slack, 2011). Alongside neurite
growth, maintenance of neurite position is controlled by
proteins such as SAX-7/L1CAM (Pocock et al., 2008a).
The identification of regulatory mechanisms to ensure
expression of “maintenance factors” may be critical for inducing
axon growth following injury.

Combinatorial gene regulation requires the activity
of multiple TFs (Reiter et al., 2017). We identified several
TF binding sites present in the upstream region of genes
encoding neurite guidance ligands and receptors, the relevance
of which could be explored further using functional
and mechanistic studies (Gerstein et al., 2010). Furthermore,
the involvement of the reported TFs in neurite development
has been studied in a limited number of neurons, with
their regulatory roles in the majority of neurons unclear.
In addition, TFs execute their functions via either protein-
protein interaction with other factors or indirectly through
other regulatory processes, suggesting a need to identify
potential cooperative components for these TFs (Altun-
Gultekin et al., 2001; Smith et al., 2013; O’Brien et al.,
2017).

In addition to TF-dependent gene regulation, other
gene expression regulatory mechanisms, such as epigenetic
modification (Abay-Norgaard et al., 2020) and post-
translational regulation via microRNAs (Zou et al., 2012;
Hong et al., 2013; Pedersen et al., 2013) are involved
in neuron development. Indeed, a combination of epigenetic
modifications, transcriptional regulation by TFs and post-
transcriptional modifications likely converge to precisely
control nervous system development.

Finally, the dynamic and combinatorial behavior of neurite
development regulators is reflected in the transcriptome,
particularly from single-cell level analysis. This information may
shed light on how to manipulate these regulators to overcome
neuronal deficits and neurodegenerative decline.
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